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ABSTRACT 

The dynamics of the mixed layer in the presence ?f ~~ embedd~d geostrophic j~t has b~e.n i~vestigated uSi?g 
a simple !'h-layer mode! and a two-dimensional pnmltIve equatlO.n mode!. The Jet vortlclty mduce~ a spatIal 
variability of the wind-driven inertial motions that can have sorne Impo~ant conseque.nces on the mlxed-l~yer 
dynamics. With a steady wind stress parallei to the front, the ma~n effect IS the genera~~on of st~ady upwelhngs 
and downwellings due to the divergence of the mean Ekm~n d~ft (as .rep?rted by Nuler). ':Vlth.a cross-front 
wind however a dramatic exponential amplification of the mertlal oscIllatIOns caused by an mertlal r~so?ance 
mechanism is round: this mechanism can increase the inertial waves amplitude by a factor u~ to 10 wl~hm ten 
inertial periods. Competition between this resonance mechani~m.a~d the dispersion mechamsms (mam1y the 
horizontal and vertical propagation of inertial waves) that can hmIt Its effects has been a.ssesse~. A con.seq~ence 
of horizontal propagation is that energetic waves can propagate weIl away from the Jet whiie contmumg to 
absorb energy from the wind. Downward propagation disperses this energy to a depth of at least 500 m m a 
few days. 

1. Introduction 

Wind-induced inertial motions are often character
ized by horizontal coherence scales much smaller than 
the scale of the wind. Spatial variability can be due to 
the wind-stress intermittence (Pollard 1990), but ex
perimental evidence also points to a role of mesoscale 
oceanic currents (Weller 1982; Large et al. 1986). 

The resulting spatial variability has sorne important 
consequences for mixed-Iayer dynamics. One conse
quence concerns the turbulent entrainment at the 
mixed-Iayer base that is mainly driven by the current 
shear instability (Price et al. 1986) and therefore by 
the inertial motions. This was studied by Klein and 
Hua (1988, 1990), who showed how mesoscale strain 
and vorticity can induce a spatial variability of the 
mixed-Iayer depth and of the sea surface temperature. 
Other consequences are linked to the resulting Ekman 
pumping, which produces a vertical velocity at the 
mixed-Iayer base (Niiler 1969; Rubenstein and Roberts 
1986) . 

Another class of effects, resulting from the spatial 
variability of the inertial motions, concerns the vertical 
transfer of near-inertial energy to the thermocline and 
the ocean interior where it is available for mixing. This 
transfer depends strongly on the horizontal scales of 
the motion and is enhanced when small horizontal 
scales are present (Rubenstein 1983; Gill 1984). 
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Therefore mesoscale structures are preferential sites 
for the ve~·tical energy flux because of their ability to 
produce small-scale inertial motions. Moreove:, ~he 
energy propagation in the deep ocean can be slgmfi
cantly affected by the characteristics of the mesoscale 
structures as the vorticity field: this can result in a trap
ping and amplification of the near-inertial waves in 
negative vorticity regions (Kunze and Sanford 1984; 
Kunze 1985). Such amplification can lead to strong 
localized wave dissipation and mixing in the thermo
cline and the ocean interior. 

The mechanisms that produce the shorter scales of 
the wind-induced inertial oscillations, or amplify them, 
have so far been studied using linear dynamics. In this 
study we have undertaken an examination of the pos
sible role of the nonlinear terms. This has revealed sorne 
surprising results and in particular, an inertial reso
nance mechanism that can strongly intensif y the wind
induced inertial motions. The next section discusses 
the evolving mixed-Iayer spatial variability induced by 
the presence of a simple barotropic jet using a linear 
analysis. Then the role of the nonlinear terms is ana
lyzed to show how they may trigger an inertial reso
nance mechanism leading, in sorne cases, to an ex
ponential intensification of the inertial motions. The 
fourth section examines the competition between the 
nonlinear resonance and the dispersion processes that 
limit its growth, using a I1f2-1ayer model. In section 5 
this competition and the resulting penetration ofnear
inertial energy within the ocean interior are studied in 
more detail using a two-dimensional primitive equation 
model. 
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2. Equations and linear analysis 

We consider the dynamics of a mixed layer embed
ded in a geostrophic current. To keep the problem an
alytically tractable, the geostrophic current is taken to 
be a fixed meridional jet, that is, barotropic and y in
dependent. Its velocity V ( x) satisfies the relation 

ôP 
fV= ôx' (1) 

where fis the constant Coriolis parameter and P the 
dynamic pressure normalized by the density p. Effects 
of this geostrophic jet on the dynamics of the wind
induced motions are first assessed using a simple 1112-
layer model. It consists of a surface mixed layer of depth 
h capping an abyssal layer where the only motion con
sidered is the jet velocity. 

a. The one-and-a-haif-layer model 

The surface mixed layer is vertically homogeneous 
with velocities ù = u, V = v + Vand dynamic pressure 
ft = p + P, where p is the perturbation pressure in the 
surface layer. The wind-stress components ( T x, T y) are 
normalized by p and are constant and spatially uni
form. Since the only heterogeneity cornes from the 
geostrophic jet, V (x), the y derivatives are assumed 
negligible compared with the x derivatives. Conse
quently, the momentum equations integrated over 
depth h are 

h ôù h - ÔÙ j,h- - h ôft h<T\ -+ u-- V=T +wu- -- J.J-
at ax x e ôx u 

h ôV + hù av + rhù = T + W (v - V) - h1)- (2) ôt ax J' y e v, 

where We is the turbulent entrainment velocity at the 
mixed-Iayer base. Since this model is not a fully strat
ified model, the vertical propagation of the inertial 
waves into the ocean interior has been taken into ac
count through the dissipation terms :/Jù and :/Ji;. The 
mass conservation leads to 

ôh ahù 
aï + ôx = -We • (3) 

The pressure gradient within the second layer is simply 
the geostrophic gradient ÔP / ôx. So the perturbation 
pressure gradient in the surface layer, aplôx, is given 
by (using the hydrostatic approximation) 

ap Ap ôh 
-=g--
ôx p ôx' 

(4) 

with Ap the density jump at the mixed-Iayer base. 
Equations (2) through (4) are simply the equations 
for a 11f2-layer model where the mixed layer is the 
active layer. Note that when (2) is combined with (3), 
we get the following equations for the Ekman transport: 

For the sake of simplicity, the analytical analysis 
performed in this section and in the next one assumes 
that the dispersion mechanisms as weIl as the entrain
ment at the mixed-Iayer base are very small. Conse
quently, the horizontal dispersion term (linked to gAp 1 
p ), the dissipative terms (1) hu and :/J hv), and the en
trainment at the ML base (we ) have been neglected in 
the next sections. Effects of these terms are considered 
in section 4. 

b. Linear solution for the Ekman transport 

The linear solutions have already been described in 
the literature (for example, see Nüler 1969; Rubenstein 
and Roberts 1986) and are reviewed here as an intro
duction to the nonlinear analysis. This helps to un
derstand how the presence of a geostrophic jet can affect 
the inertial motions and, in particular, induce a spa
tial variability of these motions. But, first, let us esti
mate the order of magnitude of the nonlinear terms 
using a dimensional analysis. We consider the initial 
conditions: h = hi, U = v = 0 at t = O. With the dis
persion terms neglected, equations resulting from (5) 
are nondimensionalized using a length scale L asso
ciated with the jet geometry, a time scale T = 1 / f, a 
velocity scale 

{
TX TY} 

U = max fh
i

' fh
i 

' 

and hi as a depth scale. Nondimensional variables are 
noted by an asterisk. Let us introduce a Rossby number 
associated with the inertial motions defined as ~ = U 1 
fL. In this study we assume that ~ ~ 1. Note that no 
assumption about the jet vorticity field r = ô VI ôx (and 
in particular about rI f) is made. We use the relations 
{hu, hv} = {u*, v* } Uh i • The resulting mass equation, 

ôh* ôu* 
ôt* = -~ ôx* ' (6) 

shows that 

(7) 

Consequently, the equations for the Ekman transport 
become [using w*2 = 1 + rI! and with the O(~2)_ 
terms neglected] 

