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Supporting information 

 

Data S1.  

 

Genetic diversity at microsatellite markers in a finite population 

 

For a microsatellite marker that follows a stepwise mutation model, each allele is 

characterized by a number (i) of microsatellite motifs, and a distance D can be defined 

between two alleles as the difference k=i-j of the numbers of motifs they include. For each 

mutation event, it is assumed that the allele derived from allele (i) may carry i±r motifs, with 

probabilities ½ mr. An extension of the usual calculation of inbreeding coefficient in finite 

population can then be carried out, including the specification of allelic diversity. In a 

population of finite size, one considers the probabilities that a pair of alleles is characterized 

by a distance k and that the time since they have derived from a common ancestor gene (their 

      ) is less that some time  : 

  (           ). 

Then, one calculates the same expression in the next generation (g+1), which includes terms 

involving distances k±r, probabilities mr and the size N(g) of the population at time (g). 

Considering a stepwise mutation model, the infinite set of equations written for the different k 

values can be turned into a single functional equation when the characteristic function F is 

introduced (Wehrhahn 1975, Rousset 1996): 
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If N is large, and the mutation rate µ is small, so that the product θ=4Nµ remains of the order 

of unity, the recurrence equation in F can be turned into an ordinary differential equation, 
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where time is expressed as the product   = gµ, population sizes as θ= 4Nµ values and where 

M(x) is the characteristic function of the stepwise mutation model. Now, provided  ( ) is a 

step function, this differential equation can be analytically solved (Chevalet and Nikolic 

2010).  
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The fk distribution 

In a sample of alleles, the expectation of the frequency fk of pairs of alleles at distance D=k is 

equal to the probability   (    )  Recovering this probability from the  (   ) function is 

obtained from the Cauchy inversion formula: 
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Since the F function is an explicit function of x and of the demographic parameters (  ),  

getting the numerical value only needs a numerical integration. 

 

The distribution of         

Setting      , in Equation A1 ( (   )     (          ) ) allows the distribution of 

      to be recovered, and this equation shows its link with the function  ( ) describing the 

change with time of population size:  
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Data S2. 

 

The distribution of the TMRCA in a simple migration model 

 

We consider here a simple migration model from a large population into a population of 

constant size N into which a proportion m of gametes are contributed by the large external 

population, following the approach of Hobolth et al. (2011). We assume that effective 

population sizes are constant over time, N and N/ε where the ratio ε will be assumed small. In 

this note we restrict the analysis to the distribution of TMRCA of two random alleles, but, as 

illustrated by Rousset (1996), the distribution conditional on the distance k between 

microsatellite alleles can be derived in the framework of this migration scheme as well as the 

expected fk distribution, and could be used to estimate migration rates together with 

population sizes. 

 

TMRCA distribution  

Consider two alleles drawn at present time in the small population, and their ancestors g 

generations before present time. These ancestors may be in 5 exclusive states:  

(1) They are confounded into a single allele of the small population because a coalescence 

event occurred within the small population between present time and the g-th generation in 

the past.  

(2) They are two distinct alleles within the small population because all ancestor alleles 

remained within the population and no coalescence event occurred.  

(3) They are two distinct alleles, one within the small population, and one in the large external 

population, because one immigration event occurred in the ancestral line of one of the alleles.  

(4) They are two distinct alleles in the large external population, because both ancestral lines 

were affected by an immigration event.  

(5) They are confounded into a single allele of the large external population because a 

coalescence event occurred in the large population.  

Denoting by   
( )

 the probabilities of these five states, we note that    
( )
    

( )
  is the 

probability that the time       to coalescence is less than or equal to g. We then derive the 
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backward transition probabilities giving the conditional probabilities Tij of states i at past 

generation g+1 if ancestors alleles were in state j at time g. Neglecting the probabilities that 

two rare events occur at the same time, we get the following T matrix,  
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so that   
(   )
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  where P's are vectors of the Pi's probabilities. Solving with initial 

condition   
( )
  , we get: 

   (        )    
( )
    

( )
            

     (     
 

  
)
 

  (   )   (  
 

  
)
 

  

 

Changing time scale to    
 

  
 and introducing the migration parameter        , we write:  
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with:  

  
      (   )

(   )(      )
 , 

     
   

(   )(   )
 , and 

  
    

(   )(      )
 . 

