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ABSTRACT

The final goal of the study is the derivation of efficient time domain control strategies for the
absorption of water waves by the motion of rigid bodies. In this paper we focuse our attention on
the case of a very simple device, a 2D piston, in order to exploit the well known analytic
expressions of the potential as far as possible in the design of novel absorption laws.

We consider a semi-infinite two-dimensional wave tank closed by a mobile vertical plate. An
unsteady wave train generated at infinity impinges on this plate. The problem of dynamic wave
absorption consists in finding, in real time, the velocity to give to the plate in order that the radiated
and the reflected wave train should cancel each other. In the present work, the paddle is supposed to
be moved by an external mechanism in response to the dynamical part of the fluid force measured
on it.

In 1970, Milgram studied such a wave absorbing rotating plate, but the control system was based on
a wave height feedback. For his hinged paddle absorbing device, Salter (1979) used a force
feedback which included inertia and hydrostatic components.

In the present study, we first derive a frequency dependent transfer function between the optimal
velocity of the paddle and the total force for the case of steady time harmonic incident waves. As a
consequence of the linear approach we choose, the time domain paddle velocity leading to the
complete absorption of the incident wave train is obtained by convoluting the inverse Fourier
transform of this transfer function by the measured hydrodynamic force. Unfortunately, the impulse
response function of the ideal absorber derived that way is not causal; thus it cannot be used just as
it is as the control loop of a physical absorbing device.

In this paper, we suggest two causal non-ideal approximations of this ideal non-causal controller.
These time-domain absorbing relations differ in whether or not one knows a dominant frequency of
the incident wave train to be absorbed. Their performances are compared to the absorption
efficiency of the low frequency asymptotic Sommerfeld relation. Preliminary results of this study
were already presented in Maisondieu and al. (1993).

NOMENCLATURE
f= total hydrod. force (time domain) = Fourier transform of q(t)
h= impulse response function of the ideal K= transfer function of the

feedback controller feedforward loop
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i= complex unit; i2=-1 = added mass
k= impulse response function of the = damping coefficient
feedforward loop = Fourier transform of p(t)
p=  causal part of k(t) = frequency domain piston velocity
q=  even part of k(t) X,Y= spacial coordinates
u=  time domain piston velocity
t= time
F= total hydrod. force (freq. domain) o= coefficient of the approx. of q(t)
Fp= hydrod. force due to reflected potential Q1= incident wave potential
Fi=  hydrod. force due to incident potential b= reflected wave potential
Fr= hydrod. force due to radiation potential Or= radiated wave potential
=  transfer function of the 0= dominant frequency in
ideal feedback controller FDFF mode
Q= radian frequency

* denotes complex conjugate.
~ denotes the optimal regime, i.e 100% absorption in the frequency domain.

1.0 THE IDEAL 2D PISTON WAVE ABSORBER
1.1  frequency domain

Let ®yei2 be the complex Airy velocity potential of the incident left-going wave train (see Fig.1),
and @pelX the potential of the corresponding (right-going) reflected wave with @ the frequency.
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Flgure 1: principle of dynamic absorption

When a time harmonic motion is imposed to the paddle with a given velocity law: u(s) = ER{U.e"”’ } ,a
right-going wave train deriving from the radiated velocity potential ¢,¢i is generated in the basin.

The induced linearized hydrodynamic force acting upon the paddle surface may be simply derived
by integrating the dynamic pressure p=-¢, from the bottom (¥=-1) to the free surface (¥=0). The

radiation force then reads; Fre"” =[N@)+iM@W e  where N(Q) and M(©) are the well known
damping and added-mass coefficients.

In the linearized theory, the total velocity potentiel is the algebraic sum of the three above

mentionned components: @r=d;+®p+dx and the total force upon the pad-
dle:Fr e ={F1+ Fp+[N($)+i2M(U}e*

118



The complete absorption of the incident wave train requires the velocity U to be such that, at least at
a certain distance 4 from the paddle, the reflected waves and the propagating part of the radiated
waves cancel each other. Let us denote by U the optimal complex value (amplitude and time phase)
of the piston velocity U leading to this ideal result. Thus, for every given frequency £, we can
determine the complex transfer function H(if2) of the ideal wave-absorber controller which would
give access to the optimal velocity from the measured hydrodynamic force:
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Flgure 2: Force-to-Velocity transfer function of the ideal piston wave-absorber

1.2  Time domain

The real and imaginary parts of H(i<2) are plotted on fig. 2 above. This feedback controller being
linear and time invariant, the classical theory of LTI systems results in that its impulse response
function k(1) is the inverse Fourier transform of its ransfer function in the frequency domain. Then,
its output in the time domain a(¢) will be given by the following convolution integral:

()= j (DR - Ddr

where f(t) is the time varying hydrodynamic force. On figure 3, we have plotted A(1) and k*(1) which
are the inverse Fourier transform of respectively H(if2) and its complex conjugate:H*(if2). As one
can see, k(1) is "anticausal” (i.e h(t)=0; 20), while k#(t), which is by construction its symetric with
respect to the time variable, is causal.
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Figure 3: direct and retrograde impulse response functions of the ideal wave-absorber.

