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Marine benthic ecosystems are difficult to monitor and assess, which is in contrast to modern ecosystem-based management requiring detailed
information at all important ecological and anthropogenic impact levels. Ecosystem management needs to ensure a sustainable exploitation of
marine resources as well as the protection of sensitive habitats, taking account of potential multiple-use conflicts and impacts over large
spatial scales. The urgent need for large-scale spatial data on benthic species and communities resulted in an increasing application of distribution
modelling (DM). The use of DM techniques enables to employ full spatial coverage data of environmental variables to predict benthic spatial dis-
tribution patterns. Especially, statistical DMs have opened new possibilities for ecosystem management applications, since they are straightforward
and the outputs are easy to interpret and communicate. Mechanistic modelling techniques, targeting the fundamental niche of species, and
Bayesian belief networks are the most promising to further improve DM performance in the marine realm. There are many actual and potential
management applications of DMs in the marine benthic environment, these are (i) early warning systems for species invasion and pest control, (ii) to
assess distribution probabilities of species to be protected, (iii) uses in monitoring design and spatial management frameworks (e.g. MPA designa-
tions), and (iv) establishing long-term ecosystem management measures (accounting for future climate-driven changes in the ecosystem). It is
important to acknowledge also the limitations associated with DM applications in a marine management context as well as considering new
areas for future DM developments. The knowledge of explanatory variables, for example, setting the basis for DM, will continue to be further devel-
oped: this includes both the abiotic (natural and anthropogenic) and the more pressing biotic (e.g. species interactions) aspects of the ecosystem.
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While the response variables on the other hand are often focused on species presence and some work undertaken on species abundances, it is
equally important to consider, e.g. biological traits or benthic ecosystem functions in DM applications. Tools such as DMs are suitable to forecast
the possible effects of climate change on benthic species distribution patterns and hence could help to steer present-day ecosystem management.

Keywords: ecosystem approach, environmental monitoring, habitat suitability modelling, macrofauna, mapping, marine spatial planning (MSP),
predictive modelling, species distribution modelling.

Introduction
The marine ecosystem is known to be influenced by a combination
of physical, chemical, and biological components, which has a direct
influence on the integrity of species and habitats. The successful
management of these systems require information from all its eco-
logical levels. This need for ecological knowledge, the increased an-
thropogenic pressures on the marine environment (Halpern et al.,
2008; Ban et al., 2010) and the potential for multiple-use conflicts,
have led to an increased interest in sea-use planning with particular
emphasis placed on marine spatial planning (MSP; European
Commission, 2008; Douvere and Ehler, 2009). Ecosystem manage-
ment is often confronted with fragmented information on the
spatial distribution of marine species and habitats, mainly this is
because the marine environments are more difficult to access, and
to monitor, when compared with terrestrial ecosystems (Robinson
et al., 2011).

Recent developments in marine habitat mapping using remote
sensing tools have resulted in an increased availability of environ-
mental data (Brown et al., 2011). The seabed features of marine
habitats can now be characterized and mapped on relatively large
spatial scales. In addition, satellite-based observation of the
oceans and physical models provide information on a variety of
physical parameters such as sea surface temperature or primary pro-
duction on a global scale. The ability to visualize the seabed and the
overlying water column has led to an increased interest in the use of
habitat maps for marine nature conservation, economic exploit-
ation and development, and resolving conflicts of multiple uses
on the seabed (e.g. in support of MSP; Birchenough et al., 2010).

Monitoring the biotic components of the ecosystem is prohibi-
tively expensive and requires an enormous effort to collect with
point source data of species distributions over large spatial scales.
Therefore, predictive methods have become important tools to
overcome these issues when looking at biotic aspects of the ecosys-
tem components (Guisan and Zimmermann, 2000; Guisan and
Thuiller, 2005). Distribution modelling (DM), which is also
known as, for example, species DM, habitat suitability modelling,
ecological niche modelling, or bioclimatic envelopes, mainly refer
to correlative approaches that use full spatial coverage data of envir-
onmental variables to explain and predict patterns of species distri-
bution (Elith and Graham, 2009). These predictive modelling
methods have been mainly used in terrestrial ecology to study
general patterns of species distributions (Hengl et al., 2009), as well
as for addressing conservation- and ecosystem management-related
issues such as the delineation of protected areas (Valavanis et al.,
2008; Elsäßer et al., 2013), the risk for species invasions (Gormley
et al., 2011), and the prediction of distribution changes in response
to climate change (Cheung et al., 2009). See also Guisan et al.
(2013) for a comprehensive overview on the use of DMs in support
of environmental management for terrestrial systems. The use of
DMs in marine ecosystems is still in its infancy (Degraer et al.,
2008), when compared with the vast number of studies applying
DM in the terrestrial realm. Most of the existing DM studies in the
marine environment have shown their application on conservation

planning, method evaluation, theoretical ecology, climate change,
species invasions, phylogeography and impact assessment
(Robinson et al., 2011). Commercial fish were especially targeted by
recent studies using DM in marine ecosystems (Venables and
Dichmont, 2004; Maxwell et al., 2009; Moore et al., 2010; Lenoir
et al., 2011; Jones et al., 2012). Benthic invertebrates have also been
subject to DM, although their distribution is primarily modelled
over local scales (Ysebaert et al., 2002; Thrush et al., 2003; Ellis
et al., 2006; Degraer et al., 2008; Meißner et al., 2008; Willems et al.,
2008; Galparsoro et al., 2009; Valle et al., 2011). There are some exam-
ples from larger scales, e.g. Baltic Sea (Gogina and Zettler, 2010;
Gogina et al., 2010b), North Sea (Reiss et al., 2011), Icelandic
waters (Meißner et al., 2014), and worldwide (Ready et al., 2010;
Wei et al., 2010; Davies and Guinotte, 2011). The results of the above-
mentioned applications of DMs in the marine realm rendered insight
into the correlative relationships between environmental drivers and
benthos species distribution, allowing for full-coverage predictions of
species and community occurrence. These outputs can be used to
guide management decisions.

Nonetheless, ecosystem management and MSP have to incorpor-
ate information on a variety of aspects ranging from the natural envir-
onmental conditions to anthropogenic pressures (Galparsoro et al.,
2013; Stelzenmüller et al., 2013), of which the distribution of
benthos will be only one aspect of many layers of information.
Thus, this information could be the most useful in a management
context, as the information derived from DM should ideally represent
simple, easily interpretable results preferably with little or at least
quantified uncertainty. DM performance has been shown to depend
on a variety of factors such as the modelling approach (e.g. Elith
et al., 2006; Elith and Graham, 2009; Reiss et al., 2011), ecological
niche width of species (e.g. Kadmon et al., 2003; Tsoar et al., 2007),
and dispersal range, species interactions, and mobility of species
(McPherson and Jetz, 2007). Thus, although highly valuable,
caution and expert guidance indeed is needed when using DM
results in an ecosystem management context. Furthermore, most
DM approaches only provide species occurrence probabilities; this
without informing on species abundance or biomass. Scientific
expert guidance will hence remain indispensable to correctly encom-
pass these limitations and uncertainties when applying DM in an eco-
system management context. Therefore, the main objectives of this
review are: (i) to provide an overview of DM applications in the
marine benthic environment and (ii) to discuss their applications
and limitations as a tool to support marine ecosystem management.

This review follows the consecutive steps in DM, discussing crit-
ical assets of using biological and environmental input data and
their incorporation into the different DM methods (Figure 1).
This paper does not intend to provide a complete overview of the
different modelling methods, but rather is seeking to emphasize
some general applications and limitations of the models when
used for marine benthic environments. We also present several
examples where the applications of DM are relevant to marine eco-
system management, highlighting their general applicability, but
also their limitations in applicability to management-related
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issues, e.g. monitoring and spatial planning, as well as their potential
for future use (e.g. early warning systems).

