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Abstract:  
 
When a source-sink dipole forces a fluid on a -plane limited by a western boundary, the linear steady 
solution can be obtained analytically and consists of zonally elongated gyres that extend west of the 

forcing and close as western boundary currents. The nondimensional parameter 
(with the zonal velocity of the flow and the distance between the source and sink) is used to 
characterize the nonlinearity of the flow. When reaches 0.1, the numerical shallow-water solution 
shows that the configuration with the source to the north of the sink becomes unstable, while the 
reverse configuration remains steady. Indeed, that reverse configuration remains steady for much 
larger values of the nonlinearity parameter , and begins to share some of the characteristics of a 
pure inertial circulation. The asymmetry of the stability properties of the two configurations, also found 
in the laboratory experiments of Colin de Verdière [Quasigeostrophic flows and turbulence in a rotating 
homogeneous fluid, 1977], is rationalized herein through the stability properties of the zonal central jet 
that flows between the source and sink. We consider, in turn, (i) the Kuo’s [J. Meteor. 1949, 6, 105–
122] zero potential vorticity gradient necessary criteria (valid for an infinite zonal jet), (ii) enstrophy 
budgets and (iii) linear stability analysis of the mean flow. All three methods point out to the enhanced 
instability of the westward jet. We show that the transition regime has the characteristics of a super 
critical Hopf bifurcation.  
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1. Introduction 

 
The forcing of flows by sources and sinks has a long-standing place in geophysical fluid dynamics, 
since stretching of the background planetary vorticity readily induces relative vorticity. Hide (1968) 
discusses such flow behaviour in the presence of viscous dissipation on an f -plane. On a rotating 
sphere, the rotation vector is not parallel to the surface of the fluid, and new effects arise: theTaylor-
Proudman-Poincaré theorem states that a slowlymoving fluid column preserves its thickness in the 
direction parallel to the rotation axis. Therefore, when stretched/compressed by a source/sink forcing, 
such a fluid column must move towards the equator/pole to conserve its height, and fit between the 
top and bottom surfaces of the fluid (Schopp and Colin deVerdière 1997), the so-called Sverdrup 
dynamics in Oceanography. Furthermore, the Ekman pumping at the base of the Ekman layer 
transforms the wind shear stress at the sea surface into a source-sink forcing for the Ocean interior. In 
a laboratory experiment, Beardsley (1969) uses this property to simulate directly the large-scale wind 
stress distribution by rotating a rigid lid at a speed slightly different from the container. The use of 
localized sources and sinks to force flows on a β-plane originates from the Stommel et al. (1958) 
laboratory experiment where fluid is injected at the apex of a pie shape basin, mimicking the source of 
deep water. The free surface rises in the interior providing the upwelling demanded by the Stommel 
and Arons (1961) abyssal circulation theory. In response to the rise of the fluid surface, fluid columns 
stretch in the interior of the basin, which induces poleward motion towards the source. Because of this 
interior northward circulation, the return flow in thewestern boundary current may have a transport that 
exceeds that of the source. Here, the choice is made to study the fluid 
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Figure 1. Photograph (Colin de Verdière 1977), at steady state, of a laboratory experiment of a dipolar β-plane gyre in a rotating cylinder
tank (left). Schematic of the experimental set-up used in the following study (right). The bottom rises in the y direction to create the
ambient PV gradient in place of the planetary β-effect. The shallow/deep end of the tank plays the role of the high/low latitudes. Western
boundary currents converge to produce a laminar eastward jet that separates the source and sink. Notice the quiescent fluid east of the
forcing, and the oblong gyres extending towards the west. In the central region of the jet, some streamlines that are not purely horizontal
are also visible. They correspond to beads trapped in the bottom or top Ekman layers and show net fluid exchange from source to sink.
[Experimental parameters: the source (south) and sink (north) are separated by 2a = 8 cm, the tank diameter, depth, angular velocity
and bottom inclination are: L = 62 cm, H = 25 cm, Ω = 5.2 rad s−1, α = 11◦].

response to a localized dipole forcing in the form of a Dirac delta function, for a homogeneous flow on the
β-plane. The interior Sverdrup dynamics of such simple flows are described in Pedlosky (1996). Colin de
Verdière (1977) presents a laboratory experiment in which he considers the stability of such β-plane flows
in the presence of a western boundary. The flow behaviour depends strongly on the orientation of the
dipole in the North-South direction, a puzzling observation that is at the origin of the present paper. At
steady state, the dipole generates zonally-elongated β-gyres extending west of the forcing and closing at
the western boundary (figure 1). The Sverdrup balance occurs only locally above the source and sink, and
the fluid to the east remains motionless. When the source is to the north (configuration I: the central
jet between the source and sink is westward), the flow becomes rapidly unstable with increasing forcing.
On the other hand, when the source is to the South (configuration S: the central jet between the source
and sink is eastward), the flow remains stable up to very large amplitudes of the forcing [the nonlinearity
parameter U/(βL2) is O(1)], and the two gyres broaden when the forcing increases. An inviscid argument
given in Colin de Verdière (1977) highlights the difficulty of a westward current impinging on a western
wall to exit as an interior eastward zonal jet with quiescent fluid outside. Suppose that potential vorticity
is conserved and consider the evolution of relative vorticity along the path of a fluid parcel circulating in
the northern gyre in the unstable case. Take a parcel that initially lies just north of the line of symmetry.
It first moves westward in the central jet, then northward in the western boundary current and finally
enters the returning eastward jet. The parcel has gained negative relative vorticity when moving north
along the western wall. A vorticity conflict arises when the parcel joins the interior in the external bound of
the eastward jet, where positive relative vorticity is required. If the dissipation is too small to resolve this
conflict, a transition to unsteady flow is bound to occur. This vorticity conflict does not arise in the stable
configuration: a parcel in the external westward jet has negative vorticity that is removed as the parcel
moves south along the western wall. It can then join smoothly the central part of the eastward jet with
little relative vorticity as it must. Because the asymmetry of the two cases is so clear-cut in the laboratory
experiments, the present study aims to find out the causes of their different stability characteristics. Is the
primary instability located in the central jets, the external jets or the western boundary?
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Of course this laboratory configuration is far from realistic oceanic configurations, the closest being
perhaps Stommel (1982) proposal to interpret the β-plume distribution of the Helium 3 tracer, west of
the Pacific Rise (where it is injected by the hydrovents). At the same time, real fluid experiments with
their infinite resolution are ideal tools to test the hydrodynamics of finite resolution numerical codes, their
weak points being the difficulty of quantitative measurements. Laboratory and numerical experiments are
complementary and the combination allows building up confidence in the analysis of flow experiments.
Here, we shall explore the dynamics of the entrance and exit of zonal jets in western boundary current
regions, the mixing of potential vorticity in outflows regions, and the inertial stability of zonal jets in the
interior, all situations which are obviously important for ocean circulation modelling. In addition, the use
of localized forcing in the form of a Dirac delta function suppresses the role of southern and northern
boundaries. Away from the forcing, the response of the flow is made of zonally-elongated gyres with zonal
jets. Meridional flow are found only at forcing longitudes and at the western boundary. Therefore, we argue
that this chosen configuration is the simplest one in order to study the dynamics of zonal flows in the
presence of a western boundary using a combination of laboratory and numerical experiments. Since we are
discussing de facto the Green function of the oceanic circulation on a β-plane (albeit in the homogeneous
case), we can expect this over-simplified case to be relevant to more general forcing distributions.
The paper is organized as follows. First, we present the governing equations, the experimental setup,