ôu* ÔU*2 
-- - v* + ~ -- = T* 
ôt* ôx* x 

ôv* ôu*v* 
- + W*2U* + ~ -- = T*. 
at* ôx* y 

(8) 
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From (8), the nonlinear terms are of order O( E) com
pared with the linear terms. Moreover, the Ekman 
transport equations, at the order 0 ( f), are decoupled 
from the h equation. When only terms of order O( 1) 
are considered in Eqs. (8), the resulting linear solution 
is (in dimensional form) 

T y Tx . ( ) hu = -- (1 - cos(wt» + - sm wt 
f+ r w 

T x • T y • ) 
hv"" - - (1 - cos(wt» + - sm(wt 

f w 
(9) 

with w = [f(f+ n]1/2. 
Solution (9) shows two important effects of the jet 

vorticity on the Ekman transport. First, it affects the 
amplitude, which is Iarger on the negative vorticity side 
and sm aller on the positive vorticity side. One conse
q uence (Klein and Hua 1988) is an increase of the 
turbulent entrain ment at the mixed-Iayer base on the 
negative vorticity side and a decrease on the positive 
vorticity side. Another consequence noted by Niiler 
( 1969) is a constant upwelling or downwelling due to 
the divergence of the mean Ekman drift. Second, it 
affects the phase (wt) of the inertial motions. Because 
the phase depends on x [since w = w(x)], this effect 
amplifies with time, resulting in a linearly increasing 
phase difference of the inertial motions on each side 

of the jet. The consequence is an increasing spatial 
variability of the inertial motions that, as noted by 
Kunze ( 1985), can be understood using a local devel
opment of the phase wt: 

ow 
w(x)t"'" w(O)t + àx (O)xt + 

"'" w(O)t - kx, (10) 

where k = -tàw / àx can be considered as a time-varying 
cross-front wavenumber that characterizes the spatial 
variability of the inertial waves. Illustration ofthis effect 
is displayed in Fig. l, for the case of the sinusoidal 
front described in section 4 and for hi = 30 m, T x = 0, 
and T y = 1.2 X 10-4 m2 S2. This time-Iongitu~e plot 
of the hu oscillations (Fig. 1 a) displays a consplCUOUS 
increasing tilting of the phase lines indicating a decrease 
of the cross-front wavelength (Fig. lb). The corre
sponding growing wavenumber (k ~ -tàw/ àx) has no 
consequence on the magnitude of the linear solutions 
for hu and hv. Because ofitseffect on àhu/àx, however, 
it does have sorne consequences on the mixed-Iayer 
depth evolution. 

C. Linear solution for the mixed-layer depth 

From (3) (with We = 0) and (9), the solution for 
the mixed-layer depth is 

T ar ar t (TY Tx . ) 
h - hi = (f / n2 ax t + ox 2(f + n f + r cos(wt) - -;:;- sm(wt) 

a 

'" u 
.Q 
:;; 
c. • 

" E 
;:: 

-14111 -12" -,,,,, -ae -60 -413 -2" " 20 40 68 BS ,B" 12" 140 

LONG l TUDE {k.tIl! 

v(~)1 "'\ / 

-03J 1 ~ 

_ or 1 (~fTY sin(wt) + Tx COS(wt»). 
ox W(f + n 2 + r w 

(11 ) 

b 
___________ ~~ ____ -T-.9~.8~-

__ --.--lU_T._5.8 
T.l.8 

1 x~ 
-150 km o 150 km 

FIG. 1. (a) Time-Iongitude plot of the amplitude hu" (~hu - T y/ 
[f + l) for linear solution (9), with a steady wind paraJlel to the 
geostrophic jet. The jet profile V ( x) is outlined at the bottom of the 
figure. Arrow indicates the wind direction. Dashed and continuous 
contours correspond respectively to negative and positive values. 
Contours interval isO.4 m2 s-'. (b) Solution for hu" shown atdifferent 
times (in inertial periods). Note the significant decrease of the length 
scales as time elapses. 
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Fia. 2. Time-longitude plot of the mixed-layer depth perturbation 
(h* = h - hi with hi = 30 m) for linear solution (II), with a steady 
wind paraIlel to the jet. Dashed and continuous contours correspond, 
respectively, to negative and positive values. Contours interval is 1 
m. 

This solution is characterized by two dominant features 
that grow linearly with time. The first one cornes from 
the first right-hand side time-dependent term, that is, 

T y ar 
(f + nz ax t. 

It is a systematic upwelling or downwelling that works 
only when the wind has a nonzero compone nt parallel 
to the front ( T Y 1= 0), and depends on the sign of T ya r / 
ax: for a southward jet and northward wind (Fig. 2) 
there is downwelling in the middle of the jet and up
welling on the edges. Using the values f = 10-4 S-l , 
Ty = 1.2 X 10-4 mZ s-Z, ar/ax = 10-9 m- 1 S-l, the 
estimated mixed-Iayer depth variation is 7.5 m after 
10 inertial periods (Fig. 2). This corresponds to a ver
tical velocity of 1 m day-l . The spatial variability as
sociated with this feature is related to the jet vorticity 
gradient (Niiler 1969). The second feature, related to 
the next two right-hand side terms of( Il), cornes from 
the jet vorticity effect on the phase of the inertial mo
tions and is nonzero whatever the wind direction is. It 
appears in Fig. 2 as an inertial oscillation of the mixed
layer depth, that is, a sequence of upwellings and 
downwellings that linearly increase with time. 

Because of the growing spatial variability of the linear 
solution, nonlinear terms in (8) involving horizontal 
gradients cannot be neglected for times large compared 
with the inertial period. We first investigated these 

nonlinear effects numerically. For a wind parallel to 
the front (i.e., T x = 0 and T y 1= 0), the solution was 
qualitatively similar to the linear one. With a cross
front wind (i.e., T x 1= 0 and T y = 0), however, we found 
a dramatic increase of the amplitude of the inertial 
oscillations. The resulting mixed-Iayer depth variation 
reaches 31 m after 10 inertial periods (Fig. 3) for the 
same parameters ( except for the wind direction) as the 
case displayed in Fig. 2. We have found that this ex
ponential growth is due to a nonlinear resonance. A 
first insight into this mechanism can be obtained 
through a perturbation analysis. 

3. Perturbation analysis of the nonlinear equations 

a. OrE) solution for the Ekman transport 

Equations (8) for u* and v*, the nondimensional
ized Ekman transport components, are considered with 
the O( d nonlinear terms included. The following 
analysis assumes that E is small (i.e., E = U If L ~ 1) 
and moreover that E is small compared with r / f. We 
look for an estimation of the solution of (8) at times 
larger thanf-l . Henceforth, asterisks are dropped for 
nondimensional variables. Dimensional expressions 
will be explicitly mentioned when they are introduced. 

Equations (8) describe a nonlinear oscillator with 
natural frequency w. Therefore, as a basic assumption, 
we consider the components of the nonlinear terms 
with frequency w as the most important ones for the 
long-term behavior of the solution since they can in
duce resonance. Let us define the new variables u' and 
v' as 

T y , , 
U =""""2 + u, v = -Tx + v. 

w 

Then, using these new variables, the nonlinear terms 
can be linearized in the following way: 

a Ty 

au2 TaU' w 2 
- = 2 -1'.. - + 2u' _. - , 
ax w 2 ax ax 

a T y 

auv Ty av' , w Z au' 
ax = w 2 ax + v ax - T x ax . (I2 ) 

In other words, the decomposition ( 12) assumes that 
a single wave dominates, so that the wave-wave inter
action terms drop out. Using (12), the nonlinear equa
tions (8) are reduced to the simplified linearized equa
tions: 

a T y 

au' T au' ~2 
- - v' + 2E -1'.. - + 2EU' -- = ° at w 2 ax ax 

a Ty 

a ' a ' 2 a ' v Z T y V , W u -+ w u'+ f-- + fV -- - fTx - = 0, (13) & W2~ ~ ~ 
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FIG. 3. (a) Time-Iongitude plot of the mixed-Iayer depth perturbation (h* = h - hi with hi = 30 m) for a nonlinear solution with steady 
wind perpendicular to the jet. Contours interval is 3 m. (b) Time series of hu at three longitudes for the nonlinear solution with a wind 
perpendicular to the jet: x = -110 km (dashed), x = - 30 km (dot dashed), x = 0 km (solid). 