DM methods and data requirements
Modelling methods and associated uncertainty
There is a rapidly growing varietyof methods used for marine benthic
species and community DM, including both already widely applied
and merely tested techniques. Detailed descriptions and more explicit
lists can be found in advanced subject-specific text books (e.g.
Legendre and Legendre, 1998; Zuur et al., 2012), reviews, and object-
specific comparative research papers (e.g. Guisan and Zimmermann,
2000; Guisan and Thuiller, 2005; Franklin, 2010; Robinson et al.,
2011). Three major approaches have been used to predict species dis-
tribution patterns: (i) statistical (or correlative) stochastic models
that estimate parameters based on empirical or phenomenological
relationships between current distribution and environmental
conditions, (ii) mechanistic (or structural dynamic) models that in-
corporate explicit ecological relationships independent of current
distribution, with mechanistic components defined by physiological
relevance, and (iii) Bayesian belief networks (BNs; Table 1; Guisan
and Zimmermann, 2000; Sagehashi, 2008; Buckley et al., 2010;
Stelzenmüller et al., 2010).

Statistical approaches are probably most often used for DM and a
large number of methods are now available, of which several were

successfully applied to marine benthos (Table 1). Comparative
studies showed that the performance of the different models can
vary considerably, but it is also clear that no single model could be
equally appropriate for all applications (e.g. Reiss et al., 2011;
Valle et al., 2013). When deciding on the model selection, this
needs to be adjusted according to the (management) objectives
(Figure 1). Applications of statistical modelling in marine context
include testing hypotheses in relation to the ranges of species distri-
bution along environmental gradients, generating habitat suitability
maps that predict the specific ecological potential of a habitat (with
limitations defined by the data analysed), and assessing the possible
consequences of habitat changes (either natural or anthropogenic),
as part of MSP and conservation management (Degraer et al., 2008;
Robinson et al., 2011).

The main advantage of statistical DM is that they are conceptu-
ally simple, descriptive, and require relatively few data on the mod-
elled species, as often species occurrence data may be sufficient. This
simplicity however also entails a higher risk of misinterpretation
when it comes to its application in an ecosystem management
context, where the desired information ideally is a single prediction
with little uncertainty (Jones et al., 2013). This uncertainty origi-
nates from various sources inherent to the modelling process, in-
cluding the biological and environmental input data (see below),
the modelling technique and the prediction itself (Beale and
Lennon, 2012). While in principle the reliability of the prediction

Figure 1. Conceptual diagram showing the components of statistical DM and the overall linkages for the management applications. The arrows
indicate the direction of input of data/information, while the limitations and problematic issues for the biological input data, the environmental
predictors, and the DM procedure are listed in the consecutive boxes. The management objectives in this figure provide the overarching framework
on which the selection of DM method and prediction attributes is depending on.
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Table 1. Common methods used for DM (“p”, presence-only data; “p/a”, presence/absence data; “++”, known application for management in marine settings; “+”, known application in
marine benthos; “2”, no published relevant applications).

Modelling
technique Description Data requirements Pros and cons

Marine
application Exemplary references

GLM, Generalized
Linear Model

Based on analysis of variance and covariance; various
distributions and link functions used subject to
the distribution features of both predictors and
response variables (binomial for binary, Poisson for
count data, negative binomial for overdispersed
count data, logit for probability of binary response,
etc.); from simple to multivariate regression

p/a; both categorical and
continuous predictors

Variety of handled distributions, common,
straightforward interpretation, high predictive
power; model selection uncertainty and
autocorrelation should be accounted for; the greater
the flexibility (e.g. number of polynomials), the
higher is the risk to overfit the data

++ Ysebaert et al. (2002),
Valavanis et al. (2008),
Gogina et al. (2010b)

GAM, Generalized
Additive Model

Straightforward extension of GLM where scatterplot
smoothing functions (locally weighted mean) are
used to build a sum of a set of arbitrary functions

p/a Overfitting risk, complexity of interpretation suggests
the use of sequence of non-parametric GAM to
determine the dominant relationships and then
apply parametric GLM for fine model fitting and
prediction

++ Valavanis et al. (2008),
Bergström et al. (2013)

MARS, Multivariate
Adaptive
Regression
Splines

Non-parametric regression technique combines
linear regression, mathematical construction of
splines and binary response cursive partitioning to
model (non-)linear relationships between
environmental variables and species occurrence,
coefficients differ across levels of predictor
variables

p/a; continuous and
categorical data

Flexible, easy to interpret, automatically models
non-linearities and interactions between variables,
do not give as good fits as boosted trees methods

++ Meißner et al. (2008),
Reiss et al. (2011)

MAXENT,
Maximum
Entropy

Estimates the target probability by finding the
probability distribution of maximum entropy (of
minimum information content) under the
constrains that the expected value of each
predictor matches its empirical average

p Superior performance among presence-only algorithms ++ Phillips et al. (2009), Reiss
et al. (2011)

BIOCLIM Envelop
models

Finds mean and standard deviation for each
environmental variable to calculate bioclimatic
envelopes

p Output is the categorical probability of occurrence,
often shows poor performance

++ Reiss et al. (2011)

Quantile regression Serves to model the function for the depicted
quintile of the response, e.g. to estimate the
factors constraining the population, without strict
distributional assumptions and specifications on
link between the variance of response and its
mean

p/a Alternative to ordinary least-square regression methods
able to reveal hidden bias and existing important
processes not covered by measured variables

2 Cade and Noon (2003),
Vaz et al. (2008)

ANN, Artificial
Neural Networks

Non-linear mapping structures based on hundreds of
simulated neurons connected together as brain’s
neurons, learn from experience (not
programming), behaviour is defined by the way its
individual computing elements are connected and
by the strength of those connections (weights);
can be trained to recognize patterns, classify data,
and forecast future events

p/a Largely universal and assumption-free approach for any
data; however, this is a “black box” approach;
therefore, it is difficult to interpret ecological
relationships

2 Lek and Guegan (1999),
Valavanis et al. (2008)
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GARP, Genetic
Algorithm for
Rule-set
Prediction

Uses a machine-learning genetic algorithm such as
regression adaptation and range specification to
select a set of rules that best predicts the
distribution of species

p/a Argued to give accurate assessment of distribution for
organisms capable of dispersal; “black box”
algorithm, no way to analyse contributions of
individual predictors to the model, hard to interpret

+ Stockwell and Peters
(1999), Reiss et al.
(2011)

GDM, Generalized
Dissimilarity
Modelling

Designed to model spatial turnover in community
composition, combines matrix regression and
generalized linear modelling, allowing it to model
non-linear responses to the environment that
capture ecologically realistic relationships between
dissimilarity and ecological distance

p/a Community-modelling method—based on that,
important subtle environmental trends may only be
apparent in the response of multiple species and rare
species are hard to model otherwise

2 Elith et al. (2006)

ENFA, Ecological
Niche Factor
Analysis

Compares statistical distributions of predictors for
presence locations with that of wider geographic
area. Factors are successively extracted by
maximizing ratio of the variance of the global
distribution to that of species distribution

p Resulting factors have ecological meaning of
“marginality” and “specialization”. Requires good
survey coverage for accurate prediction

2 Valavanis et al. (2008),
Galparsoro et al.
(2009), Valle et al.
(2011)

CART,
Classification
and Regression
Tree

Non-parametric decision tree learning technique
based on recursive binary partitioning; a set of
nodes expressed in terms of predictors defines the
predicted value of the response variable at the end
of the leaf. Splits are determined by minimizing
the sum of squared residuals or the
misclassification rate within the resulting groups

p/a Appropriate for all types of variables, minimum
assumptions about the model form; but erroneous
near region boundaries, small data change may lead
to significant model change, data fragmentation

++ Pesch et al. (2008)

RF, Random Forest Uses collection of decision tree models to achieve
top predictive performance

p/a + Wei et al. (2010), Reiss
et al. (2011)