and the numerical characteristics of our simulations (section 2). We refer to the nondimensional potential
vorticity (PV) equation and introduce an important nondimensional parameter, that we use to interpret our
simulations. In section 3, a linear analytical solution is derived and compared to the laboratory experiments.
It gives us some insights on the circulation observed at small Rossby numbers, and is used to validate
our numerical model. Nonlinear numerical simulations are then performed (section 4). The intriguing
asymmetry observed in the laboratory experiments also occurs in the numerical simulations. We use the
numerical solutions to get a better knowledge of the circulation, understand the mass transfer from the
source to the sink, and infer the role played by the generated eddies (section 5). We then look for an
intrinsic dynamical explanation of the observed asymmetry (section 6). We investigate on the spatial
origin and type of the instability found in our experiments. We carry out a linear stability analysis of the
mean state obtained from the integration of the nonlinear equations to find out the spatial structure of
the most unstable mode. Finally, we summarize and discuss our results (section 7).

2 Governing equations, numerical setup, and nondimensional analysis

2.1 Governing equations

Let us consider the dynamics of a rotating, hydrostatic, homogeneous fluid in a rotating square tank of
width L (figure 1). The bottom of the tank rises in the y-direction, and the flow is forced by a local dipole,
a mass source and sink. The shallow-water equations are:

∂th+∇·(hv) = IV

(
δ(x− xsource)− δ(x− xsink)

)
, (1a)

∂tv + (v·∇)v + f0k × v = −g∇η +D, f0 = 2Ω. (1b)

Here v = (u, v) is the horizontal velocity vector, u and v the zonal (x-direction) and meridional (y-direction)
velocity component, h the water column thickness, f0 = 2Ω the Coriolis parameter, Ω the rotating table
angular velocity, g the constant for gravity, D the horizontal momentum dissipation, k the vertical unit
vector, x(x, y) the horizontal position vector, ∇ the horizontal gradient operator, δ the Dirac function, and
IV the rate at which fluid is locally injected in/pumped out of tank. To ensure conservation of mass within
our domain, the pumping and injection rates are of equal intensity. We set them symmetrically relative
to y = 0 axis to respect the geometrical constraints of our domain and ensure that the anticyclonic and
cyclonic gyre have similar shape. The positions of the source and sink are the following: xsource = (xs,+a),
xsink = (xs,−a). The x-position of the dipole is kept constant in our setup: xs = 2/3L, while sensitivity
experiments are carried out varying 2a, the distance that separates the source from the sink. The water
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Table 1. Parameters of the experiments. L: width the square tank; H: average depth; α: angle of the bottom slope with the

horizontal; τ : rotating period; IV: rate at which fluid is injected in/pumped out at the source/sink; 2a: distance between the

source and the sink. To limit spurious numerical effects, the fluid is injected in/pumped out over an area Asource/sink, rather

than at a single grid point. λ is a fundamental nondimensional parameter describing the linear analytical solution.

H L α τtank f0 IV ν r Asource/sink 2a λ = βTL/(2r)
(cm) (m) (◦) (s) (s−1) (ml min−1) (m2 s−1) (s−1) (cm2) (cm)

36.93 0.5 7 8 1.57 [1, 400] 10−6 6 · 10−3 1 [5, 40] 22

column thickness h is expressed as:

h(x, y) = H + η(x, y)− sy, (2)

with s = tanα the bottom slope, η the surface displacement, and H the average depth at rest. With this
choice of topography, the y axis is orientated towards the high latitudes, i.e. the north for a northern
hemisphere setup (see Greenspan 1969 for a presentation of the topographic analogue to the planetary β).

2.2 Numerical setup and parameters

Equations (1a,b) are integrated in time using the Miami Isopycnal Coordinate Ocean Model (MICOM)
(Bleck and Boudra 1986, Bleck et al. 1992) in a shallow-water version that has been adapted for this
study. As in Herbette et al. (2003), the nonlinear terms of the momentum equations are solved with a
fourth-order centred finite difference scheme. Dissipation is ensured through linear friction (parametrizing
the bottom Ekman layer) and Newtonian harmonic dissipation:

D = −rv + ν∇2v, (3)

with r and ν the coefficients for the linear bottom friction and water kinematic viscosity. To stay as close
as possible to the laboratory experiments, we set the numerical viscosity coefficient to the molecular value
of sea-water: ν = 10−6 m2 s−1. The linear bottom friction coefficient is set to r = 6 × 10−3 s−1, a value
of the order of the inverse of the spindown time due to the control of the geostrophic interior by the
bottom Ekman layers (Greenspan 1969). The introduction of viscous effects introduces a subtle choice for
the numerical boundary condition at the wall. In the following, because we wish to model laminar viscous
flows in a tank, we use the no-slip boundary condition. Some sensitivity experiments have also been carried
out with the slip lateral boundary condition. The general characteristics of the flow have not been affected.
In order to show the exchange of water masses between the two gyres, a passive tracer is also injected

at the source. The evolution of the tracer concentration obeys the following equation:

∂t(hC) +∇·(hCv) = IV

(
Csource δ(x− xsource)− Cδ(x− xsink)

)
, (4)

with C(x, t) the local concentration at time t, and Csource = 1 at the source. Equation (4) is solved using
the same flux corrected transport scheme that is used to solve the continuity equation (Zalesak 1979).
Parameters of the experiments are summarized in table 1. Horizontal resolution is 2 mm and time step
2 × 10−4 s. Each experiment is run for at least 400 rotating periods, i.e. 100 periods more than it takes
for the over whole energy and potential vorticity to reach a statistical equilibrium.