which can be rewritten as 

Now let us search for solutions like 

[u ', v'] = [uo, vo]e- i[wt+\Ii+ü (,2)] , ( 15) 

where }; (x, t) is a phase perturbation introduced to 
take into account the effects of the O( E) terms. A so
lution for}; that satisfies ( 14) is given in appendix A 
for a general case that includes dispersion. In the pres
ent case, in which the dispersion mechanisms are ne
glected, use of ( 15) into ( 14) leads to 

3 T Y dw 2 . ( T Y dW T x dW 2) 
if. = - E 4' W 2 dX t + If 3 W 3 dX t + 4w dX t . (16 ) 

This solution displays sorne very important effects 
linked to the nonlinear terms of the Ekman transport 
equations. First, it should be noted that the three terms 
on the right-hand side of ( 16) involve the jet vorticity 
gradient (included in dwldX). More precisely, they aIl 
involve the across-front wavenumber k = -tdw 1 dX and 
therefore are clearly linked to the spatial variability of 
the Ekman transport components. The first right-hand
side term is a modification of the frequency "seen" by 
the inertial motions that can be sim ply interpreted as 
a Doppler shift due to the zonal mean Ekman drift T yi 
w 2

; it can be rewritten as 

~ E TYk 
4 w 2 

' 

with k the across-front wavenumber. Using the values 
of section 2, this Doppler shift, which in dimensional 
form is 

3 T y dr 
- "8 hi (f + n dX t, 

attains =0.1 f after 8 days and does not affect much 
the frequency. The second term corresponds to an ex
ponential growth or decay due to the divergence of the 
zonal-mean Ekman drift. The corresponding growth 
or decay rate is constant and in dimensional units is 

3 T y dS 
= 2hi (f + n2 dX . 

It is usually small (= 10-6 S -[ ). The third term pro
duces a much more significant growth or decay of the 
Ekman transport since the corresponding growth rate 
grows linearly in time. Therefore, the solution behaves 
like exp(t2

). In dimensional units, the corresponding 
growth rate is 

T x dr 
-t 

8hi (f + n dX . 

Using the values of section 2, this leads to the tenfold 
increase of the amplitude of the oscillating part of the 
Ekman transport after 8 days seen in Fig. 3. 

The term involving T x cornes from the linearization 
of the nonlinear term dU v 1 dX [see (12)] and acts in 
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( 14) as a forcing term that induces resonanee. Renee, 
the corresponding mechanism is called an inertial res
onanee mechanism. 

b. Discussion on the inertial resonance mechanism 

The inertial resonanee mechanism can be interpreted 
physically in a simple way. From the findings of section 
2, the main role of the geostrophic jet is to produee a 
mesoscale variability of the inertial motions. So let us 
look at a situation without a geostrophic jet, but where 
the inertial oscillations vary in spaee with a constant 
zonal wavenumber k. For clarity, we consider only the 
case T y = 0, without entrainment, dissipation, or prop
agation. 

Let us show first how an equation very similar to 
( 14) can be derived directly from the momentum 
equations (instead of the transport equations). First, 
it is important to note that, from the basic assumption 
used in section 3a [leading to ( 12)], the nonlinear ad
vection terms in Eqs. (2) and (3) cannot induee res
onanee and therefore can be neglected. The resulting 
simplified equations become (in dimensional form) 

au T x aï- fv = h 
av 
-+fu=o 
at 

ah + h. au = o. 
al 1 ÔX 

(17) 

(18) 

Ifwe take the derivative of ( 17) with respect to time 
we obtain [using ( 18) ] 

a2u T x au 
at2 + f 2

u - hi h 2 ax = o. (19) 

From hi, the initial mixed-1ayer depth, and L, the 
length scale associated with k, a dimensional analysis 
that uses 

Tx 
E=--~l 

FhiL 

reveals that the term involving T x in (19) is of order 
O( E) compared with the others and that the h variations 
are of order O( E) compared with hi. Consequently the 
last term in ( 19) can be approximated as 

T x au T x au 
hi h 2 ax = hi ax . 

A simple 1inear equatioQ results: 

a
2

u 2 TxaU 0 -a2 +f U --
h 

-a = . 
t i X 

(20) 

This equation resemb1es the nondimensional equation 
(14) with T y = O. Deriving a dispersion relation for 
solutions proportional to exp[i(kx - wt)], we find a 

similar instability growth rate, that is, krx/(fhi). Thus, 
the solutions with kr x < 0 grow exponentially while 
those with kr x > 0 are damped. This means that waves 
propagating against the wind amplify as they propagate. 
Waves propagating in the same direction as the wind 
decay. 

The derivation of the dimensional equation (20) 
does not yield new results but it allows a much better 
understanding of the instability. Indeed, the term re
sponsible for growth [( T xl hi) 1 au 1 ax] sim ply cornes 
from theterm Txl h present in the momentum equa
tions ( 17). So let us examine the role of the T xl h term 
in these equations. We use T x > o. First, consider the 
case oflinear inertial oscillations involving the forcing 
term T xl hi instead of T xl h (Fig. 4a). The velocity u is 
alternately positive and negative with the same-mag
nitude. Therefore, the energy flux from the wind, UTx , 

changes sign during an inertial period. The time average 
is exactly zero and there is no net energy gain. When 
the forcing is T xl h instead of T xl hi, the phase relation
ship of U and h must be taken into account. For neg
ative wavenumbers (k < 0), h is minimum when U is 
positive and maximum, as shown in Fig. 4b. So the 
forcing T xl h represented by a big arrow is largest when 
it is in the direction of u and provides more energy to 
the system than when h = hi. On the other hand, h is 
maximum wh en u is in the opposite direction from 
the wind. So, at that time, the forcing T xl h is smaller 
than when h = hi, and consequently the wind rem oves 

® 

® 

@) 

linear case 

~ Tx/hi 

~h=hi 
1 t =01 

nonlinear kTx ",0 

~Tx/h 

~h 
[EQJ 

nonlinear kTx >0 

~ Tx/h 

~h 

~ 

~h=hi 
1 t.~ 1 

~ Tx/h 

~h 
[t.~ 1 

~Tx/h 

~h 

FIG. 4. Sketch of the inertial resonance mechanism. 
Here T represents an inertial period. 
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less energy. On average over an inertial period, more 
energy is input than removed and there is a net growth 
of the oscillation when kT x < O. For a positive wave
number k, the phase relationship of u and h is reversed 
(Fig. 4c): h is larger when u is in the direction of the 
wind, decreasing the input of energy, and h is smaller 
when u opposes the wind stress, increasing the removal 
of energy. Hence, the decay of the oscillations when 
kTx > O. 

The resonance phenomenon may be observed for 
small-scale waves when the wind is large and the mixed
layer depth is small. For example, with k = 10-4 rn-l, 
T x = 10-4 m2 S-2, and hi = 30 m, the growth rate [kTx / 

(fh i )] is about 3.5 day-I . The presence ofa geostrophic 
jet is not necessary for inertial resonance to happen. It 
renders the phenomenon more dramatic, however, 
since the initial growth is faster than el due to the 
wavenumber of the inertial oscillations that grows with 
time. 

4. Numerical solution of the nonlinear equations 

Both the analytical solution (16) and the solution 
of appendix A are crude approximations of the full 
solution, which has to be found by direct numerical 
integrations of the full equations (3) and (5). These 
numerical integrations have been performed using the 
following geostrophic jet: 

( 

- Vo[ 1 + cos(2; x)] , 
v(x) = 

0, 

Ixl < À/2 

Ixl ~ À/2, 

with Vo = 0.15 m S-I and À = 80 km. This jet is the 
same as the one considered by Rubenstein and Roberts 
( 1986). Its maximum velocity is 0.30 m s -1. Other 
simulations performed with an exponential jet are very 
similar with the ones examined in this paper, and hence 
it appears that qualitative results are not sensitive to 
the jet geometry. The following values for other pa
rameters have been used: f = 10-4 S -1 , hi = 30 m, T x, 

T y = 0 or 1.2 X 10-4 m2 S-2, Ui = 0, and Vi = O. Equa
tions (3) and (5) have been discretized using standard 
numerical methods: a leapfrog scheme in time and 
centered finite differences in the x direction. Note that 
a high resolution is necessary since the solution evolves 
toward sm aller and sm aller scales. The do main is pe
riodic, of length 300 km, spatial resolution is .lx 
= 500 m and the time step is .lt = 65 s. 