BRT, Boosted
Regression Trees

Boosting algorithm uses iterative forward stage wise
modelling. Final model is developed by
progressively adding simple CART trees by
re-weighting data to emphasize cases poorly
predicted by previous trees

p/a Ability to handle different types of variables and
missing values, fitting interactions between
predictors, immunity to extreme outliers

+ Leathwick et al. (2008)

BNs, Bayesian Belief
Networks

Estimates the probability that a hypothesis is true
given the data, and defines that probability as the
degree of belief in the likelihood of an event.
Classical statistical approaches estimate the
probability of the data given a hypothesis, and the
probability is defined as the relative frequency of
an observation

p/a; all kinds of data
(nominal, ordinal,
continuous), e.g.
multiple sets of
geospatial data

Probabilities can be combined and quantified using
empirical data, statistical associations, mathematical
representations, and probabilistic quantities derived
from expert knowledge

2 McCann et al. (2006),
Stelzenmüller et al.
(2010)

Mechanistic
models

Translate environmental conditions into biologically
relevant metrics, capture environmental
sensitivities of survivorship and fecundity and use
energetic to link environmental conditions and
demography (i) incorporating models of species
migration—ability of a species to occupy suitable
habitat in new locations; (ii) linking models of
landscape disturbance and succession to models
of habitat suitability; (iii) fully linking models of
habitat suitability, habitat dynamics and spatially
explicit population dynamics

p/a Integration of information from mechanistic models
has the potential to improve the reliability of
correlative predictions, e.g. in the context of
range-shifting/invasive species; approach is only
feasible if the life history parameters and habitat
requirements of the species are well understood

2 Elith et al. (2006), Buckley
et al. (2010), Franklin
(2010)
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can be assessed by using, e.g. the AUC (area under the receiver char-
acteristic curve), k, or the true skill statistic, the validity of these
commonly used performance measures is still arguably (e.g. Lobo
et al., 2008). The measures are influenced inter alia by the quality
and nature of absence data, the testing data and simply by the
spatial extent of the modelled area (Guisan and Thuiller, 2005). For
example, a distribution model for a stenotypic species with a
restricted distribution range is bound to get a higher performance
index when built on a large spatial scale with widely ranging environ-
mental gradients (including the narrow range of environment where
this species is thriving) than when built on a smaller spatial scale.
However, the large-scale model is not better than the small-scale
one. Thus, extending the study area by including non-suitable areas
will inevitably result in better performance indicators without im-
proving the actual distribution predictions (Lobo et al., 2008).

A central aspect of uncertainty during the modelling procedure is
to which extent the realized or the fundamental niche is modelled.
Statistical models are using the actual occurrence, which represents
the realized niche at a given time, but do not necessarily perform well
when predicting the fundamental niche. The occurrence of sink
populations, for example, where the species cannot establish a
stable population and only survives for a limited time span due to
recruitment from other source populations, may further contribute
to the uncertainty of describing the realized niche (Pulliam, 2000;
Hansen, 2011). While the knowledge concerning the realized
niche can satisfactorily be used in, for example, management
approaches with a goal to ensure for an immediate protection of
endangered species, the knowledge concerning the fundamental
niche may be essential when predicting future changes in distribu-
tion. Besides the dispersal limitations, the main process that defines
the realized niche of a species is the interaction with other species
in the ecosystem. At present, there are only few methods available
to include species interactions in DM. These range from relatively
simple qualitative linkages between species to more complex quanti-
tative linkages including resource stocks (see examples limited to
plant and terrestrial species reviewed in Kissling et al., 2012).

Caution is also needed when the predictions of distribution prob-
ability need to be transferred into a simple binary distribution map to
differentiate between modelled absence and presence of a species as
often required by ecosystem management. In this case, a threshold
probability level can be applied to set the cut-off value beyond
which a feature is expected to be present. The common procedure
of simply using a probability of 0.5 as a threshold was often found
to be a less suitable choice, while alternative methods can give more
reliable results (Liu et al., 2005; Freeman and Moisen, 2008). The ul-
timate choice of thresholds should always be based on the specific
management objective, e.g. using a threshold with low sensitivity, if
the actual presence of the species is more important than identifying
the full range of potential habitats (e.g. for delineation of marine pro-
tected areas, MPAs). Freeman and Moisen (2008) therefore suggested
that the DM outputs should initially be provided as continuous prob-
ability maps enabling the application of those threshold levels suitable
for the specific management objectives.

Despite some limitations and the consequent need for cautious-
ness, statistical DM can provide essential information regarding the
spatial distribution together with a correlative insight into the envir-
onmental drivers restricting the distribution, although it needs to be
emphasized that statistical relationships cannot reveal any causality.
Thus, the major assumption of statistical models that limits an ac-
curate prediction of range dynamics is that processes setting the
limits of the range remain fixed in space and time—and thatTa
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assumption will probably not hold when making dynamic predic-
tions (Dormann, 2007; Sinclair et al., 2010).

Most DM studies in the marine environment focused on the
presence/absence, but a more quantitative approach by mapping
modelled densities (abundance or biomass) would be considerably
more informative (Bučas et al., 2013). “Factorceiling” (Thrush et al.,
2003), quantile regression (Cade and Noon, 2003; Vaz et al., 2008),
and machine-learning methods recently introduced for DM such as
random forest and boosted regression trees (Table 1) are also con-
sidered here. Generally, regression methods such as GLM potentially
provide predictive capability and machine-learning methods such
as those using regression trees are often more useful for mapping
and description of patterns. While statistical DM can already be
applied in (marine) management, a future coupling of the results
of such modelling exercises with species ecological attributes (e.g.
filtration rates, bioturbation modes, etc.), via biochemical or sedi-
ment transport models, would allowassessing the benthic ecosystem
functioning, thereby providing better knowledge for sustainable
ecosystem management.

Furthermore, mechanistic models will provide more accurate
distribution predictions (Buckley et al., 2010). Generally, such
models include those that translate environmental conditions
into biologically relevant metrics, capture environmental sensitiv-
ities of survivorship and fecundity, as well as using energetics to
link environmental conditions and demography (Table 1). The in-
tegration of information from mechanistic models has the poten-
tial to improve the reliability of correlative predictions when used
in the context of range-shifting non-indigenous species (Elith et al.,
2010). Up to now, the application of DM based on a mechanistic
approach that explicitly capture hypothetical biological processes
is rare in the marine realm and their representation in the
benthic environment is limited (Saraiva et al., 2011; Sara et al.,
2013). The main reasons here are that there is still relatively poor
knowledge of species interactions among benthic organisms (e.g.
Ordonez et al., 2013). Even trophic interactions can often not be
quantified at the detailed level needed for DM, because benthic in-
vertebrate diet is hardly studied and knowledge on the predation of
benthos by demersal fish often only contains information with
low taxonomic resolution. This strongly promotes the develop-
ment and expansion of applications of such models and supports
the need for enhanced research into the basic ecology of benthic
organisms.

Bayesian BNs can be classified as the third approach (Stelzenmüller
et al., 2010). BNs differ basically from classical statistical DM methods.
BNs estimate the probability that a hypothesis is true given the data,
and defines that probability as the degree of belief in the likelihood
of an event to occur (Table 1). Classical statistical approaches estimate
the probability of the data given a hypothesis, where the probability is
defined as the relative frequency of an observation (Franklin, 2009).
BNs are models that graphically and probabilistically represent cor-
relative and causal relationships among variables, and the most clear
strength is that probabilities in the model can be combined and quan-
tified using empirical data, statistical associations, mathematical
representations, and probabilistic quantities derived from expert
knowledge (McCann et al., 2006). Within such frameworks, uncer-
tainty can be accounted for to a large extent and the assessment of
“what if” scenarios for planning objectives makes these a promising
tool for marine ecosystem management.

In conclusion, while widely applied statistical methods have
indeed been successfully applied in marine management, DM
tools such as mechanistic models and Bayesian BNs are at the

brink of taking DM in a marine management setting to a next step
in DM performance and power.