2.3 Potential vorticity equation and nondimensional analysis

The potential vorticity, hereinafter referred to as PV, often occurs to be a very useful quantity in the
analysis of geophysical rotating flows. In the absence of diabatic forcing and dissipation, fluid particles
conserve their PV. Using the quasi-geostrophic framework, PV can be inverted to infer the circulation of
the flow (Hoskins et al. 1985). Nevertheless, PV is not a good indicator of the circulation within eddies,
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because it is often dominated by the ambient PV related to the variation of the Coriolis parameter with
latitude or topography. In the following, we prefer to use potential vorticity anomaly, hereafter referred to
as PVA or Q in the equations (Morel and McWilliams 2001, Herbette et al. 2003, 2005):

PV =
ζ + f0

h
, PV A ≡ Q = H

(ζ + f0
h

− f0
H

)
, (5a,b)

with ζ = k·∇ × v the relative vorticity. PVA gives better insights on the dynamics of the flow. It has
the same conservation property as PV and can be used as a good proxy for the strength and polarity of
the circulation (Herbette et al. 2004). Anticyclonic/cyclonic circulations are thus mostly associated with
negative/positive PVA. Additionally, in the case of weak Rossby numbers and weak topographic slope,
PVA relates directly to the quasi-geostrophic expression of PV1. The equation for the local evolution of
PVA, is derived by taking the curl of (1b) and using (1a):

(
∂t + v·∇

)
Q = H

[
− r

h
ζ +

ν

h
∇2ζ − IV

(ζ + f0
h2

)(
δ(x− xsource)− δ(x− xsink)

)]
. (6)

In the limit of no dissipation (D = 0) and no forcing (IV = 0), fluid particles conserve their PVA.
Injecting/pumping out fluid at a source/sink generates positive/negative vertical velocities, which creates
negative/positive PVA, respectively associated with anticyclonic/cyclonic circulation. In the following
experiments, the vortex stretching terms associated with the surface elevation are small: f2

0L
2/(gH) ≃

4 × 10−2, with L = L/2. Therefore, the flow behaves as in the rigid lid experiments of Colin de Verdière
(1977). If the bottom slope is also small (s ≪ H/L), the expression for the PVA becomes:

Q ≃ ζ + βT y, with βT =
f0s

H
.

For small Rossby numbers, small topography and rigid lid, the governing equation for Q reduces to the
classic barotropic quasi-geostrophic vorticity equation (Greenspan 1969):

∂tζ + u∂xζ + v∂yζ + βT v = − rζ + ν∇2ζ − f0IV
H

(
δ(x− xsource)− δ(x− xsink)

)
, (7)

where ζ = ∇2Ψ, and Ψ = gη/f0 the stream function. The latter equation is nondimensionalised using
L as a length scale, U as a horizontal velocity and introducing classic length scales that emerge when
considering the dynamics of a basin gyre, respectively the Stommel (δS), the Munk (δM ) and the inertial
(δI) boundary layer thickness (Stommel 1948, Munk 1950, Charney 1955):

δS =
r

βT
, δM =

( ν

βT

) 1

3 , δI =

√
U

βT
. (8)

When the vortex stretching terms are neglected, eight physical parameters govern the flow: the average
fluid depth at rest H, the length of the tank L, the bottom slope α, the Coriolis parameter f0, the distance
separating the source and sink 2a, the rate of volume injection and pumping IV, the linear bottom friction
coefficient r, and the molecular viscosity ν. They can be reduced and combined into seven nondimensional
parameters, of which three relate to the geometry of the experimental setup (H/L, α, 2a/L) and four

1For small variations of the layer thickness, the shallow-water expression of the PV writes as

Q = (ζ + f0)(1−
η

H
+

sy

H
),

and for small Rossby numbers it becomes the familiar quasi-geostrophic expression of PV:

QQG = ζ − f0
η

H
+ f0

sy

H
.
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to the dynamics of the flow δS/L, δM/L, δI/L, (f0IV)/(βTUHL2). The latter has been used in previous
studies dealing with wind-driven gyres to estimate the horizontal velocity (Marshall 1984, Moro 1988,
Cessi et al. 1990, Fox-Kemper and Pedlosky 2004):

U =
f0IV

HL2βT
. (9)

Note that (9) is just a Sverdrup scaling of the meridional velocity in which IV could be be interpreted
as the scale of the integrated Ekman pumping over an ocean basin. Because the zonal velocity found in
our experiments is much larger than this, in order to characterize our simulations, U is instead estimated
taking the maximum amplitude of the mean zonal jet obtained after numerical integration. Equation (7)
is finally re-written in its nondimensional form as follows:

δ2I
L2

(
∂tζ + u · ∂xζ + v · ∂yζ

)
+ v = − δS

L
ζ +

δ3M
L3

∇2ζ −
(
δ(x− xsource)− δ(x− xsink)

)
. (10)

We choose to stay in the regime of parameters tested in the laboratory experiments of Colin de Verdière
(1977) and carry out some sensitivity experiments varying the intensity of the forcing and the distance
between the source and the sink. The values chosen for L, f0, α, r, ν (table 1) ensure that the widths of the
Stommel (δS) and the Munk (δM ) boundary layers are similar and well resolved within our simulations:
δS = 1.24 cm, δM = 1.28 cm. Several choice can be made for the typical length scale L. To measure
the degree of inertia of our simulations and the importance of the nonlinear terms in (10), we use the
source-sink distance 2a as the length scale to compute the Rossby number of the vorticity equation:

Rov =
δ2I
L2

=
U

βL2
=

U

4βTa2
. (11)

Rov is used to differentiate and interpret our experiments. It also provides an estimate of the ratio of the
meridional gradient of the central jet’s relative vorticity over the ambient potential vorticity, and therefore
relates to the Kuo (1949) criteria for barotropic instability of zonal jets.
The nondimensional parameters of the different experiments are summarized in table 2. According to

the chosen pumping/injection rate, the width of the inertial boundary layer varies roughly between 0.9 cm
and 12.0 cm. In addition, for each set of parameters, two experiments are considered, one with the source
located poleward of the sink (configuration I), and one with the source located southward of the sink
(configuration S).