  



5 
 

Apparent past demography  

Without migration (  = 0), the distribution of coalescent time in a population with constant 

effective size N is reduced to the first term in the previous equation with A = 1 and   = 0. In a 

closed population with changing effective size N(t), Equation A2 gives the link between 

functions N(t) and F(t). With the present scale and notation, this equation reads:  

 
 ( )    ( )
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[A4] 

Plugging Equation A3 into Equation A4 generates an artifactual dependence of population 

size on time, according to which the size would move from the present actual size N(0) to the 

size  N(0)/ε  of the external larger population that sends immigrants, with a transient burst 

when N(t) exceeds the ultimate large size. For a small value of ε, neglecting the B term in 

Equation A3, the following approximation holds:  
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The zero of the second derivative then provides the time when a sudden apparent change of 

the past effective size occurred, i.e. the time of an apparent past bottleneck; this time is given 

by:  
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Numerical investigations of Equation A5 using the complete expression A3 indicated that this 

approximation for    remained qualitatively meaningful.  

From this expression, the migration rate m may be derived from observed or estimated values 

of the ratio ε and of the age of the apparent bottleneck. Provided              is not too 

small (> 10, say),     (
 

 
  
 

 
)   ⁄    , where gb is the age of the bottleneck where time is 

measured in generations.  
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Legends of Supplementary Figures 

 

 

Figure S1.  Accuracy of population size estimates from the Mode and the Median as function 

of the diagonal λ parameter.  

 

From bottom to top: accuracies observed on 100 replicates from the estimation of population 

size at past times, from 0 (present time) to 4.5 (reduced time scale). Constant population size 

was set to θ= 12 and estimations were based on genotypes at 40 markers. Ordinates: accuracy, 

as in Figures 1 and S1. Abscissa: λ parameter. (A) Mode estimate; (B) Median estimate.  

 

Figure S2.  Accuracy of the estimation of the current population size from estimates in the 

past.  

 

Data were generated from 100 simulated populations with constant population size 

characterized by θ = 40 and estimations were based on genotypes at 40 markers. Abscissa: 

times in the past when population size is estimated (reduced scale: generation x mutation 
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rate). Ordinates: relative deviation of estimate from the true value, calculated as the ratio 

√    ⁄  of the square root of the Mean Square Error of the estimate to the true θ value, for 

the four measures: arithmetic mean (red diamonds), harmonic means (orange squares), mode 

(blue triangles), and median (black squares) of the posterior distribution of effective size.  

 

Figure S3.  Coefficients of variation of effective population size estimates after exponential 

expansion.  

 

Cases B, D and F are the same as in Figure 2. Abscissa: time in the past, in reduced scale 

generation x mutation rate, from 0 to 9. Ordinates: coefficients of variation (ratios of standard 

deviations to the means) of estimates from arithmetic means (red), medians (black) and modes 

(blue) of posterior distributions.  

 

 

Figure S4.  Coefficients of variation of effective population size estimates after a bottleneck.  

 

Cases B, C and D are the same as in Figure 3. Abscissa: time in the past, in reduced scale 

generation x mutation rate, from 0 to 20. Ordinates: coefficients of variation (ratios of 

standard deviations to the means) of estimates from arithmetic means (red), medians (black) 

and modes (blue) of posterior distributions.  
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Figure S5.  Coefficients of variation of effective population size estimates after a transient 

increase.  

 

Cases A and B are the same as in Figure 4. Abscissa: time in the past, in generations, from 0 

to 3000. Ordinates: coefficients of variation (ratios of standard deviations to the means) of 

estimates from arithmetic means (red), medians (black) and modes (blue) of posterior 

distributions.  

 

 