Biological data
Most studies focus on single species, but also functional traits (e.g.
filter-feeders), indicesof biodiversity(e.g. species richness, rarefaction),
global community descriptors (e.g. overall biomass or abundance), or
community distributions. All of these faunal characteristics are possible
response variables for DM. Single-species modelling already proofed to
be useful in a management context by predicting the distribution of key
species (e.g. Galparsoro et al., 2012; Rengstorf et al., 2012).

Besides its input as response variable, biological data may
however also function as a predictor variable to construct statistical
models, which is far less explored in the marine environment. This
section focuses on the three most prominent issues associated with
the performance of DM in the marine environment. The main issues
are associated with: (i) data sufficiency, (ii) spatial and temporal
bias, and (iii) spatial and temporal scale.

Adequate spatial coverage for modelling species distributions
calls for a sufficient biological sampling. The sampling effort of bio-
logical data still is time and costly in the marine context when com-
pared with the terrestrial realm. As a consequence, sampling effort of
marine biological data generally has a relatively low spatial reso-
lution and is often biased towards shallow sites close to the coast
(Phillips et al., 2009; Robinson et al., 2011) and driven towards pol-
itically, socially, and economically interesting areas (e.g. important
fishing grounds, MPAs). Most shortcomings in the model quality
are based on paucity of data, spatial inaccuracy, and lack of valid
absences (Guisan et al., 2006a). There has been evidence that predic-
tions based on few records do not perform equally well when com-
pared with those predictions undertaken on a large dataset. This can
be explained mainly because: (i) the uncertainty levels are depend-
ent on parameter estimates (means, medians, etc.) and hence in-
crease with decreasing sample size, (ii) the outliers gain more
importance, (iii) the species ecological niches are highly complex
in dimensions and small sample sizes are insufficient to allow for
a description of a species niche over various environmental and bio-
logical gradients, particularly because (iv) species niches are often
skewed or multimodal shaped (Wisz et al., 2008 and references
therein). Further, data sufficiency depends on the purpose/com-
plexity of the model (Guisan et al., 2006a; Wisz et al., 2008).
Qualitative sampling as often is the case in marine benthos research
(e.g. trawling for epibenthos) restricts the type of the response to the
presence/absence or presence-only, unavoidably resulting in the
prediction of the probability of occurrence. Responses such as abun-
dance or biomass reveal more information than occurrence predic-
tions only (see above), but they have higher requirements on data
quality that are less frequently met in the marine realm (Vierod
et al., 2014).

The spatial bias is particularly problematic if presence-only or
pseudo-absence/background data are used for modelling (Wisz
and Guisan, 2009; Lobo et al., 2010). This may result in an environ-
mental bias which may lead to inaccurate models because of the dif-
ference in the observed occurrence of species and background
sampling (Robinson et al., 2011). Real absence data are often
lacking in the marine environment, although they would contribute
to model accuracy (Phillips et al., 2009) and would allow an evalu-
ation of the predictions, i.e. standard measures for model evaluation
(e.g. k, AUC) do not work for presence-only data (sensu Guisan
et al., 2006b). Especially for benthic systems, the use of presumed
absence data (i.e. the species was not found in the sample) can
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also be misleading, since often the standard benthos sampling does
not allow drawing final conclusions about the absence of a species
because of limited sample sizes, lack of appropriate replication, or
limited efficiency of the sampling gear. However, techniques to
evaluate the goodness-of-fit for presence-only-based prediction
such as the Boyce index (Boyce et al., 2002) are under development
(see Hirzel et al., 2006; Skov et al., 2008). Besides the spatial bias, data
often contain a temporal bias too. Marine data are difficult to gather
and DM input data are hence often taken from varying data sources
over different years and sampling seasons. According to Guisan et al.
(2006b), models using spatially and temporally heterogeneous
samples contain an unknown level of bias and error.

Detailed knowledge on species-specific biological characteristics
is basic for DM as these too may affect model accuracy (Reiss et al.,
2011). Predictors for spatial distribution differ as large-scale envir-
onmental predictors such as hydrography, current regime, and
climate are more important for the mobile megafauna (e.g.
Guisan and Thuiller, 2005) or large and sessile filter-feeders (e.g.
Buhl-Mortensen et al., 2010), while local environmental predictors
with a more pronounced small-scale heterogeneity (e.g. sediment
characteristics) might be of greater importance for smaller seden-
tary infaunal or less mobile species. There is further evidence that
biological factors and interactions might become more important
locally than on larger scales (e.g. landscape scale; Gogina et al.,
2010a; Nyström Sandman et al., 2013). As introduced in the
Modelling methods and associated uncertainty section, biological
predictor variables are mostly not or insufficiently taken into
account in DM (Elith and Graham, 2009). However, distribution of
habitat forming species, migratory behaviour, dispersal range,
species aggregation, and interactions are of specific importance in
modelling the distribution of a species (Guisan et al., 2006b;
Kissling et al., 2012). The use of biological predictors alongside the
classically used physico-chemical variables is likely to increase DM
performance. Compared with the terrestrial ecosystem, most
marine species either have mobile adult stages (megafauna, fish) or
mobile early life stages (pelagic larvae) and their dispersal ranges
can be large, given the major physical continuity in the marine ecosys-
tem (Guisan et al., 2006b; Reiss et al., 2011; Robinson et al., 2011).
Consequently, the role of environmental factors determining the dis-
tribution may even change during the life history of a species (e.g. De
la Moriniere et al., 2003). During the pelagic larval phase, hydro-
graphic parameters of the water column might be most important,
while the benthic phase might be more influenced by parameters
acting more directly on the seabed. The inclusion of such dispersion
features, influencing species distribution patterns by neighbouring
spatial dependencies, i.e. spatial autocorrelation, will again add to
the DM performance (Legendre, 1993; Guisan et al., 2006b; Gogina
et al., 2010a; Robinson et al., 2011).

DM performance would further profit from the incorporation of
species interactions (Soberón, 2007), constituting the biological
base of ecological functioning (May, 1983). Hence, species distribu-
tions are not solely shaped by the environmental setting but to a
large extent by biological factors. Besides environmental conditions,
particularly trophic interactions are the main forcing factors for the
occurrence, distribution, and behaviour of organisms (MacArthur,
1955; Cohen, 1978; Pimm, 1982). The lack of knowledge on marine
benthic interactions (e.g. trophic interactions) however hampers
their incorporation into DMs. The fact that most marine benthic
species feed on a variety of different food sources or prey species
(omnivory; Link, 2002), as such hampering an unequivocal quanti-
fication of trophic linkages, further complicates its incorporation

into DM; this is in contrary to, for example, species-specific pollin-
ator–plant interactions in terrestrial systems.

Finally, the biological factors themselves may affect environmen-
tal predictors, as species may change their own and the other species
habitat as “ecosystem engineers” (Jones et al., 1994; Pulliam, 2000).
For example, species that occur gregariously or colonially may sig-
nificantly change the surrounding habitat and associated species
(e.g. Buhl-Mortensen et al., 2010; Rabaut et al., 2010; Quattrini
et al., 2012). Hence, DM of life history or biological traits such as,
for example, reproduction, mobility, maturity, bioturbation, and
feeding modes, deserves more attention as these traits are significant
determinants of ecological functioning of benthic systems, and con-
sequently important descriptors for a sustainable management of
marine services and goods (Tillin et al., 2006; Bremner, 2008;
Braeckman et al., 2014).

Environmental data and anthropogenic pressures
Environmental data constitute the fundamental basis of DM. For
marine ecosystems, the availability of large-scale environmental
data has significantly improved in the last decade, because of in-
creasing research activities by using habitat mapping and remote
sensing techniques, for example, to develop seabed habitat classifi-
cations based on the relation between benthic organisms and the
seabed environment such as EUNIS (Davies et al., 2004;
Galparsoro et al., 2012). These environmental predictors however
tend to be temporally more dynamic in the marine realm compared
with terrestrial systems, with a significant short-term (e.g. currents)
or seasonal variability (e.g. temperature, primary production),
which makes their application in DM challenging (Franklin, 2009).