3 Linear analytical solution

3.1 Analytic: the β plume solution with a western boundary

For weak pumping and injection rate, fluid velocities and free surface elevations are small enough to
consider a steady linear analytical solution. Equation (10) may be linearised for small ratios of the width
of the inertial and Munk boundary layers over the width of the Stommel layer: (Rov, δ

3
M/L3) ≪ δS/L.

After defining a nondimensional streamfunction Ψ for the horizontal flow, (10) can be re-written as follows:

∇2Ψ+ 2λ
∂Ψ

∂x
= −

(
δ(x− xsource)− δ(x− xsink)

)
, (12)

2λ =
L

δS
, ∂xΨ = v, ∂yΨ = −u, ∇2Ψ = ζ. (13)
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Table 2. Numerical experiments run with the no-slip lateral boundary conditions in configuration I and S. We report the maximum amplitude

of the time-average zonal velocity within the central jet (xsource − 0.18 m< x < xsource − 0.08 m). EDDY and FRIC refer respectively to the

role played by the intergyre s’ eddy vorticity fluxes, and bottom friction in dissipating the input of vorticity within each gyre.

Configuration I Configuration S
IV 2a max[|ujet|] Rov Gyre Vorticity max[|ujet|] Rov Gyre Vorticity

(ml min−1) (cm) (mm s−1) Balance (mm s−1) Balance

1 10 0.02 0.004 0.02 0.004

5 10 0.11 0.02 0.11 0.02

10 10 0.23 0.04 0.23 0.04

30 10 0.68 0.13 EDDY ≃ 0% 0.64 0.12 EDDY ≃ 0%
FRIC ≃ 60% FRIC ≃ 60%

50 10 1.06 0.20 EDDY ≃ 1% 1.07 0.20 EDDY ≃ 0%
FRIC ≃ 55% FRIC ≃ 58%

100 10 1.65 0.32 EDDY ≃ 19% 2.22 0.43 EDDY ≃ 0%
FRIC ≃ 41% FRIC ≃ 61%

100 20 1.68 0.08 1.39 0.06

100 30 1.12 0.02 0.43 0.01

200 10 2.86 0.54 EDDY ≃ 29% 4.33 0.83 EDDY ≃ 1%
FRIC ≃ 34% FRIC ≃ 64%

Figure 2. Linear analytical solution of the sea surface elevation (η = f0/g Ψ, left), PVA (∇2Ψ + βT y, middle), and velocity vectors
(u = −∂yΨ, v = ∂xΨ, right) for a dipolar gyre forced by a localized source and sink in configuration S. IV = 10 ml min−1, 2a = 10 cm,
Rov ≃ 0.04. The localized source and sink respectively force an anticyclonic and cyclonic gyre, both with intensified western boundary
current. In configuration I, (not shown), the linear analytical solution is the exact anti-symmetric relative to the y = 0 axis [see equation
(22)]. This regime is valid for Rov ≾ 0.1. The distribution of tracer, from the numerical integration, at t = 400 τtank, is superimposed
on the right panel. Thin solid/dashed contours are for positive/negative values. Contour interval is 0.04 µm for η and 0.04 s−1 for PVA.
Colour version online.

We look for the Green functions G(x, x′) of (12) solution of:

∇2G+ 2λ
∂G

∂x
= δ(x − x′). (14)
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Equation (14) can be transformed to a Helmholtz equation by writing G(x,x′) = exp
(
−λ(x−x′)

)
G(x,x′):

∇2G − λ2G = exp
(
+λ(x− x′)

)
δ(x − x′). (15)

We can switch to polar coordinates (R, θ) with the origin at the source point (x′, y′): R =√
(x− x′)2 + (y − y′)2. Equation (15) becomes:

R2 ∂
2G

∂R2
+R

∂G
∂R

−R2λ2G = exp
(
+λ(x− x′)

)
δ(R). (16)

This is a modified Bessel equation of the second kind whose solution bounded at infinity is:

G(R) =
1

2π
K0(λR). (17)

This leads to:

G(x,x′) =
1

2π
exp

(
−λ(x− x′)

)
K0

(
λ
√

(x− x′)2 + (y − y′)2
)
. (18)

This so-called β plume solution is the response to a δ function on an infinite β-plane (Pedlosky 1996).
However, this solution does not satisfy the no-flow condition at the western and eastern boundaries.
Assuming an infinite domain in the y-direction and a western boundary with no normal flow, the Green
function G2(x, x

′) may be found by using the method of images (Morse and Feschbach 1953). Let us
consider the case of an interior source of intensity unity located at point (x′, y′), and its symmetric image
with respect to the western boundary, a sink of intensity Iim at point (x′im, y′im). G2 is just the linear
superposition of the solutions obtained considering the source and its image separately:

G2(x,x
′) =

1

2π
exp

(
−λ(x− x′)

)
K0

(
λ
√

(x− x′)2 + (y − y′)2
)
. . .

− Iim
2π

exp
(
−λ(x− x′im)

)
K0

(
λ
√

(x− x′im)2 + (y − y′im)2
)
. (19)

To find Iim and x′im, we require that the normal velocity at the western boundary vanishes : G2(xw, y) = 0
with xw = −L/2. This leads to:

x′im = 2xw − x′, y′im = y′, Iim = − exp
(
−2λ(xw − x′)

)
. (20a,b,c)

The final Green function solution of (14) with a western boundary is:

G2(x,x
′) =

1

2π
exp

(
−λ(x− x′)

)(
K0

(
λ
√
(x− x′)2 + (y − y′)2

)
−K0

(
λ
√

(x+ x′ − 2xw)2 + (y − y′)2
))

,

(21)
and the final solution of (10), with a source and a sink, is:

Ψ(x, y) =
1

2π
exp

(
−λ(x− xsource/sink)

)(
K0

(
λ
√

(x− xsource)2 + (y − ysource)2
)
−K0

(
λ
√

(x+ xsource)2 + (y − ysource)2
)

−K0

(
λ
√

(x− xsink)2 + (y − ysink)2
)
+K0

(
λ
√

(x+ xsink)2 + (y − ysink)2
))

. (22)
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The dimensional form of Ψ is obtained by multiplying (22) by (f0IV)/(Hr) and replacing λ by its di-
mensional form λ∗ = βT /(2r). The sole parameter λ governs the solution and is large in geophysical
applications; here λ ≃ 22 taking L = L.