Refering to the convolution integral above, that means that the calculation of the optimal velocity
a(f) to be given to the paddle to achieve total absorption involves all the future values of the input
ftt), but none from the past ! In other words, we may always derive the transfer function of the
ideally wave-absorbing plate, but we cannot practically realize it.
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2.0 THREE CAUSAL APPROXIMATIONS OF THE IDEAL WAVE ABSORBER

2.1 Low Frequency Limit (LFL) mode

On figure 2, one can see that in the low frequency range (i.c 0sQsl.), the phase lag between force and
optimal velocity is negligible while the gain remains in the range: 1.51H(i)s1.2 .Thus, a very first
rough approximation of a time domain absorption relation between measured force and velocity
stands in the limit relation: ()= f(t) . This is nothing but the well known Sommerfeld relation
between local pressure and normal velocity [see e.g Orlanski (1976)], integrated from Y=-1 to ¥=0; it is
exact in the limit £ — 0. As a logical consequence, the performances of this absorption relation are
very goaod in this low frequency range, as we shall see later (fig. 6).

Decomposition of the transfer function: The inverse Fourier transform k(1) of the function K{(i€)
defined below can be shown to be the sum of a causal function p(1), and an even function of time g()
(fig. 4). Thus, introducing k(i) in the transfer relation we obtain:U = PG)U +Qu)U ~ H' (iDF ,

N(Q) - i2M(£2)
N(2) +iQM($2)

KG)=1+

3

hydrod.
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Flgure 5: decomposition of Ideal controller

In the time domain, assuming the fluid to be at rest for (<0, we have by inverse Fourier
transforming:

: Lod {
i(t) = [ pit - Di(Rdr+ [ gt - DT - [1 (1 - 1) f ()
0 0 0

The first two terms calculated from z¢) may be regarded, for the whole system, as a feedforward
control loop with a non-causal part Q (see fig.5) due to the symetry of ¢(¢) with respect to =0 (see
fig.4) ; the force feedback term is now causal due to the complex conjugation in the frequency
domain (4 «<#*). At that stage, the motion controller is not yet realizable, but a substancial step has
been made toward this goal with this decomposition. No approximation has been introduced, and
the instantaneous velocity defined by the above relation is always the optimal one in that sense that,
if we were able to compute it at time ¢ from the knowledge of the past, it would absorb 100% of any
incident wave train. We shall now propose two different causal approximations of ¢(1) and evaluate
their absorption efficiency.
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Flgure 4: impulse responses of the feedforward loop.

2.2 Purely Unsteady Feedback-Feedforward (PUFF) causal approximation.

The sharp shape of the even function q(r) around the origin (fig. 4) suggested us to approximate it by
a Dirac & function, and write: q(t) = a8(r). From energetic arguments, the weight a was set equal to
the surface under the curve g(¢) which is itself equal to 0(0). The absorption relation is now given
by :
1 ! {
u(t) = ———-[j plt-Di(v)dz- [A'(1-7) f(‘:)dt}

1-aly °
This absorption mode is said to be purely unsteady because, as the LFL mode, it does not require any
spectral knowledge of the incident wave train.

2.3  Frequency Dependent Feedback-Feedforward (FDFF) causal approximation.

In this second approach, the incident wave train spectrum was assumed to present 2 known
dominant frequency w. In that case, the coefficient & of the PUFF relation was tuned to the exact real
value Q(iw) of the frequency domain transfer function previously defined. The FDFF absorption
relation is the same as the PUFF relation above after the substitution: @+ Qiw),

3.0 RESULTS

These absorption relations were implemented in a "2D linearized numerical wave tank"
(Dommermuth and al 1988). At one end, a piston wavemaker generated a short wave train
consisting in a monochromatic harmonic wave modulated by a linear up and down ramp window.
The motion of the opposite piston end, initally at rest like the fluid itself, was deduced from the
absorption laws studied herein in response to the total hydrodynamic force. The measured wave .
amplitude absorption coefficients are plotted on fig. 6. They have to be squared in order to obtain
the corresponding energy coefficients.

It is clear from this figure that the purely unsteady feedback-feedforward method brings only a little
improvement with respect to the low frequency limit.

On the other hand, the FDFF control scheme give excellent results even in the high frequency range
as soon as one can identify a priori a dominant frequency in the incident wave train. This conclusion
agrees with the conclusions of preceeding studies about non radiating numerical boundary
conditions for unsteady water waves simulations. For broad banded incident spectrum, we are
convinced that a more efficient relation remains to be developped.

An experimental prototype of the device is being developped at LHN laboratory in a narrow wave
tank, in order to check the feasibility of this approach.
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Flgure 6: absorption efficiency (amp. ratio)
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