To be useful in a modelling context, the selected environmental
predictors should ideally represent limiting factors, resources, or
disturbances (natural or anthropogenic) causally linked to the
species and its habitat (Guisan and Zimmermann, 2000; Guisan
and Thuiller, 2005; Elith and Leathwick, 2009). Causal predictors
used to model benthos distribution are, for example, temperature,
salinity, or primary production (Table 2), whereas others rather re-
present surrogate factors such as, for example, water depth or in
some cases substratum, which may be indirect proxies integrating
several predictor variables. The causality of the relationships
between benthos and the marine environment are however often
not understood in detail, mainly because most of our understanding
is based on correlative approaches and experimental studies are
scarce, which may reflect the poor representation of mechanistic
DM in the marine environment (see the Modelling methods and
associated uncertainty section). DM, especially those based on stat-
istical approaches, should hence be considered an indicator of pos-
sible causalities rather than an identifier of such cause–effect
relationships, and should hence trigger further basic research on
cause–effect relationships.

When zooming into environmental predictors, substratum or
bottom type is one of the key features driving the presence of
benthic marine organisms and it has therefore often been used to
predict the distribution of bottom fauna. For soft bottom sediments,
grain size composition is commonly used (e.g. Ysebaert et al., 2002;
Degraer et al., 2008), while more specific sediment parameters such
as sediment sorting, porosity, or cohesiveness are rarely measured in
the field and are consequently not often used in marine DM. For
hard bottoms such as bedrock, boulder, and gravel fields, the fraction
of gravel or boulders based on visual inspection and size and orienta-
tion of rocks or the space available between rocks are more relevant
descriptors. Several techniques ranging from direct observations to
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remote sensing, including acoustic techniques, may be used to qualify
the substratum type (Brown et al., 2011). Shallow sediments in areas
experiencing high water dynamics or ice scouring may change after
storms or the winter season. Below 100 m depth, sediments are nor-
mally stable. However, the hydrographic conditions around under-
water canyons and seamounts as well as strong tidal-driven currents
or internal waves may still generate sediment transportation also in
deep waters. Except for local studies where substratum data canbe col-
lected, modelling large sea expanses requires collating and harmoniz-
ing data from various studies undertaken at different times. A key
requirement of such data assemblages is hence to provide users with
a confidence map, which enables them to use the data with full aware-
ness of its reliability.

The characteristics of soft bottom substrates are often closely
related to the local hydrodynamic regime and as such might
rather act as an indirect proxy for the hydrodynamic predictors
than being a truly independent predictor. On a larger scale, the ba-
thymetry is an essential predictor for the composition of bottom
communities. The bathymetry however also has a direct bearing
on physical parameters acting on the seabed such as substratum,
light, wave energy, salinity, and temperature. Depth can hence
also be used as an indirect proxy for causal drivers. Thus, the selec-
tion of functionally more relevant predictors should be prioritized
over indirect proxies (Elith and Leathwick, 2009), but especially in
marine environments, DM is often by necessity driven by those pre-
dictors, which are readily available.

Bathymetry derivates, i.e. seabed morphological characteristics
such as slope, aspect, or rugosity, further include crucial environ-
mental descriptors that have proven useful to identify suitable habi-
tats (Buhl-Mortensen et al., 2009; Galparsoro et al., 2009). The value
of these derivates is however highly dependent on the spatial reso-
lution of the bathymetric information (Rengstorf et al., 2012).

Other major oceanographic drivers for marine species distribu-
tion comprise, for example, light energy, hydrodynamic energy, sal-
inity and temperature, and of more local importance variables such
as the oxygen concentration, nutrients, etc. The impact of light onto
the benthos is particularly straightforward as it determines the depth
to which benthic macrophytes (kelp, seaweeds, seagrass) can grow or
photosynthetic primary production can occur (Carlström et al.,
2009; Knudby et al., 2013; Saulquin et al., 2013). The same goes
for salinity, which is particularly important in shallow and estuarine
environments where freshwater input may be substantial. The salin-
ity gradient within the Baltic Sea is a good example of how salinity
steers the distribution of species (Zettler et al., 2014). The effect of
hydrodynamic energy from waves and currents exerted on the
seabed and benthos is more complex (Galparsoro et al., 2013), yet
basic to the seabed stability and substratum composition (including
deposited and suspended food particles for benthic organisms).
While extreme events can substantially modify the seabed (e.g.
heavy storms), they usually act on the seabed by a regular action,
which is best characterized by parameters computed on long time
spans (Dolbeth et al., 2007). The inclusion of hydrodynamics into

Table 2. Environmental variables relevant for DM of marine benthos.

Environmental
variable Common types of measurement Remarks

Substratum (i) Swathe techniques

(a) Backscatter from multibeam echosounder

(b) Sidescan sonar mosaics

(ii) Samples: point measurements (grab or corer)

(iii) Visual mapping: camera/video

(i) Reliability depends on ground-truth sampling density

(ii) Can be used in a stand-alone way to provide interpolated
maps (e.g. grain size distribution)

(iii) Used to ground-truth swathe techniques rather than per se
(hard to discriminate fine sediment categories)

Sea surface
temperature

(i) Satellite, point measurements, hydrodynamic
models

(i) Seldom relevant to bottom fauna except in shallow waters

(ii) Used to identify major biogeographic regions

Bottom temperature (i) Hydrodynamic models validated by point
measurements

(i) Resolution in space and time is often coarse; however, new
detailed models have been developed

(ii) Many observations needed to cover variability

Salinity (i) Hydrodynamic models

(ii) Point measurements

(i) Coarse resolution often not relevant to benthos

(ii) Many observations needed to cover seasonal variability in
shallow coastal areas

Depth (i) Point measurements

(ii) Swathe bathymetry (see “Substratum”)

(i) DTM (Digital Terrain/Elevation Model) obtained from
assembling raster and point clouds sources

Light energy (i) Satellite imagery

(ii) Point measurements (e.g. Secchi depth)

(i) Two parameters can be retrieved:

(a) Fraction of incident light

(b) Energy in mol photons reaching seabed

Primary production
(water column)

(i) Satellite imagery

(ii) Hydrodynamic models

(i) Only surface waters covered by satellite imaging

(ii) Coarse resolution in space and time of model output

Hydrodynamics (i) Hydrodynamic models [e.g. (tidal) currents,
bottom shear stress]

(ii) Acoustic Doppler Current Profiler (ADCP)

(i) Often coarse resolution in space and time of model output

(ii) Local application only for ADCP
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DM is most relevant to rocky substrata, since the composition of
mobile sediments typically reflect the local hydrodynamic regime
and can be considered as a surrogate variable for hydrodynamics.
Seabed energy parameters are derived from hydrodynamic models.
Although they are often of low spatial resolution with respect to
seabed heterogeneity, especially in the coastal-zone, a lot of progress
is currently being made (e.g. Chen et al., 2009). Unfortunately, infor-
mation on currents and particle transport in the benthic boundary
layer—most relevant to benthic organisms—is poor and highly
demanding to map and monitor. Temperature finally takes a
special position because of its large-scale structuring relevance
(Glémarec, 1973) combined with its central position within the eco-
logical impact of climate change. Together with salinity, it defines the
hydrographic setting which is used to define different water masses
and depth zones. It further strongly affects oxygen concentration
and consumption in the benthic environment where hypoxia is
often related to year maxima in bottom water temperature
(Quiñones-Rivera et al., 2010). From a DM perspective, sea surface
temperature may be a good proxy for the entire column where the
water column can be considered homogenous, i.e. mixed waters
(Méléder et al., 2010). Other factors which may be relevant locally
such as the oxygen conditions at the seabed (Reijonen et al., 2008)
or the influence of pelagic environment variables such as primary
production (Holt et al., 2012) in the surroundings of the benthic
samples locations may also be examined where appropriate.