3.2 Description of the linear solution and comparison with the numerical solution

Equation (22) provides an analytical expression for the streamfunction Ψ of a double-gyre circulation forced
by a localized source and sink on a β-plane. This solution is only valid with one western boundary. But given
the asymptotic decay of the solution east of the Dirac delta forcing, this is also an approximate solution in a
closed basin if the eastern boundary is far enough, that is for large λ. The corresponding quasi-geostrophic
potential vorticity anomaly, velocity components and free surface elevation are shown in figure 2. The
analytical solution looks very much like the circulation obtained in the laboratory experiments of Colin de
Verdière (1977) for Rossby number up to Rov ≃ 0.1 in configuration I, and Rov ≃ 0.5 in configuration S.
As expected, the sea surface elevation rises around the source, and lowers around the sink, which creates
respectively an anticyclonic and cyclonic circulation. The PVA field confirms this general picture of the
flow, with a negative/positive patch of PVA around the source/sink. The iso-lines of PVA stay mostly
parallel to the iso-depths, with values increasing towards the shallow depths. The circulation is shaped
into two basin oblong symmetric gyres. Intensified western boundary currents close the circulation. Around
the centre of the basin, a strong zonal jet separates the two gyres. This jet flows westward in configuration I
and eastward in configuration S. Note that for the linear solution, interchanging the position of the source
and sink just reverses the flow within the gyres, but does not change the shape of the gyres, nor their
intensity. We run the numerical model for 400 rotating periods for weak pumping/injection rates in a range
of IV = [1, 10] ml min−1 (Rov ≃ [0.004, 0.04]) with a source and a sink separated by 10 cm. For the weak
inertial flow considered here, a steady state is reached in less than 100 rotating periods. That steady state
(not shown) is very similar to the analytical solution (figure 2). For the spatial resolution that is considered
(δx = 2 mm), there is less than 5% discrepancies1 when the pumping/injection rate is IV = 5 ml min−1,
and less than 10% discrepancies when it reaches IV = 10 ml min−1. Our ability to represent accurately the
dissipation processes taking place in the Stommel layer (6 grids points in the western boundary layer) is
crucial. The main discrepancies occur in a very tight region situated around the source and sink, and to
a lesser extent near the western boundary where viscous effects start to influence the numerical solution.

4 Exploring the nonlinear regime and the transition from a stable to an unstable oscillating
solution

For rates higher than 30 ml min−1, the intensity of the circulation increases, so as the width of the inertial
boundary layer δI . When the latter reaches the width of the Munk and Stommel boundary layer, the
linear analytical solution loses its validity, in particular near the western boundary. Hence, we explore this
regime carrying out numerical experiments with forcing rates varying from IV = 30 ml min−1 (Rov ≃ 0.1) to
IV = 400 ml min−1 (Rov ≃ 1.5). The different simulations and their associated parameters are summarized
in table 2. The steady state is deduced from plotting time series of volume integrated Kinetic Energy
(KEV ) and Potential Vorticity (QV ) (figure 3). For moderate nonlinear flows (Rov ≾ 0.2), interchanging
the position of the source and sink has no impact, neither on the mean level of kinetic energy of the
double gyre system, nor on the total PV embedded within each gyre. As expected, KEV increases with
increasing pumping/injection rate, so as the intensity of the gyre’s circulation. Above some threshold
value of the forcing, KEV and QV start to oscillate around a mean value and the symmetry between

1The root mean square discrepancy, e, between the analytical and the numerical solution is estimated as follows:

e = 100

√
1∫

D dA

∫
D

(ηth(x, y)− ηnum(x, y))2

max[|ηth(x, y)|, |ηnum(x, y)|]2
dA,

ηth and ηnum are the theoretical and numerical free surface elevation. Grid points with η < 0.1 µm have not been considered when
computing the spatial integrals over the horizontal domain D.
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Figure 3. Time series of volume integrated kinetic energy (black, left y-axis) and potential vorticity (red, right y-axis) for configuration I
(first two columns) and S (last two columns). IV = 30 ml min−1 (first and third column) and IV = 100 ml min−1 (second and fourth
column). The x-axis is graduated in number of rotating periods. PV is integrated over each half of domain to infer the total PV embedded
in the anticyclonic (dashed) and cyclonic (solid) gyre. Oscillations appear in configuration I when the forcing exceeds IV = 50 ml min−1,
while a steady state is still reached in configuration S when IV = 150 ml min−1. From left to right: Rov=0.13; 0.32; 0.12; 0.43. Colour
version online.