The horizontal propagation resulting from horizon
tal pressure gradients is treated explicitly in the 1112-
layer model. It depends on the parameter g.lp/ p. Near
inertial waves with zonal wavenumber k horizontally 
propagate with a group velocity Cgx whose magnitude 
is 

.lp k 
=g-h-, 

p f 

and with a direction that depends on the sign of k. 
Vertical propagation on the other hand is impossible, 
because no perturbation is allowed below the active 
layer. This effect must therefore be parameterized 
(through :J) hu and :J) hv)' Our choice of a Laplacian fric
tion is explained in appendix B. The amount of energy 
dissipated by the Laplacian friction (ca1culated as 
shown in the appendix) is used as an estimate of the 
amount of energy that would be radiated downward 
in a fully stratified model. Finally, a simple represen
tation of entrainment (chosen as in Klein and Hua 
1988) has been added. Its parameterization involves a 
critical mixed-Iayer depth hco (see appendix B). In order 
to isolate the effects of the nonlinear terms and in par
ticular the inertial resonance, sorne simulations have 
been performed with the entrain ment velocity (we ) set 
equal to zero and with nonzero but very small values 
for the density jump at the mixed-Iayer base and for 
the friction coefficient. These very small values are 
g.lp/ p = 2 X 10-4 m S-2 and v = 10 m2 S-I. Other 
simulations have been performed with more realistic 
values for .lp and v and a nonzero We in order to in
vestigate the competition between inertial resonance 
and dispersion mechanisms. These "realistic values" 
are v = 40 m2 S-I, g.lp/ p = 1.5 X 10-3 m S-2, and 
we use hco = 20 m when W e 1= O. The two situations 
examined are a wind stress parallel to the jet ( T x = 0 
and T y = 1.2 X 10-4 m2 S-2) and a wind stress perpen
diculartothe jet (Tx = 1.2 X 1O-4 m2 S-2 andTy = 0). 

a. Wind stress parallel to the jet 

In this case, with very small values for g.lp / p and v 
and W e = 0, the nonlinear solution (not shown) resem
bles the linear one (Figs. 1 and 2), displaying in par
ticular a systematic downwelling at the center of the 
jet and upwellings on the edges for the mixed-Iayer 
depth. 

With more realistic values for g.lp / p and v and a 
nonzero entrainment velocity, numerical results again 
do not show significant differences with the linear so
lution. The only differences, displayed by the compar
ison of Fig. 5 with Fig. l, concern a smalliocai inten
sification of hu values at the jet center and a conspic
uous depletion on the right side of the jet. These 
differences can be explained in terms ofthe competition 
between the mean Ekman drift and the group velocity 
associated to the horizontal wave propagation (Cgx )' 

Because of the k expression 

( k= _.!.ar t) C (=g.lP h~) 
2 dX ,gx p f 

increases with time and moreover is directed westward 
at the jet center and eastward on the edges. Conse
quently, at the jet center, the horizontal propagation 
counters and, later on, overcomes the eastward mean 
Ekman drift. As a result, waves there are first locally 
stationary and later are expelled to the left side of the 
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FIG. 5. Time-longitude plot of the amplitude hu* (=hu - Ty/l! 
+ ID for the nonlinear solution with a wind parallel to the geostrophic 
jet, and with the dispersion mechanisms taken into account. Dashed 
and continuous contours correspond, respectively, to negative and 
positive values. Contours interval is 0.8 m2 

S-I. 

jet where they seem ta be trapped. On the right edge 
the eastward advection by the mean Ekman drift dom
inates. So waves are quickly expelled, and since there 
is no energy flux from the center this place becomes 
energy depleted. Then, with time, the energy depleted 
area extends far eastward out of the jet. Time evolution 
of the kinetic energy integrated over the whole domain 
does not show significant evolution (Fig. 8). The only 
change is a slight decrease of the kinetic energy in the 
mixed layer, due to the vertical propagation of kinetic 
energy in the bottom layer. 

b. Wind stress perpendicular to the jet 

In this case, with very small values for g tlp / p and Il 
and W e = 0, the nonlinear numerical solution (Fig. 3a) 
differs dramatically from the linear one. The nonlinear 
case displays a strong increase of the amplitude of the 
oscillating Ekman transport. This increase is located 
at the center of the jet (Fig. 3b) where the wavenumber 
k (= -!8r/8x), that is, where Txk < ° (since 8r/8x 
is positive in the middle of the jet). This leads to a 
phase velocity opposite to the wind-stress direction. At 
this location, the extreme hu values have an exponen
tial-like behavior (Fig. 3b) with a much larger increase 
for the negative values (more than a ten times increase 
after 10 inertial periods). This asymmetry is reflected 
in the h evolution (Fig. 3a), which exhibits much more 

intense downwelling than upwelling. This asymmetry 
was not predicted by the analytical solution. On the 
edges of the jet, where k is positive (since 8n8x < 0), 
the oscillating components of the Ekman transport are 
strongly damped (Fig. 3b). The opposite situation (not 
shown), that is, a growth on the edges and a damping 
in the middle of the jet, is found when the wind direc
tion is reversed. This striking behavior is best illustrated 
by growth of the energy integrated over the whole do
main: we have found that its value at 10 inertial periods 
is more than two timeslarger than its value at 2 inertial 
periods, demonstrating the inertial resonance mecha
nism. 

With more realistic values for g tlp / p and Il and with 
W e 1= 0, the inertial resonance mechanism is still very 
efficient despite the strong influence of the dispersion 
mechanisms on the oceanic response. A particularly 
remarkable new feature of this response is the westward 
propagation of the inertial waves, which keep growing 
far out of the jet (Fig. 6). The growth of these inertial 
waves outside the jet, however, is not as large as the 
one found previously: at 10 inertial periods, maximum 
hu value is 2.5 m2 S-l instead of 6 m2 S-l found in 
section 4. Let us explain these features in terms of the 
competition between the resonance mechanism and 
the dispersion. 

From section 3b, the exponentially growing waves 
are the ones with a wavenumber k such that T xk < 0, 
that is, k < ° in this wind-stress situation. Therefore, 

-140 -120 -'0" -B0 -60 -40 -20 " 20 40 6" Be ,,,,, 120 140 

LONG ITUDE 1 k m J 

FIG. 6. Time-longitude plot of the amplitude hu for the nonlinear 
solution with a wind perpendicular to the jet, and with the dispersion 
mechanisms taken into account. Dashed and continuous contours 
correspond respectively to negative and positive values. Contours 
interval is 1 m2 S-I. 
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these energetic waves should originate at the jet center 
(where k < 0) and then propagate westward, while on 
the edges of the jet (where k > 0) waves are quickly 
damped. This is what happens from Fig. 6, which re
veals that the energetic waves originated at the jet center 
are strong enough to go across the left edge and to keep 
propagating westward outside of the jet. So, at the jet 
center, the exponential growth effect is limited by the 
horizontal propagation that disperses the waves. The 
time when the horizontal propagation balances the 
resonant growth at the jet center can be estimated using 
the damping rate due to horizontal wave propagation: 

h b.p k 2 

rh = kC = g---
gx 2pf' 

The balance occurs for a critical wavenumber 

6 T / gb.p 
kC=Sfh2 -p-. 

From the k expression (k = - !(8r/8x)t), this balance 
should happen when t> 5.1 inertial periods. This value 
agrees well with the one from numerical results (=5.4). 
On the other hand, from the theoretical solution of 
section 3b, westward-propagating waves (that corre
spond to T xk < 0) should keep growing outside the jet. 
This is actually what Fig. 6 shows. In this region, how
ever, their growth is limited by the turbulent entrain
ment at the mixed-layer base and the Laplacian friction. 
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Since these two dispersion mechanisms are not too 
large, the waves keep growing. 

