Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor

Type Article
Date 2014-05
Language English
Author(s) Reul NicolasORCID1, Chapron Bertrand1, Lee T.2, Donlon Craig3, Boutin Jacqueline4, Alory G.5
Affiliation(s) 1 : IFREMER, Lab Oceanog Spatiale, Plouzane, France.
2 : CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA.
3 : European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands.
4 : Lab Oceanog & Climat Expt & Approches Numer, Paris, France.
5 : Univ Toulouse 3, LEGOS, F-31062 Toulouse, France.
Source Geophysical Research Letters (0094-8276) (Amer Geophysical Union), 2014-05 , Vol. 41 , N. 9 , P. 3141-3148
DOI 10.1002/2014GL059215
WOS© Times Cited 45
Abstract Measurements from the Soil Moisture Ocean Salinity (SMOS) satellite acquired during 2012 in the western North Atlantic are used to reveal the evolution of the sea surface salinity (SSS) structure of the meandering Gulf Stream with an unprecedented space and time resolution. Combined with in situ surface and profile measurements, satellite-derived surface currents, sea surface height (SSH), surface temperature (SST), and chlorophyll (Chl) data, SMOS SSS observations are shown to coherently delineate meanders pinching off from the current to form well-identified salty- (warm-) and fresh- (cold-) core Gulf Stream rings. A covariance analysis at two locations along the separated Gulf stream path (south of Nova Scotia and in the Gulf Stream Extension) reveals a systematically higher correlation between SSS and sea level variability than between SST and SSH during the warmer half of the year. Within (75°W–40°W; 30°N–50°N), Chl concentration is also found to significantly depend on the SSS as SST increases above 20°C.
Full Text
File Pages Size Access
Publisher's official version 8 1 MB Open access
Top of the page