the two configurations is lost. Simulations in which the source is south of the sink (configuration S) are
characterized by a higher level of both kinetic energy and circulation. Instantaneous maps of PVA and
tracer fields (figure 4) show that the presence of these oscillations are the signature of coherent eddies.
In configuration I, the central zonal jet becomes a succession of anticyclones and cyclones, with blobs of
tracer being trapped in the former. The period of the oscillations shortens slightly as the flow becomes
more inertial, from 232 s (58 inertial periods) when IV = 50 ml min−1, to 198 s (49 inertial periods) when
IV = 100 ml min−1, and 109 s (27 inertial periods) when IV = 400 ml min−1. In addition, the passive
tracer now disperses all over the domain. This contrasts with the linear regime where the passive tracer
is found to be mostly collocated around the source after 400 rotating periods. The presence of eddies
certainly explains why the level of mean kinetic energy and the gyre’s circulation is lower in this particular
setup (figure 3), part of the energy input by the forcing being dissipated through the generation of eddies.
In configuration S, a quasi-stationary steady state is still reached at IV = 200 ml min−1 (Rov ≃ 0.8).
Maps of relative vorticity anomaly (not shown) actually reveal the presence of small-size-eddies embedded
in the external westward jets. Nevertheless, their intensity remains much smaller than in configuration I.
The gyres keep an oblong shape as they stretch towards the west, even for the most intense forcing tested
(IV = 400 ml min−1, Rov ≃ 1.5), and remain clearly separated one from each other by a zonal strip of
zero PVA. In addition, the passive tracer never enters the cyclonic gyre. At high forcing (Rov ≿ 0.8),
the solution tends towards an inertial run-away type of solution (Fofonoff 1954), where inertia always
dominates dissipation and any increase of the input of vorticity results in an increase of the circulation.
These results are consistent with the laboratory experiments of Colin de Verdière (1977). In the latter, a
transition from a laminar stable to an unstable oscillating regime also occurs above some threshold value
of the forcing in configuration I, and an inertial run-away type of solution is still observed for very large
values of the vorticity Rossby number (Rov ≿ 5) in configuration S. In the range of parameters tested
numerically, we have not been able to obtain regimes with Rov greater than 2.0.

5 Dynamics of the mean flow and intergyre exchanges of vorticity

5.1 Description of the mean flow

The presence of two western intensified gyres separated by a zonal jet is still visible when considering the
mean flow, time-averaged over more than 300 rotating periods (figure 5). The jet that separates the two
gyres flows towards the east/west when the source is south (configuration S)/north (configuration I) of the
sink. The external jets obviously flow in the opposite direction. They also appear to be much weaker than
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Figure 4. Instantaneous maps of PVA (first and second column) and tracer concentration (third and fourth column) at t = 400 rotating
periods in configuration I (top row) and S (bottom row). IV = 30 ml min−1 (first and third column) and IV = 100 ml min−1 (second and
fourth column). 2a = 10 cm. The input of negative/positive PVA at the source/sink appears clearly. Eddies are visible thanks to their
signature in PVA in configuration I. They are generated in the zonal westward jet that separates the two gyres. In configuration S, the
nonlinear solution stays stable. Note the transfer of the passive tracer from the anticyclonic to the cyclonic gyre when the source is located
north (top row) of the sink. Top row, from left to right: Rov=0.13; 0.32; 0.13;0.32. Bottom row, from left to right: Rov=0.12;0.43;0.12;
0.43. Thin solid/dashed contours are for positive/negative values, and contour interval is 0.04 s−1. Colour version online.

the central jet (figure 6). Despite these similarities, there are some striking differences in the mean state,
depending on whether the source is north or south of the sink. The mean circulation appears to be much
more intense in simulations with a convergence of the western boundary currents, i.e in configuration S
(figure 5, bottom row). When IV reaches 200 ml min−1, the flow becomes inertial (Rov ≿ 0.8), and the
recirculation of the gyres becomes twice as intense in configuration S than in configuration I, showing
evidence of an inertial run-away type solution. In addition, within configuration S, gyres stick to an
oblong shape even at a high forcing rate, with no overshooting of the western boundary currents. In
configuration I, western boundary currents overshoot towards high latitudes, creating a ”loop” recirculation
zone (Ierley 1987, Cessi et al. 1987, Chassignet 1995). This is associated with a counter current of weaker
intensity that flows opposite to the western boundary current itself, slightly offshore. The signature of
these currents is shown in the x-profile of the mean western boundary currents (figure 6). The velocity is
brought towards zero in a thin layer that has roughly the width of the Munk boundary layer, δM = 1.24 cm.
This leads to strongly sheared western boundary currents with a strong signature in relative vorticity and
PVA: note the band of negative/positive PVA, sitting against the western boundary, just adjacent to the
cyclonic/anticyclonic gyre (figure 5).

5.2 The mean flow vorticity dynamics

A better understanding of the dynamics can be inferred by considering the vorticity equation (7), whose
terms are shown in figure 7 for the two set-ups and a moderate inertial flow (IV = 50 ml min−1, 2a = 10 cm,
Rov ≃ 0.2). In our source/sink experiments, the input of vorticity is spatially limited, and advection
redistributes the negative/positive vorticity injected at the source/sink around the anticyclonic/cyclonic
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Figure 5. Time-average PVA (first and third column), meridional profiles (second and fourth column) of Q(y) (black line, middle axis)

and its derivative ∂yQ(y) (red line, top and bottom axis) in configuration I (top row) and S (bottom row). IV = 30 ml min−1 (first
and second column), IV = 100 ml min−1 (third and fourth column), 2a = 10 cm. Positive (solid) and negative (dashed) contours of the
stream function Ψ obtained after inverting the vorticity field are superimposed onto the PVA panels. Contour range extend in between
±8α × 10−5 m2 s−1 with a α × 10−5 m2 s−1 interval; α = IV/Iref , Iref = 100 ml min−1. Q and ∂yQ are averaged zonally over the
interior of the domain (xsource − 0.18 m < x < xsource − 0.08 m). Top row, from left to right: Rov=0.13; 0.13; 0.32; 0.32. Bottom row,
from left to right: Rov=0.12; 0.12;0.43 0.43. Colour version online.
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Figure 6. Time-average zonal (first and third column) and meridional (second and fourth column) velocity in configuration I (first two
columns) and S (last two columns). IV = 100 ml min−1, 2a = 10 cm. u(y) is averaged zonally over the interior (xsource − 0.18 m < x <
xsource−0.08 m). v(x) is plotted nearby the western boundary at y = ±0.10 m. The black-thick line is the result of a nonlinear numerical
simulation, whereas the red-thin line is the theoretical profile deduced from equation (22). Note the presence of a counter circulation
that takes place near the western boundary, slightly offshore, emphasizing the presence of a recirculation pattern in configuration I. This
overshooting of the western boundary currents is not reproduced in the linear analytical solution (not shown). In the central jet, the
linear analytical solution is similar to the numerical solution, even for nonlinear flows. From left to right: Rov=0.13; 0.32; 0.12; 0.43.
Colour version online.
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gyre. This vorticity is expelled from the region of the forcing and then redistributed over the entire gyre
by the mean flow, first by the westward jets, then by the intensified western boundary currents, and
finally by the eastward jets. During that path, fluid columns lose and gain some relative vorticity, partly
from advection across the f0/h contours, in particular within the intensified western boundary currents,
and on the very near eastern side of the source and sink. Nevertheless, when integrated over a defined
mean streamfunction contour, the contributions of both the βT v and the mean vorticity advection term
cancel (Fox-Kemper and Pedlosky 2004). Hence, the input of vorticity ends up being compensated by a
combination of the viscous effects, bottom drag, and intergyre eddy vorticity fluxes (Marshall 1984, Lozier
and Riser 1990, Fox-Kemper 2005). To investigate the respective contribution of bottom friction, viscous
dissipation, and intergyre eddy vorticity fluxes to the PV balance of each gyre, the different terms of (7)
are integrated over the shallow and deep half of the tank and the results normalized according to the
input of PV at the source/sink (f0IV/H). The y = 0 axis is taken as the mean separation line between
the anticyclonic and cyclonic gyre. Results are summarized in table 2 in percentage of the PV input. For
moderate forcing (Rov ≾ 0.2), the input of vorticity at the source-sink is mainly balanced by the friction
and viscous dissipation. Nevertheless, for intense flows in the case of divergent western boundary currents
(configuration I), the intergyre eddy vorticity fluxes play a role in balancing the vorticity input. Their
action takes place within the westward flowing central jet that separates the two gyres, and results in
a decrease of the absolute circulation within each gyre. In this regime, the input of vorticity is mainly
dissipated through intergyre eddy vorticity fluxes (not shown). The magnitude of the latter increases in
magnitude (table 2) and extends westward when the flow becomes more inertial.