Time evolution ofthe kinetic energy of the oscillating 
part of the inertial motions (Fig. 7a), integrated within 
the mixed layer and averaged over one inertial period, 
weil confirms the preceding features. A strong kinetic 
energy increase (from 2.4 X 10-2 m3 S-2 up to a max
imum of 4.0 X 10-1 m3 S-2 within 20 inertial periods) 
appears on the negative vorticity side and extends out
side the jet ( on the left side ), while a relative depletion 
appears in the positive vorticity region. The kinetic 
energy dissipated by the Laplacian friction (assumed 
to represent the downward injection into the deeper 
layer) has been calculated (see appendix B) and is 
shown in Fig. 7b: the downward kinetic energy injec
tion occurs in the negative vorticity region and extends 
on the left side of the jet, that is, where the surface 
inertial energy is maximum. The maximum value at
tains 1.45 X 10-1 m3 S-2, that is, almost five times the 
value in the upper layers when no jet is present. Time 
evolution of the total kinetic energy integrated over the 
whole domain (Fig. 8) confirms the importance of the 
resonance mechanism even in the presence of disper
sion: after 20 inertial periods, the total kinetic energy 
in the surface layer attains 6.7 X 10 - 2 m 3 s - 2

, almost 
four times the corresponding energy when the wind 
stress is parallel to the jet! Furthermore, the kinetic 
energy injected in the deeper layer (estimated through 
the Laplacian friction) is more than 1.5 times the total 
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FIG. 7. Time-Iongitude plot (a) of the kinetic energy (osciIlating part of the inertial motions) perturbation relatively to a mean value 
(h(u 2 + v2 )/2 - (h(u 2 + v2 »/2), and (b) of the kinetic energy injected in the bottom layer for a wind stress perpendicular to the jet. 
Dashed and continuous contours correspond, respectively, to negative and positive values. Contours intervals are 0.02 m3 ç2 in (a) and 
0.01 m3 

ç2 in (b). Mean value in (a). equal to 2.4 X 10-2 m3 S-2, corresponds to the value when no jet is present. 
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FIG. 8. Time series ofkinetic energy (oscillating part of the inertial 
motions) obtained from the nonlinear solution with the dispersion 
mechanisms taken into account. Thick lines correspond to the kinetic 
energy integrated within the mixed layer and averaged in the x di
rection and thin lines to the kinetic energy integrated in the deeper 
layer and averaged in the x direction. Units are in meters cubed per 
second squared. Dashed curves correspond to a wind stress perpen
dicular to the jet and solid curves to a wind stress parallel to the jet. 

energy when the wind stress is parallel to the jet (Fig. 
8)! A nonnegligible part of the downward energy in
jection occurs outside the jet. 

c. Discussion 

The preceding results clearly display that the inertial 
resonance mechanism is still quite efficient to extract 
energy from the wind stress despite the presence of the 
dispersion mechanisms. One consequence of the hor
izontal propagation is that the energetic waves can 
travel against the wind far outside the jet while keeping 
extracting energy from it. Thus, the inertial resonance 
mechanism works over a much larger area than the jet 
area. Consequence of the downward propagation is that 
a nonnegligible part of the energy extracted from the 
wind is injected into the ocean interior. 

A few simulations with the wind stress perpendicular 
to the jet (labeled TX2 through TX7 in Table 1) have 
been performed and compared with the preceding 

simulation (TXl) to get some qualitative insight on 
the sensitivity of the energy extracted from the wind 
to sorne parameters like the wind-stress magnitude and 
sign, the jet velocity and the Laplacian friction coeffi
cient. 

Results display a strong sensitivity on the wind-stress 
magnitude: total kinetic energy (in the surface and the 
deeper layers) after 20 inertial periods is almost 15 
times larger for a wind-stress magnitude only 1.7 times 
larger (simulation TX6 in Table l)! This agrees with 
the perturbation analysis that shows the growth rate 
dependence on the wind-stress magnitude. When the 
wind-stress sign is reversed, the total kinetic energy is 
almost unchanged (simulation TX2), although some 
qualitative changes occur. According to the criterion 
kr x < 0, exponentially growing inertial waves are now 
generated on the edges of the jet (where ar/ax < 0) 
and then propagate eastward. Consequence is that a 
strong kinetic energy increase is now observed in two 
distinct areas: in the negative vorticity region (as be
fore) and also outside the jet but on the right side (Fig. 
9a). The spatial distribution of the kinetic energy in
jected downward again appears to be a mirror of the 
kinetic energy increase in the upper layer (Fig. 9b). 
When the jet velocity magnitude (Va) is doubled, sur
prisingly, results do not display any changes at least 
for the mixed-Iayer kinetic energy (simulation TX5). 
An explanation is that, at the jet center, the exponential 
growth and the horizontal propagation balance for the 
same kc as the one found before, since its expression 

does not depend on Va. So energetic waves that mainly 
grow outside the jet should have the same wavenumber 
as before. The only difference is that the kc value is 
attained within a shorter time (2.5 inertial periods in
stead of 5) since ar / ax is larger. This leads to a slightly 
larger time duration for the energy growth outside the 
jet and consequently to an increase of the kinetic energy 
injected into the deeper layer. Increasing the density 
jump tlp as weIl as the Laplacian friction coefficient Il 

leads ta a smaller value of the total kinetic energy ex-

TABLE 1. Surface kinetic energy (KEs) and bottom kinetic energy (KEb) integrated over the whole domain at 20 inertial periods. 
Initial mixed-Iayer depth (h;) is 30 m for ail simulations except for TX7 where h; = 26 m. 

Parameters Results 

Simulation T x (XI04
) Vo v gt:.p/p KEs KEb KEb/(KEs + KEb) 

TXI 1.2 0.15 40 1.5 10-3 6.7 10-2 3.1 10-2 31.6% 
TX2 -1.2 0.15 40 1.5 10-3 7.5 10-2 2.8 10-2 27.2% 
TX3 1.2 0.15 40 3.0 10-3 5.5 10-2 1.3 10-2 19.1% 
TX4 1.2 0.15 80 1.5 10-3 4.2 10-2 2.3 10-2 35.4% 

TX5 1.2 0.30 40 1.5 10-3 6.8 10-2 6.4 10-2 48.5% 
TX6 2.0 0.15 40 1.5 10-3 6.0 10-1 8.0 10-1 57.1% 
TX7 2.0 0.30 80 3.0 10-3 3.1 10-1 6.3 10-1 67.0% 
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FIo. 9. Same as Fig. 7 but with a reversed wind-stress sign. Contours intervals are 0.01 m3 
S-2 in both (a) and (b). 

tracted from the wind (simulations TX3 and TX4). 
This energy decrease is simply due to the limitation of 
the exponential growth by the more significant disper
sion mechanisms (see appendix A). 

These numerical results, using a 11/2-layer model, 
have provided useful information. A fully stratified 
model, however, is necessary to investigate the influ
ence of thermocline structure on this resonance mech
anism. Sorne numerical experiments performed with 
a primitive equation model are described in the next 
section. 

5. Numerical experiments with a 2D primitive 
equation model 

a. The model 

The numerical model used is based on the SPEM 
code, described in Haidvogel et al. (1991). The code 
has been transformed to fit a two-dimensional geometry 
instead of a three-dimensional domain. The model uses 
the primitive equations with a linear equation of state 
depending on temperature only. The rigid-lid approx
imation is made. Finite differences are used in the hor
izontal and also in the vertical (instead of the spectral 
method). The turbulent fluxes in the mixed-Iayer pro
cesses are represented by a diffusion coefficient for mo
mentum and temperature, which depends on the 
Richardson number following the classical level 2 
model of Mellor and Yamada ( 1982). This parame
terization makes use of the same physics as the Price 
et al. ( 1986) model. There are 114 levels in the vertical, 

with a grid spacing of 2 m down to 50 m, gradually 
increasing to reach 50 m at 1000 m, and then constant 
down to the bottom at 2000 m. The high resolution in 
the top layers is necessary to ensure convergence of the 
mixed-Iayer parameterization scheme. It allows us to 
resolve such details as the Ekman spiral. The horizontal 
domain width is 600 km with a grid spacing of 1.5 km. 
Experiments at l-km resolution have confirmed that 
the solutions have converged. The time step (315 s) is 
dictated by the vertical phase speed of large-scale in
ternaI waves. 