Anthropogenic impacts may also be considered environmental
predictors in a DM context, although many impacts are relevant
mainly on a local scale. The use of DM to map and monitor
animal and plant distributions has become increasingly important
in the context of awareness of environmental change (natural and
anthropogenic) and its ecological consequences (Miller, 2010).
Key activities which can have a significant impact on marine ecosys-
tems at the regional or local scale include (recreational) fisheries,
dredging, renewable energy developments, industrial and sewage
effluents, hypersaline water discharge from desalination plants,
aquaculture, diseases, coastal engineering (habitat alteration), and
point-source pollution (Halpern et al., 2008). Many of these activ-
ities primarily affect intertidal and nearshore ecosystems rather
than offshore or deep-sea ecosystems, which suggests that predictive
modelling and cumulative estimates of impacts are often conserva-
tive particularly for nearshore areas. The analytical process of DM
provides flexible tools for regional and global efforts to allocate con-
servation resources, to implement ecosystem-based management,
and to inform MSP, education, and basic research (Halpern et al.,
2008). Among the impacts with a large spatial extent, acidification
(or climate change), fisheries, and eutrophication are probably the
most important ones. Bottom trawling is one of the most wide-
spread sources of physical disturbance on habitats and organisms
on continental shelves throughout the world (Jackson et al., 2001;
Kaiser et al., 2002). Vessel Monitoring Systems (VMS), introduced
for fisheries recording and control, is now widely implemented
and increasingly used as a proxy for fisheries activity and hence
impact from bottom gears. Yet, several approaches have been devel-
oped to analyse VMS data, all having their strengths and weaknesses
(Lee et al., 2010; Lambert et al., 2012). The lack of freely accessible
VMS data, e.g. across state boundaries, however currently
hampers its applicability within DM (Hintzen et al., 2012).

Application of DM
The potential applications of DM in an ecosystem management
context are manifold, ranging from MPA delineation to incorporation

into complex marine spatial management frameworks (Gimpel et al.,
2013; Stelzenmüller et al., 2013). This review focuses on four main
applications where DM already plays an important role in marine
systems or provides promising new management applications
(Figure 1).

Marine spatial planning
As shown in the introduction, the incorporation of the ecosystem-
based approach into, for example, MSP requires that all aspects of
value associated with marine biodiversity are incorporated into
the decision-making process (Rees et al., 2010), which is called
ecosystem-based marine spatial management (EB-MSM, sensu
Katsanevakis et al., 2011). A key goal of EB-MSM is to maintain
the delivery of ecosystem services, which must be based upon eco-
logical principles that articulate the scientifically recognized attri-
butes of healthy functioning ecosystems (Foley et al., 2010). These
authors have proposed four main ecological principles: maintaining
or restoring native species diversity, habitat diversity and heterogen-
eity, key species, and connectivity. Hence, it is critical to understand
the heterogeneity of biological communities and their key compo-
nents (e.g. most important predators, habitat-forming species),
and key processes (e.g. population connectivity, interaction webs,
biogeochemistry) that maintain them, as well as human uses
(Crowder and Norse, 2008). The successful development and imple-
mentation of EB-MSM hence necessitates the use of best available
science. As stated by Katsanevakis et al. (2011), new tools, such as,
for example, geospatial analysis, remote sensing, and molecular
techniques, have broadened the understanding of the linkages
between marine habitats and population dynamics, and between
spatio-temporal dynamics and the functioning of marine ecosys-
tems (Crowder and Norse, 2008). Hence, DM does play and will
continue playing a key role in MSP and EB-MSM.

The spatially explicit nature of the DM makes this approach of
special interest for different aspects of the MSP. Scientific knowledge
obtained from DM approaches could be applied in different ways in
the MSP process, as it has been used to map the potential distribu-
tion of biological resources (see examples for habitat suitability of
lobster from Wilson et al., 2007; Galparsoro et al., 2009), fish
habitat modelling and evaluation (Koubbi et al., 2006; Monk
et al., 2011), species of special interest for conservation, such as gor-
gonians (Bryan and Metaxas, 2007; Etnoyer and Morgan, 2007),
marine mammals (Panigada et al., 2008) or seabirds (Skov et al.,
2008), selection of suitable areas for aquaculture and farming
(Cho et al., 2012), and conservation of biodiversity by providing in-
formation on the ecological requirements of species at risk (Hare
et al., 2012; Millar and Blouin-Demers, 2012). DM and mapping
hence support conservation planning, MPA selection and manage-
ment plan development, mapping suitable sites for reintroductions,
and restoration (Bos et al., 2005; Bekkby et al., 2008; Valle et al.,
2011). The most extended application of DM in marine systems
most probably is in planning for MPAs and designating essential
fish habitats (see examples in Leathwick et al., 2008; Valavanis
et al., 2008; Maxwell et al., 2009). When combined with climate
change scenarios, DM results can further reveal estimations of the
expected changes in protection efficiency of designated MPAs
(Gormley et al., 2013). Hence, DM results can be used to estimate
(or have an approximation of) the potential impact of certain
human activities to provide advice for an ecologically sound alloca-
tion of these activities (considering also the type of impact: habitat
physical destruction, hydrological or temperature regime modifica-
tion, etc.). DM may thus facilitate minimizing environmental

306 H. Reiss et al.

 at Ifrem
er, B

ibliothÃ
¨queL

a PÃ
©

rouse on M
arch 12, 2015

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


impact and maximizing the socio-economic benefit of marine
goods and services (Salomidi et al., 2012); aspects that are basic to
the MSP.

DM greatly assists in defining management objectives and im-
proving the understanding of species ecology (Robinson et al.,
2011). Their applications provide highly useful information
(Guisan and Thuiller, 2005), among others: ecological hypotheses
to be tested (Leathwick et al., 2008), unsurveyed sites of high poten-
tial occurrence for rare species to be determined (Engler et al., 2004;
Guisan et al., 2006a), and species invasion and proliferation to be
assessed (Beerling et al., 1995; Peterson, 2003). Their output, the
habitat suitability map, could support conservation planning and
MPA selection and support management plans for species recovery
by mapping suitable sites for reintroduction, as mentioned before.

Monitoring designs
The main purpose of DM is to inter- or extrapolate from point
observations in space and time to predict the occurrences in an
area where no survey data are available or the coverage is limited.
DM predictions hence complement the monitoring, but equally,
the predictions can also be used to guide the monitoring strategy de-
velopment (Bijleveld et al., 2012; Crall et al., 2013; Van Hoey et al.,
2013). The latter is especially important for marine environments,
where the logistical effort and the costs for monitoring are substan-
tially higher compared with monitoring in terrestrial environments.
The monitoring data used for DM in marine waters are often based
on heterogeneous data sources, where no specific design could be
set up before the sampling (Degraer et al., 2008). In such cases,
there is a higher risk of predictions, biased particularly towards
sites which were sampled more intensively (local project-based sam-
pling) or logistical easily accessible (coastal areas). In other cases, the
number of samples is limited because monitoring programmes
often have multiple objectives, each with their own data needs
and hence possibly compromising the optimal sampling design.
Bijleveld et al. (2012) demonstrated that combining grid and
random sampling is the most effective design in addressing a multi-
tude of management applications including mapping of species
distributions.

The benthic fauna and flora are monitored for various purposes,
e.g. to detect general patterns of distribution with surveillance moni-
toring or to assess the effects of specific anthropogenic usages with
operational monitoring (Gray and Elliott, 2009). In recent years,
monitoring programmes on an appropriate spatial and temporal
scale became specifically needed for the implementation of
ecosystem-oriented management regulations such as the European
Marine Strategy Framework Directive (MSFD), in which the central
aim is to achieve Good Environmental Status for marine ecosystems
(European Commission, 2010). The concerned biodiversity assess-
ment criteria are largely related to, for example, species populations
and habitat spatial extent, population structure, and benthic habitat
condition (Rice et al., 2012). When monitoring of species population
dynamics, sampling effort can be reallocated to distribution “hot
spots” identified with DMbased ona regular sampling strategy, as illu-
strated for the bivalve Ensis directus (Houziaux et al., 2011). DM pre-
dictions of species are furthermore useful to monitor the difference
between the potential distribution area and the currently occupied
area, which is essential for the evaluation of species/habitat area
extent (Galparsoro et al., 2009; Maxwell et al., 2009). While DM
cannot replace the actual monitoring, its predictions can be used to
construct time- and cost-effective marine monitoring strategies for
impact and ecological status assessments (Van Hoey et al., 2013).