Figure 7. Time-average terms of the vorticity equation (7) in configuration I (top row) and S (bottom row). IV = 50 ml min−1,

2a = 10 cm, Rov ≃ 0.2. Bottom friction (−rζ, first column), viscous dissipation (ν∇2ζ, second column), divergence of the mean

vorticity fluxes (−div(ζv), third column), and divergence of the eddy vorticity fluxes (−div(ζ′v′), fourth column). Note the absence of
eddy vorticity fluxes in the simulation in which the anticyclonic gyre is located south of the sink. Thin solid/dashed contours are for
positive/negative values, and contour interval is 0.06 s−1. Colour version online.
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6 Generation and dissipation of eddies: origin and mechanism

Above a threshold value of the forcing (IV ⪰ 30 ml min−1, Rov ⪰ 0.1), in configuration I, the amplitude
of the perturbations, here measured as the total eddy kinetic energy and enstrophy of the system, grows
as the forcing increases and the eddy dynamics becomes predominant (not shown). In configuration S,
perturbations also start growing, but for a much higher threshold value (IV ≿ 150 ml min−1, Rov ≿ 0.5).
For the range of forcing tested, their amplitude, both in kinetic energy and enstrophy, remains an order of
magnitude less than in configuration I, and the intensity of mean flow always exceeds that of the eddies.

6.1 Origin and dissipation of eddies

Figure 8. Time-average terms of the enstrophy equation (23) in configuration I for IV = 50 ml min−1, 2a = 10 cm, Rov = 0.2. Bottom

friction (−rζ′2, left), viscous dissipation (ν∇2ζ′2 , middle), divergence of the eddy vorticity fluxes across the mean-vorticity contours

(div(ζv′ζ′), right). A time-average is performed over more than 500 rotating periods, corresponding to more than 60 oscillations in the
unstable regime. Units are in s−3. In configuration S, the enstrophy only becomes significant when IV exceeds 150 ml min−1. Small-
amplitude eddies then start to appear in the external jets. Thin solid/dashed contours are for positive/negative values. Contour interval
is 1.0 s−3 in the range [−6.5, 6.5] s−3. Colour version online.

We first try to locate in space the growth of the instability. The latter may either come from intrinsic
instabilities of the zonal jets and/or the western boundary currents or from the forcing itself. Because the
generated eddies have a strong signature in relative vorticity, their growth and dissipation can be inferred
from the equation of evolution of enstrophy, i.e. ζ ′2 = (ζ − ζ)2 (Rhines and Holland 1979, Rhines 1979,
Marshall 1984, Lozier and Riser 1990):

< ∂ζ′2

∂t > +1
2 < v·∇ζ ′2 > + < ζ ′v′·∇ζ > + < ζ ′∇·(v′ζ ′) > = − < ζ ′2 ∇·v > . . .

T1 T2 T3 T4 T5

− < ζ ′
(
f0 + ζ

)
∇·v′ > − < rζ ′2 > + < νζ ′∇2ζ ′ > .

T6 T7 T8

(23)

Here, ζ and v stand for the vorticity and velocity vector of the mean flow, ζ ′ and v′ are the relative vorticity
and velocity perturbations. We apply a time-average operator over 60 periods of oscillations (hereafter
represented by the symbol < · >), so that the first order perturbations terms cancel. The different terms
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of (23) all contribute locally to the variation of enstrophy, either by redistributing spatially, dissipating,
or increasing the amplitude of the perturbations themselves. The spatial structure of the dominant term
for the generation of enstrophy, T3, is linked to the eddy flux of vorticity across the contours of mean
vorticity. T3 is found to be responsible for the growth of enstrophy within the zonal westward jets above
a threshold value of the forcing (figure 8). That value varies whether the source is located north or south
of the sink. In configuration I, i.e. in the simulations with the westward jet confined in between the two
gyres, this threshold value is in between IV = 30 ml min−1 (Rov = 0.1) and IV = 50 ml min−1 (Rov = 0.2).
T3 is then found to increase in magnitude as IV increases. In configuration S, the threshold value is about
five times higher, and the growth rate several order of magnitude weaker. T7 and T8 are linked to the
dissipation of the perturbations by bottom friction and viscosity. As expected, T7 and T8 behave as a sink
of enstrophy. We find that perturbations are mostly dissipated in the central zonal jet and do not reach
the western boundary (figure 8).