In the regions of the model where the Richardson 
number is larger than the critical value, dissipation is 
kept as low as possible: there is a background vertical 
diffusion of5.0 X 10-5 m2 S-I. Horizontal diffusion is 
set to zero, but a biharmonic horizontal friction is used 
with coefficient 1.0 X 108 m4 

S-1 for momentum and 
5.0 X 10 7 m4 S-I for temperature. So as to ensure that 
the barotropic streamfunction is periodic in the x di
rection two sinusoidal and meridional jets, going in 
opposite directions and similar ta the one used in sec
tion 4, are studied at the same time in a domain 600-
km wide. The wavelength is 80 km, and the jet max
imum velocity 0.3 m S-I. These barotropic jets are 
geostrophically balanced currents specified as initial 
conditions. Diffusion alone is too weak to affect these 
currents over a period of 15 days (i.e., 20 inertial pe
riods). Note that no artificial decomposition into the 
Ekman layer and the geostrophic current is made; that 
is, interactions between inertial motions and these ini
tially geostrophically balanced currents are fully taken 
into account. 
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Different initial stratifications have been considered: 
in particular, one with a thin seasonal thermocline and 
one with a thick seasonal thermocline. The two-tem
perature profiles are plotted in Fig. 10. From both pro
files the initial mixed-Iayer depth is 26 m. The lower 
base of the thin seasonal thermocline is located at 
40m. 

b. The results 

The model starts from rest, except for the barotropic 
jets, and is forced by a steady surface stress. The initial 
stratification considered corresponds to the tempera
ture profile of Fig. 10 with a thin seasonal thermocline. 
Since the initial state is entirely barotropic, any up
welling or downwelling present in the solution is gen
erated by the combined effect of the wind stress and 
the existing vorticity gradient. Again, two academic 
wind-stress situations are considered: one with a wind 
stress parallel to the jets ('T x = 0 and 'T y = 2.0 X 10-4 

m2 s -2) and one with a wind stress perpendicular to 
the jets ('Tx = 2.0 X 10-4 m2 S-2 and 'Ty = 0). Only the 
results concerning the northward jet are examined in 
this section. Actually, the differences between the re
sults concerning the south ward jet and the ones related 
to the northward jet are in agreement with the ones 
found with the Ilh-Iayer model. The "northward case," 
however, better displays sorne interesting features of 
the vertical propagation of the inertial waves in the 
negative vorticity region. 

1) WIND STRESS PARALLEL TO THE JET 

Figure Il shows the time-longitude plot of the 18°C 
isotherm depth (averaged over successive inertial pe
riods to filter out the oscillations and enhance read
ability). The main signal is an upwelling at the jet cen
ter and downwelling on the edges. These upwellings 
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FIG. 10. Initial vertical temperature profiles, involving a thin 
(dashed line) and a thick (solid line) thermocline, used in simulations 
performed with the primitive equation mode\. 
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FIG. Il. Time-longitude plot of the 18°C isotherm depth when 
the wind stress is paraUel to the jet. Mean depth is 57.5 m. Dashed 
and continuous contours correspond respectively to negative and 
positive values. Contours interval is 1 m. 

and downwellings due to the divergence of the mean 
Ekman drift produce a total variation, after 20 inertial 
periods, of about 39 m of the isotherm initially located 
at 57.5 m, that is, weIl below the mixed layer. 

Figure 12 shows an isosurface of u2 (plotted in a x
z-t frame) whose value is 0.0002 m2 s -2. The energy 
is larger above this surface and sm aller below. Each 
kinetic energy value on the taxis is averaged over an 
inertial period. Outside the jet, the mean depth of the 
surface is quite close to the mixed-Iayer depth (26 m). 
In these regions, kinetic energy rapidly decreases below. 
On the edges of the jet, the kinetic energy surface attains 
46 m after 20 inertial periods. So the inertial kinetic 
energy does not penetrate much in the deeper layers. 
On the other hand, the vertical velocity effects seem to 
extend to a much larger depth (at least up to 300 m 
in this simulation). 

The kinetic energy averaged over the whole hori
zontal domain has been calculated, divided in two 
parts: the "surface" energy integrated from 0 to 40 m, 
and the "bottom" energy integrated between 40 m and 
2000 m. More precisely, we use u 2 instead of (u 2 

+ v 2 )/2 as an estimate of the kinetic energy. This is 
because in the primitive equation model v2 contains 
both an inertial and a geostrophic part that render it 
more difficult to interpret. In the surface layers (Fig. 
13), kinetic energy decreases from 30.0 X 10 -2 m3 

S-2 

to 24.0 X 10 -2 m3 s -2. Note that this value, in this 
wind-stress situation, contains the energy related to the 
mean Ekman drift. Downward propagation of inertial 
energy is small: bottom energy attains = 1.12 X 10-2 

m3 S-2 after 20 inertial periods. 
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FIG. 12. Three-dimensional kinetic energy surface (fl 2) when the wind stress is parallel to the 
northward barotropic jet. Corresponding kinetic energy value is 0.0002 m2 s - 2. 

2) WIND STRESS PERPENDICULAR TO THE JET 

With the same parameter settings as in the preceding 
simulation but a different wind-stress direction, the 
ocean response is completely different. First, the time-

0.45....---------------, 

0.4 

0.35 

0.3 

i 0.25 

.~ 0.2 

.S 

... 0.15-

0.1 

0.05 

, , 
1 

" ," 
" , 

,/ 

bottom layer- ~/' 
-; ...... ... --_ ... ---_ .... 

,/ 

/ 
,/ 

, , 

v 0 2 4 6 8 10 1214 16 18 20 
Time (inertial periods) 

FIG . 13. Time series of kinetic energy (u 2
) integrated in the top 

layer (0-40 m) ( thick lines) and in the bottom layer (40-2000 m) 
(thin lines) and averaged in the x direction (units: m3 ç2). Dashed 
curves correspond to a wind stress perpendicular to the jet and solid 
curves to a wind stress parallel to the jet. 

longitude plot of the 18°C isotherm depth (not shown) 
does not display any significant variation after 20 in
ertial periods. But the most significant and conspicuous 
difference concerns the kinetic energy distribution 
within the ocean as weil as its amount. 

The u2 isosurface (Fig. 14) is dramatically different 
from the one shown in Fig. 12, although the value is 
the same (0.0002 m2 ç2). It reveals a widespread pen
etration of energy at large depth. The contrast between 
the two experiments, which differ only by the wind 
direction, demonstrates the efficiency of the inertial 
resonance mechanism in this more realistic mode!. 
Outside the jet, on the right side, depth of the u2 surface 
is still 26 m, and in this region inertial energy drops to 
very small values just below this depth. Inside the jet 
(mairily on the edges) and outside the jet (on the left 
side) this surface penetrates downward to reach a depth 
greater than 500 m. One quite interesting feature dis
played by Fig. 14 is the conspicuous concentration of 
kinetic energy in the deeper layers, which appears in 
the negative vorticity region and that seems to be 
trapped there. This feature is not so weIl displayed in 
the "southward jet case," since the negative vorticity 
region is next to the upwind region, outside the jet, 
where growing inertial waves propagate. Since the in
ertial resonance mechanism can work out of the jet in 



1910 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 23 

o 

.5001ll-------:~4'-L~---1 
-40 0 

FIG. 14. Three-dimensional kinetic energy surface (u 2
) when the wind stress is perpendicular 

to the northward barotropic jet. Corresponding kinetic energy value is 0.0002 m2 s -2. 

the surface layers, the large amount of kinetic energy 
extracted from the wind is spread on a much larger 
area than the jet area. Figure 15 confirms the inertial 
motions are growing in the surface layers outside the 
jet (Fig. 15a), and that a large amount of the kinetic 
energy is dispersed into the deeper layers (Fig. 15b). 
Note that these features quàlitatively agree with the 
results found with the simplified model in section 4 
when the wind-stress orientation relatively to the jet 
was the same (see Fig. 9). 

Time evolution of the total kinetic energy (estimated 
from u2

) is shown in Fig. 13 to allow comparison with 
the previous case. The difference with the preceding 
case T y -=F 0 is quite significant. The total kinetic energy 
extracted from the wind (i.e., the one in the surface 
layers plus the one in the deeper layers) attains 56.0 
X 10-2 m3 S-2 after 20 inertial periods. This is almost 
3.7 times larger than ifthere was no jet. Kinetic energy 
evolution in the surface layers displays an almost linear 
increase starting after 3 days. After 15 days (20 inertial 
periods) the surface energy is 2.5 times larger than in 
the first inertial periods. Kinetic energy evolution in 
the deeper layers has more an exponential-like behav
ior. The value attained after 20 inertial periods is 17.0 
X 10 - 2 , that is, 15 times larger than the corresponding 
one when the wind stress is paralle1 to the jet. 

c. Discussion 

Some other numerical simulations, using the prim
itive equation model, have been performed in order to 
assess the efficiency of the inertial resonance mecha
nism to different physical characteristics, such as the 
vertical structure of the geostrophic jet and the vertical 
structure of the seasonal thermocline. 