Such knowledge is essential to determine the locations and amount
of samples needed to efficiently evaluate the ecological status. One
central aspect of assessing the ecological status is defining reference
conditions or baselines, which can be very difficult for marine
benthic communities in regions with elevated and varied anthropo-
genic pressures. Although modelling approaches for hindcasting to
a time before the impact were suggested as alternative methods
when pristine areas are not available (Borja et al., 2013), DM has prob-
ably only little to contribute to baseline definition, since necessary his-
torical environmental data are not available usually. However, for
those species which are used as indicators for baseline conditions,
DM can be applied to forecast the changes in distribution in relation
to large-scale environmental changes such as global warming (Hering
et al., 2010). This knowledge is especially important since manage-
ment action would be unsuccessful, if the cause of change is related
to these large-scale climatic effects, which cannot be targeted by
local management.

However, most monitoring programmes in marine benthic
environments are tasked with assessing benthic habitat condition
[e.g. within Water framework Directive (WFD) and MSFD] and
ascertaining benthic changes over time. In conclusion, although
the use of DM can help directing monitoring effort towards inter
alia important habitats or species or designing efficient monitoring
programmes, it is clear that the DM will never be able to replace the
actual monitoring programmes (Valle et al., 2013).

Non-indigenous species
The introduction of non-indigenous species is of specific concern for
marine ecosystem management, because these species can consider-
ably affect marine ecosystems and biodiversity by, for example, alter-
ing native communities, and may even cause severe economic
damage when the species become invasive (Olenin et al., 2011).
The non-indigenous green algae species of the genus Caulerpa, for
example, have now spread throughout major parts of the
Mediterranean Sea (Meinesz et al., 2001). The non-indigenous and
invasive Pacific oyster (Crassostrea gigas) has been shown to affect
blue mussel (Mytilus edulis) beds in the Wadden Sea and elsewhere
(Diederich, 2005; Markert et al., 2010; Jones et al., 2013). Once estab-
lished, it is difficult, if not impossible, to extirpate or manage the
spread of non-indigenous species. Therefore, early warning
systems are currently in the focus of marine management strategies
and suitable monitoring schemes for non-indigenous species in
the marine ecosystems need to be implemented. Non-indigenous
species-targeted DMs may play an important role here.

A common approach to the risk of invasion is to model the eco-
logical niche of a species based on the occurrence within its native
distribution and then to apply this model in other regions to identify
potential (vulnerable) habitats. In the terrestrial environment,
Thuiller et al. (2005) have used climate niche modelling results of
endemic species from Africa to predict the potential global distribu-
tion of introductions of these species. Thus, the vulnerable habitats
can be determined even before the potentially invasive species are in-
vading the region. Monitoring schemes within an early warning
system could use this information to focus the monitoring effort
on these vulnerable habitats. However, such approach only poorly
accounts for the early phases of introduction into marine environ-
ments, which are often associated with the major shipping pathways
(e.g. harbours). Next to precautionary management measures, this
might be the only stage (in marine environments) where manage-
ment action can be successful in regulating the introduction of non-
indigenous species.
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Given the vast number of potential invaders in marine ecosys-
tems, DMs may further serve as a tool to distinguish species with
little potential from those with higher potential to invade a specific
region and to prioritize management and monitoring efforts
(Simberloff et al., 2005). This might be an unrealistic approach for
marine environments, because the availability of environmental
data on a global scale still is a problem for a wide application of
DMs in marine benthic environments. Thus, the lack of sufficient
environmental data hampers the potential use in early warning
approaches, for which environmental data are not only needed for
the invaded, but also for the native region. To our knowledge, no
case study on marine benthos using DMs in such a context was
carried out so far.

Although species distribution models calibrated for the native
range of a species and extrapolated to regions where the species
occur as an invasive species is common practice in terrestrial envir-
onments, it is based on the assumption that the invasive species con-
serve their ecological niche in the invaded region. Usually, this might
be a reasonable assumption, but it was already shown that a shift of
the climate niche occurred between native and non-native ranges of
plant species (Broennimann et al., 2007). In this case, only the earli-
est colonization pattern was predicted correctly, which at least high-
lights the value of DMs for early warning systems.

The spatial spreading of non-indigenous species can also be
modelled using occurrence data of the invaded ecosystem. Of
course, this approach can only be applied when the species
already colonized the ecosystem and, thus, cannot be used within
early warning strategies. It can however still provide valuable infor-
mation about the ecological niche of the non-indigenous species
and hence its possible future spatial extent (Verween et al., 2007;
Azzurro et al., 2013; Jones et al., 2013; Neumann et al., 2013).
Although such approach may successfully predict the distribution
of the invader, one should be cautious because of the inherent vio-
lation of the basic assumption of DMs that the species is in equilib-
rium with its environment (Václavı́k and Meentemeyer, 2012). On
the one hand, the invasive species might not have colonized all the
suitable habitats simply because of a lack of time for a wide dispersal,
which would lead to an underestimation of the potential distribu-
tion. On the other hand, the current species distribution might
have been supported by unusual environmental conditions for a
short period. Thus, under “normal” conditions, the species might
not be able to survive in these regions and the model outputs
would result in an overestimation of distribution.

Future scenario predictions
Another major challenge for ecosystem management is to account
for possible future changes of the environment in the management
strategies. Climate scenario effects, for example, are currently in the
focus of research efforts (e.g. Richardson et al., 2012). The physical
effects of climate change in marine environments mainly comprise
shifts in temperature and salinity, alteration of hydrodynamics, sea
level rise, and ocean acidification (IPCC, 2013). Benthic systems are
directly or indirectly affected by these changes, which may result in
changes in spatial distribution of species (Birchenough et al., 2011;
Valle et al., 2014). Especially, the implementation of long-term eco-
system management measures, e.g. MPA designations, may benefit
from a DM-based estimate of future changes in the ecosystem.

DMs provide a useful tool to predict the spatial distributional
consequences of expected environmental changes such as climate
change. In the terrestrial realm, different IPCC scenarios of
climate change have been widely used to predict the future

distribution of several species and the consequences for ecosystem
functioning and environmental management (e.g. Heikkinen
et al., 2006; Pompe et al., 2008; Richardson et al., 2010; Falk and
Mellert, 2011). Future climate scenarios were also recently used to
predict distribution shifts of marine benthic species (Cheung
et al., 2012; Jones et al., 2013). Predictions of environmental
changes based on IPCC scenarios are now indeed widely accessible
for terrestrial and partly for marine environments, even on a global
scale (Tyberghein et al., 2012). Nevertheless, the dominant environ-
mental factors influencing the benthos are acting on the seabed, for
which large-scale data on the effects of climate change are still
meagre. Especially for deep sea habitats, the conditions at the
seabed differ substantially from the surface water and detailed
hydrographic models focusing on the seabed or entire water
column parameters are often restricted in their spatial extent (e.g.
Ådlandsvik, 2008; Holt et al., 2010). The same however also holds
true, yet to a lower extent, for shallower habitats where especially
the effects of changes in hydrodynamics (e.g. storminess) and sea
level rise onto the benthic physical conditions are less straightfor-
ward, as such hampering large-scale applications of DM in predict-
ing climate change-driven distribution shifts of benthic species (see
Ready et al., 2010).