First, a simulation was performed with baroclinic 
jets similar to the barotropic ones in the upper layers 
but decaying below 200 m (Fig. 16). Using the same 
mixed-Iayer depth and seasonal thermocline as before 
as well as the same wind stress, the results do not display 
any changes for the kinetic energy distribution in the 
upper layers (Fig. 17a) as well as in the deeper layers 
(Fig. 1 7b ). The only change concerns the vertical 
propagation of the inertial waves in the negative vor
ticity region, which attains a depth of 200 m instead 
of 500 m. Time evolution of the total kinetic energy 
compares well with the one corresponding to the baro
tropic jet: total kinetic energy after 15 days attains a 
value of 0.38 m3 S-2 (instead of 0.39 m3 S-2) in the 
upper layers and 0.23 m3 s -2 (instead of 0.17 m3 s -2) 

in the deeper layers. Therefore, the baroclinity of the 
jet does not affect much the efficiency of the inertial 
resonance mechanism. 
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FIG. 15. Time-Iongitude plot orthe kinetic energy (u 2
) relatively to a mean value, averaged over one inertial period and integrated (a) 

in the top layer (0-40 m) and (b) in the bottom layer (40-2000 m) when the wind stress is perpendicular to the jet. Dashed and continuous 
contours correspond, respectively, to negative and positive values. Contours intervals are 0.04 m3 

S-2 in (a) and 0.02 m3 ç2 in (b). Mean 
value [equal to 1.4 10-1 m3 ç2 in (a) and zero in (b)] corresponds to the value when no jet is present. 

An experiment using again the barotropic jets has 
been run with a thicker seasonal thermocline (see Fig. 
10). In the latter case the amount of energy radiated 
downward is dramatically reduced (by a factor of 5), 
and the contrast between wind stress parallel and per
pendicular to the front is no longer dramatic. This is 
easy to understand considering that the horizontal dis
persion energy flux and the downward energy flux de
pend, respectively, on the square and on the cube of 
the vertical wavenumber. lndeed, a larger thermocline 
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FIG. 16. Initial cross-frontal distribution of temperature (thin lines) 
and along-front velocity (thick lines) used for the northward barocIinic 
jet case. Temperature are in degrees Celsius. Velocity contours are 
5 cm S-I and maximum contour in the jet core is 30 cm S-I. 

thickness leads to a smaller vertical wavenumber and 
therefore to a stronger effect of the dispersion mecha
nisms. In particular, the increased vertical propagation 
becomes large enough to prevent the development of 
inertial resonance. This tendency was clearly revealed 
by the short sensitivity study performed in section 4d 
(see also Table 1). 

In the simple 1112-layer model, the inertial resonance 
completely disappears when the forcing enters over a 
constant depth (T 1 hi instead of TI h). This suggests 
that the mixed-Iayer parameterization, which lets the 
depth of penetration of the forcing vary in time and 
space, plays an essential role in the primitive equation 
model. This is true, but the issue is not as simple as 
with the one-layer model. An experiment has been ron 
without any mixed-Iayer parameterization, and the 
wind entered as a body force over a depth of 26 m. 
The amount of energy in the deeper layers was reduced 
by a factor of 2, but the patterns of kinetic energy gen
eration were unchanged. The inertial resonance phe
nomenon was still possible in that case because of the 
nonlinear terms WdU/dZ, WdV/dZ in the momentum 
equations, which are absent in the 1112-layer model. 
On the other hand, when all nonlinear terms were re
moved from the momentum equations (except of 
course for the modification of the inertial frequency 
due to the geostrophic jet), the inertial resonance phe
nomenon disappeared completely. The energy in the 
bottom layers was reduced by a factor of 10 compared 
with the fully nonlinear case. Moreover, since the waves 
propagating outside the jet could no longer amplify, 
the downward energy injection occurred almost exclu
sively below the jet. 
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FIG. 17. Same as Fig. 15 but for a baroclinic jet. Contours intervals are 0.07 m3 ç2 in (a) and 0.05 m3 ç2 in (b). Mean value [equal to 
1.4 X 10-1 m3 ç2 in (a) and zero in (b)] corresponds to the value when no jet is present. 

6. Conclusions 

This study has examined how wind-driven inertial 
motions can be afTected by the vorticity field of me
soscale oceanic structures. A geostrophic and barotro
pic jet has been chosen as the simplest example. 

Linear analysis reveals that the jet vorticity affects 
both the amplitude and the phase of the inertial mo
tions. Consequences ofthese features for the linear dy
namics have been described in the literature. The effect 
on the phase, however, induces a time-increasing spatial 
variability, with sm aller and smaller wavenumbers. 

'Consequently, the nonlinear terms become important, 
even ifthey can be ignored initially. This was the main 
motivation that led us to investigate their effects. 

A perturbation analysis of the nonlinear equations 
of a simple model has revealed an exponential growth 
of the wind-driven inertial motions. The main part of 
this exponential growth is due to an inertial resonance 
mechanism and is related to the wind-stress component 
perpendicular to the jet. This resonance happens when 
the true depth h (x, t) is taken into account in the forc
ing term T xl h present in the momentum equations. In 
these conditions the phase relationship of the velocity 
component u and mixed-Iayer depth h allows waves 
propagating against the wind to extract energy from it 
and to grow. 

Results from a simple numerical model involving 
the full nonlinear equations have confirmed the exis
tence of this inertial resonance mechanism. Compe
tition between inertial resonance and the horizontal 
and vertical propagation of the inertial waves induced 
by the underneath stratification has also been assessed. 
One consequence ofthis competition is that energetic 

inertial waves horizontally propagate against the wind 
and keep growing weIl outside the geostrophic jet (in
sofar as the downward injection in the deeper layers is 
not too large). Therefore, the kinetic energy is spread 
over a much larger area. Another consequence is that 
a large part of this energy is injected into the ocean 
interior. AlI these results have been confirmed using a 
2D primitive equation model with a realistic stratifi
cation involving a shallow mixed layer and a thin sea
sonal thermocline. This more complete model has 
shown that the penetration of the inertial energy within 
the ocean interior is much enhanced when inertial res
onance is active. 

This approach, using a perturbation analysis of the 
nonlinear equations, a simple numerical model, and a 
more realistic primitive equation model, has led us to 
be confident about the existence of the inertial reso
nance mechanism. Although the mesoscale jet consid
ered in this study is the simplest mesoscale structure, 
these results should be valid for other structures as me
soscale eddies. The only necessary "ingredient" is a 
nonzero vorticity field with large enough gradients to 
induce a spatial variability of the inertial motions. 
Then, if the wavenumber of the inertial motions has 
a nonzero component parallel to the wind and if the 
wind duration is equal or larger than a few inertial 
periods, the inertial resonance mechanism is able to 
extract energy from the wind. One consequence is that, 
because of the downward energy injection into the 
ocean interior, a large part of this energy is available 
for deep mixing. 

The physics behind this inertial resonance mecha
nism suggests that it should work in other situations 
(Tréguier and Klein 1993), whenever the surface in-
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ertial oscillations vary in space with a nonzero wave
number parallel to the steady wind stress. This should 
be the case, for example, near a coast with a nonzero 
onshore wind stress as seen in the numerical results of 
Arhan (1973). 