With an increasing use of DMs in predicting consequences of
climate change, a growing concern has emerged to improve the
knowledge of uncertainty factors and to increase the reliability of
predictions (Thuiller et al., 2004; Botkin et al., 2007). This is even
more important in the context of climate change since an additional
source of variability arises with the use of modelled climate scen-
arios. Widespread disagreement in the distribution predictions
were found between DM methods when applied to extreme
climate change scenarios (Elith et al., 2010). Furthermore, major
uncertainties related to prognostic species DM are that relevant pro-
cesses such as species interactions, habitat change, and rapid evolu-
tionary changes are not included in most of the modelling
approaches (see above). Using DM for predicting future changes
is associated with an unavoidable degree of uncertainty (Wenger
et al., 2013) and should always be done with precaution in an ecosys-
tem management context: they should be interpreted as indications
of possible future changes. These uncertainties may however partly
be addressed by using multi-model procedures where the predic-
tions of a variety of different models are taken into account to
improve the robustness of the prediction. These methods are rele-
vant both in DM and in modelling of climate change scenarios
(Araujo and New, 2007; Jones et al., 2013). The further incorpor-
ation of dispersal dynamics and species interactions into DMs will
be specifically important to improve the robustness and reliability
of climate change impact predictions (e.g. Cheung et al., 2008).

Despite their relatively high level of uncertainty, DMs are among
the best available tools to forecast the possible effects of climate
change on benthic species distribution patterns and hence to steer
present-day ecosystem management. Predictions of the expected
changes in species distribution can be used inter alia to focus moni-
toring programmes towards the most sensitive regions or to identify
key indicator species for long-term climate change monitoring
(Cheung et al., 2012).

Recommendations
Distribution models provide valuable full-coverage information on
the distribution of marine benthic species, communities, and
related entities inhabiting an environment that is usually difficult
to assess and enable the prediction of distribution changes. On the
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one hand, DM enables ecosystem managers to utilize spatial infor-
mation that cannot be generated otherwise to a similar level of
spatial resolution. On the other hand, the level of uncertainty is cor-
respondingly high, and large-scale data for quality control are often
insufficient. Thus, although DM is considered to increasingly con-
stitute an essential tool for current and future ecosystem manage-
ment, careful usage and interpretation are essential when applying
the DM outputs in a management context.

1. Management approaches can only be successful if there is a
causal link between the management objective and the implemented
measure. However, the most commonly used statistical DM does
not necessarily identify cause–effect relationships, which are
crucial in a management context. Bayesian BNs is a promising
method which considers both correlative and causal relationships,
and provides good estimate of model uncertainty, (Stelzenmüller
et al. 2010). Its application to the marine benthic realm is however
rare up to now.

2. The statistical approaches used in DM are particularly effective
in spatial interpolation, where proxy environmental predictors can
be suitable to predict the present distribution patterns. However, for
spatio-temporal extrapolation, e.g. predicting species distributions
in a new area (e.g. early warning systems for invasive species) or time
(e.g. climate change studies), cause–effect relationships need to be
better understood. Therefore, corresponding predictions from cor-
relative DMs have to be used with precaution, and multi-modelling
approaches that incorporate models of species migration, combina-
tions of correlative DM with dynamic ecosystem models, and
spatially explicit population dynamics models will need to be devel-
oped (Franklin, 2010).

3. Potential causal environmental predictors are often not
even included in correlative DMs due to mainly the lack of data
availability. Especially for marine benthic ecosystems, some relevant
predictors are often only available at a local scale (e.g. bottom
water temperature, sediment characteristics), which hampers the
large-scale application of DM. The early warning approaches for
the assessment of the potential spread of non-indigenous species
are specifically data demanding and large-scale environmental data
are essential for these approaches. Initiatives such as Bio-ORACLE
(Tyberghein et al., 2012), MyOcean (Buongiorno Nardelli et al.,
2013), and MARSPEC (Sbrocco and Barber, 2013) are providing
the first step towards the availability of large-scale environmental
predictors, which are necessary for marine DM applications and
will undoubtedly enable further developments.

4. Often, mechanistic models are used to predict the physico-
chemical nature of the area that is then used as explanatory vari-
able(s) in statistical DM (or in cases used as expert judgement) to
describe or predict the biological response. The development of
mechanistic DM approaches based on functional traits, physiologic-
al constraints, and dispersal capacity is particularly appropriate to
address issues such as long-term sustainability of exploitation activ-
ities, evaluation of alternative rearing and management strategies,
risk of dystrophic crises and algal blooms, effects of range-shifting
and species, or even forecasting the impact of future climate
(Buckley et al., 2010; Elith et al., 2010), although costly to design,
calibrate, and validate. The prior use of correlative modelling tech-
niques can in turn guide and optimize the application of the mech-
anistic models by suggesting particular traits or processes to
consider and suggesting spatial limits of necessary runs (Vincenzi
et al., 2011).

5. One major drawback in using correlative DM is with regard to
the missing incorporation of biological factors (such as feeding

interactions, dispersal range, and migratory behaviour) into the
modelling procedure. Although some methods are available to
account for these factors, e.g. trophic interactions (Kissling et al.,
2012), the major scope for an increased knowledge of marine
benthic ecosystems is delaying a further progress in marine DM. It
is clear that more efforts including basic autecological research are
required to sufficiently cover the biological factors in DMs.

6. Biological Traits Analysis recently facilitated assessing the func-
tional diversity and roles of benthic species in marine ecosystems (e.g.
Bremner, 2008; Darr et al., 2014b). This type of approaches uses the
information on selected ecological traits expressed by species to char-
acterize the ecological functioning of the assemblages, and has been
highlighted as a valid approach in the assessment and management
of marine benthic systems (Bremner, 2008; Frid et al., 2008). The
combination of distinct relationships between species and both
abiotic and biotic predictors with species autecological capacity
(e.g. filtration rates) could help to model temporal and spatial ecosys-
tem functioning with high resolution accuracy. This approach
assumes that modelled distribution of benthic assets is expressed
not onlyasprobabilityof occurrence butratherasquantitative predic-
tions (e.g. abundance or biomass). Recent studies (Wei et al., 2010;
Vincenzi et al., 2011; Darr et al., 2014a) have demonstrated that the
combination of multivariate predictors and machine-learning algo-
rithms (e.g. Random Forest) is better when compared with conven-
tional regression models, especially when the aim is to model
quantitative response variable (species abundance, biomass, or
certain biological traits expressed in these units, potential yield of
aquaculture, etc.). Generally, these models are most useful for pur-
poses of spatial planning and identification of areas with different
degree of suitability, e.g. for farming or endangered species. New
case studies from different environments with application of these
methods are urgently needed, which will help to obtain more tech-
nical experience and improve model performance and efficiency for
management purposes.

In this review, it should be clear that despite the uncertainties and
limitations mentioned, DM plays an important role in marine eco-
system management and its potential applications are manifold.
DM is already very useful, will become even more useful in the
future as current weaknesses will be tackled with new technical
developments, but the application of DM in marine management
will always require scientific expert advice. Thus, generic standard-
ization and automated applications of DM for management pur-
poses cannot be recommended as the choice of DM methods and
prediction attributes need to be aligned with the specific manage-
ment objectives and applications (Figure 1). DM results should of
course be used with caution in decision-making by environmental
managers. Despite the increasing number of applications and the
improvement of the methods used, DMs still have their limitations
(Guisan and Thuiller, 2005), especially in bridging between the
managerial quest for simplicity and the integration of ecological
theory (Austin, 2002). This actually may stimulate further develop-
ment of DM to minimize this gap between management require-
ments and scientific integrity.
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and Hammond, P. S. 2008. Modelling habitat preferences for fin
whales and striped dolphins in the Pelagos Sanctuary (Western
Mediterranean Sea) with physiographic and remote sensing vari-
ables. Remote Sensing of Environment, 112: 3400–3412.

Pesch, R., Pehlke, H., Jerosch, K., Schröder, W., and Schlüter, M. 2008.
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