Finally, while we are able to find the inertial reso
nance in many numerical solutions, nevertheless, we 
have not found any observations in the literature that 
would confirm ( or refute) the existence of such mech
anism. Our theoretical and numerical study shows that 
the efficiency of the inertial resonance results from the 
"nef' growth rate, that is, the difference between the 
inertial resonance growth rate and the injection rate of 
energy in the deeper layers due to the vertical propa
gation of the inertial waves. The inertial resonance 
growth rate is related to the ratio of the wind-stress 
magnifude to the mixed-Iayer depth and to the hori
zontal wavenumber. The downward injection rate is 
linked to the horizontal wavenumber as well, but 
mainly to the vertical wavenumber related to the sea
sonal thermocline thickness. Hence, the inertial reso
nance mechanism is found to be quite efficient with a 
shallow mixed layer and a thin thermocline (that cor
respond to spring conditions), whereas its efficiency is 
dramatically reduced when a thick thermocline is con
sidered. Another necessary "ingredient" is the wind 
time duration. With the parameters we used, the growth 
effects can be observed only if the mean wind persists 
for periods up to 10 or 15 days. Finally, our results 
have revealed that the main significant effects of the 
inertial resonance mechanism occur not within the 
geostrophic jet area, but well outside the jet. These 
comments suggest that the inertial resonance mecha
nism could be observed only in sorne particular situ
ations. 
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APPENDIX A 

Asymptotic Solution within the Geostrophic Jet 

Let us consider Eq. (5) with Dhu and D hv parame
terized as a Laplacian friction with a friction coefficient 
v, acting only on the oscillating components of the Ek
man transport. We use the same scalings as in section 
2b, with in addition: 

v' =...!....
UL' 

and we assume that g' = v' are of order O( 1). Then 
using the same formalism as the one used in section 

3a, we get the following nondimensional linearized 
equations for the oscillating components of the Ekman 
transport: 

au TyaU aTy/W 2 
- - v + 2~ - - + 2w ---
at w2 ax ax 

a2u 1 ah! 
- ~V'- + Eg - = 0 (21) 

ax2 ax 

av 2 TyaV au - + W u + ~ - - - ~T x-
al w2 ax ax 

ah! = _ au 
at ax· 

They can be rewritten as 

a2u 2 Ty a2u aTy/W 2 au - + w u + 31' - -- + 31' --- -
at2 w2 atax ax at 

(22) 

au a3u a2u 
- H - - 2~V'_- - ég' - = o. (23) 

x ax atax2 ax2 

Let us look for solutions like 

u = uo(x)e-i(wt+if!) (24) 

withli = li(x, t) a complex function (representing a 
phase perturbation) to be determined. 

Using (24) into (23), when only terms of order O( 1) 
and 0(1') are retained we get (withfi = ali/at) 

. afi T y aw , ( aw)2 2 . 2wfi + 1 - = -3 - - t + g - t 
at w ax ax 

- i 3w --- - T x - t + 2v w - t . [ 
aTy/w2 àw 1 (aw)2 2] 

ax àx ax 
(25) 

The asymptotic solution (i.e., for large t) of (25) is 

fi=----t+- - t +i --t 3Ty aW g'(aw)2 2 [TXaw 
2 w 2 ax 2w ax 2w ax 

_ ~ aTy/W
2 

_ -.L (aw)\ _ v'( aw)2 t2] 
2 ax 2w2 ax ax' (26) 

which leads to 

li 
3 T Y aw 2 g' (aw)2 3 .[ T x aw 2 

! = - 4" w 2 ax t + 6w ax t + 1 4w ax t 

_ ~ aTy /W
2 

t _ -.L (aw)2 t2 _!!. (aw)2 t 3]. (27) 
2 ax 4w 2 ax 3 ax 

Note that the g' and v' terms are both damping terms. 
Moreover, values used are such that g' = v'. Con se
quently, the v' terms dominate the g'terms in Eq. (27) 
since they evolve as t 3 • As a result, we have 
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3 T Y aW 2 g' (aw)2 3 
ft = - 4 w 2 aX [ + 6w aX [ 

+1--[ -----[-- - [ .[TXaW 2 3aTy/W
2 

v' (aw)2 3] 
4w ax 2 ax 3 ax ' 

(28) 

which in dimensional form becomes 

3 Ty ar 2 gtlP h i (ar)2 3 
ifi = - 8 hi (/ + n ax [ + 24 -; 1 ax t 

+1 -t -- t .[ Tx ar 2 3 aTy /(/ + n 
8(/ + nhi ax 2hi ax 

- 1~ (:~rt3]. (29) 

Note that, as explained in section 3a, the asymptotic 
expansion is valid only for the first inertial periods. For 
times larger than 10 inertial periods, we have strong 
experimental evidence that the solution is discontin
uous within the jet for hv, ahu/ at, ahu/ ax in the limit 
g', v' - O. This can be guessed, for example, from the 
cusplike behavior of hu in Fig. 6. We have not, however, 
been able to prove it analytically. 

APPENDIX B 

Parameterization of the Dispersion Mechanisms and 
of the Turbulent Entrainment 

Parameterizations of the vertical propagation are 
suggested by the energy equation. The energy flux at 
the base of the mixed layer can be estimated as :J 
= -CgzKe, with Cgz the vertical group velocity and Ke 
= (u 2 + v 2 )/2. For near-inertial waves CgZ 

= -(N21f)k~/k~, with N 2 the Brunt-VliisaJli fre
quency, kx the horizontal wavenumber, and kz the ver
tical wavenumber. In the ocean, vertical dispersion be
low the inixed layer depends on the stratification in 
the seasonal thermocline. The largest dispersion occurs 
for a strong thermocline (N2 Iarge) and for the smallest 
kz , that is, a large vertical scale corresponding to a large 
thermocline thickness. If kz is imposed by the stratifi
cation, then the energy flux is best parameterized by a 
Laplacian friction (see Gill 1984) with coefficient v 
(since the flux due to Laplacian friction is also pro
portional to k~): 

N 2 k 2 

:J = 2vk~hKe = T ki Ke. (30) 

The expression for v deduced from this equality 
strongly depends on kz • For typical values of N 2 

, land 
h, one can find values of v ranging from about 50 m2 çl 
(for k-;I = 20 m), up to 400 m2 S-I (for k-;I = 40 m). 
The critical influence of the seasonal thermocline 
thickness in the vertical dispersion of inertial energy is 
confirmed by our experiments using a primitive equa
tion model (section 5c). Therefore, the Laplacian fric-

tion has been used. The kinetic energy dissipated by 
the Laplacian friction (which is assumed to be trans
ferred into the deeper layer) when integrated over the 
whole domain (n) is caIculated by 

Another possible parameterization of vertical dis
persion would be a linear friction with coefficient r. 
For an inertial wave with fixed frequency w, the phase 
angle a = kx / kz is constant. Therefore, the group ve
locity is Cgz = ....,. (N2 / W ) a 2 / kz and the energy flux 

N 2 a 2 

:J = - --k Ke = -rhKe 
w z 

dbes not depend on the horizontal scale of the motion. 
The corresponding values for r range from 1 to 10 days. 
A linear friction, however, cannot balance the exp(t2) 
growth of the solution generated by inertial resonance. 
In numerical experiments with linear friction, the os
cillations first decay until the exp(t2) coefficient is larger 
than the decay factor exp( -rt). When ris large, this 
happens for later times. We have not, however, found 
a threshold value of r above which the growth would 
be suppressed (for the cases with no horizontal dis
persion): hence our choice of Laplacian friction. 

The turbulent entrainment at the base of the mixed 
layer has been considered. Parameterization used for 
the entrainment velocity We involves (as in Klein and 
Hua 1988; see also Price et al. 1986) a critical mixed
layer depth he such that 

W = {a(h - he), 
e 0, 

with an e-folding time a- I = 1- 1 
• This critical depth 

he, calculated at each time step from 

= [Rie[(hU)2 + (hV)2] ]1/3 
he tlp , 

g-
(32) 

p 

in volves a critical Richardson number following Pol
lard et al. ( 1973) and Price et al. 's ( 1986) ideas. In the 
simplified model used g tlp / p does not need to be the 
same for the entrainment parameterization and the 
horizontal propagation. Propagation depends mainly 
on the total density jump in the seasonal thermocline 
whereas entrainment depends on the local stratification 
at the base of the mixed layer. Instead of specifying 
both the critical Richardson number Rie and g tlp / p, 
we have caIculated their ratio such the maximum value 
of he is equal to heo = 20 m when no jet is present. 
Since hi = 30 m, no entrainment happens initially but 
it occurs only at the later stages when the mixed-Iayer 
depth reaches sm aller values because of the Ekman 
pumping effects. 
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