6.2 Sensitivity to the source/sink distance: effect on barotropic instability

The above analysis suggests that the growth of perturbations in our double-gyre system is linked to the
instability of the westward zonal jets. A zonal barotropic jet can only be unstable if the PV gradient
vanishes somewhere (Kuo 1949, Pedlosky 1987):

∂y

(
−∂yu(y) + βy

)
= 0, somewhere in the flow. (24)

Sensitivity experiments varying the intensity of the forcing (figure 5) and the distance between the source
and sink (figure 9) reveal that the growth of eddies is always associated with the fulfilment of equation (24)
in the westward central jet, whereas the jet remains stable when the latter criteria is not satisfied. Increasing
the intensity of the source-sink dipole, either by increasing IV or decreasing 2a amplifies the magnitude
of the PV gradient associated with the jet confined in between the two gyres, and therefore facilitates
the fulfilment of equation (24), provided that the sign of this gradient is opposite to β, i.e in the case of
westward zonal jets. In configuration I, when the transition from a stable to a unstable oscillating regime
occurs for moderate inertial flows, the fulfilment of the Kuo criteria by the linear analytical solution
provides a good estimate of the bifurcation. In configuration S, despite the criteria is fulfilled as soon as
IV ≃ 75 ml min−1, instabilities in the external jets are only seen for IV above 150 ml min−1. The position
and PV structure of the jets in the analytical and numerical solution then differ substantially. Note that
we have also found some PV gradient reversals within the western boundary currents. Nevertheless, this
reversal has never led to the generation of energetic eddies.

6.3 Linear stability analysis

In order to investigate the type of bifurcation that occurs when the circulation shifts from a steady to
an oscillatory regime as the nonlinear parameter Rov is increased, we perform a linear stability analysis
(LSA) of the mean states. Equations (1) are first linearised for perturbations X ′ from a steady or mean
state X (X ′=X-X), where X is composed of the state variables (hi,vi) of the system, i being a spatial
index. The LSA consists in computing the eigenvalues ω and eigenvectors of this linear system:

∂tX
′ = JX ′ = ωX ′, (25)

where J is the Jacobian matrix depending on the mean state X. The latter is computed by time-averaging
the numerical solution over 5000 s, which corresponds roughly to 60 oscillation periods in the case of the
oscillating regime (figure 3). We only look for the 30 leading eigenvalues in terms of growth rate ωr, i.e the
real part of ω [ ωr = ℜ(ω)]. In fact, these eigenvalues capture the large scale eigenvectors that are relevant
for our problem. The remaining part of the spectrum has finer scale. Hence, it is strongly damped through
the scale-selective viscosity. We use an iterative Arnoldi method in Krylov subspace for the computation of
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Figure 9. Instantaneous maps (t = 400 rotating periods) of PVA (left), tracer distribution (middle), and profiles of Q(y) and its derivative

(right) in configuration I (top row) and S (bottom row) for IV = 100 ml min−1, 2a = 20 cm. Q(y) (black thick) and ∂yQ(y) (red thin)

are averaged zonally over the basin interior xsource − 0.18 m < x < xsource − 0.08 m. The dashed-blue line represents ∂yQ(y) derived
from the analytical solution. Rov = 0.08 in configuration I (top row) and Rov = 0.06 in configuration S (bottom row). Thin solid/dashed
contours are for positive/negative values, and contour interval is 0.04 s−1. Colour version online.

the eigenvalues and eigenvectors as provided in ARPACK (Lehoucq et al. 1998). Given the dimension of X
(∼ 250× 250× 3), computing the Jacobian matrix explicitly would require too much memory. Instead, we
integrate the tangent linear model for a given time τ . Several tests have been performed and have shown
robust results for values of τ of the order of 1 s. This time is large enough to filter out the gravity waves,
and short enough to resolve accurately the topographic Rossby waves that are responsible for the observed
oscillations. ARPACK provides the eigenvalues (exp(ωτ)) and eigenvectors of the so-called propagator
M(τ), from which we compute the Jacobian eigenvalues ω:

X ′(t = τ) = M(τ)X ′(t = 0) = eJτ X ′(t = 0) = eωτ X ′(t = 0). (26)

The spectrum of the eigenvalues ω = ωr ± iωi is computed for increasing values of the forcing in config-
uration I and 2a = 10 cm (figure 10, top left). The results agree with the integrations of the nonlinear
model: i) all eigenvalues are damped (negative real part) when the forcing is below a threshold value, here
IVc = 47 ml min−1 (Rov ≃ 0.2); ii) there is a single eigenvalue with a positive real part that corresponds to
an oscillation of period 200 s (≃ 50 inertial periods), similar to the unstable mode found in the nonlinear
integration. We isolate that mode and plot the variation of its eigenvalue for different amplitudes of the
forcing (figure 10, bottom left) The growth rate switches from negative (damped perturbation) to positive
(growing perturbation) value when IV reaches a threshold value. The period of the oscillation (2π/ωi)
shortens slightly as IV is increased from 45 to 400 ml min−1. The spatial structure of the eigenvectors (fig-
ure 10, right) corresponds to a Rossby wave travelling westward. The latter is intensified in the westward
central jet, i.e. the region previously identified as barotropically unstable. We have also applied the LSA
to mean states resulting from configuration S. Results (not shown) have confirmed a threshold value of the
forcing around IVc = 150 ml min−1 (Rov ≃ 0.5) for the growth of an unstable mode, and a perturbation
intensified in the external westward jets.
The LSA allows us to characterize the bifurcation that occurs when the forcing is increased. Near the

threshold value of the regime transition, the period of oscillation of the unstable mode remains constant
while its growth rate switches from a negative to a positive value (figure 10, bottom left). For a large
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range of forcing (up to 100 ml min−1), the oscillation continues to behave very much as in the linear
regime, i.e. with a period and spatial structure very similar to the unstable linear eigenvector. Only the
finite amplitude of the oscillation makes it a nonlinear process. This behaviour suggests that the regime
transition is linked to a supercritical Hopf (pitchfork) bifurcation. For a simple system obeying a Hopf
bifurcation, near the transition regime, the square amplitude of the perturbation should grow linearly
with the forcing anomaly IV -IV c (Strogatz 1994). We have computed the time-average volume eddy kinetic

energy (EKEV) and enstrophy (ζ ′2V ) near the transition regime in our numerical experiments, for IV in
between 30 and 50 ml min−1 (not shown). The threshold is slightly lower than the one given by the LSA
(IVc ≃ 32 ml min−1), and the amplitude of the perturbation increases slower than the one predicted by
the theory. These differences could come from the fact that we are dealing with a dynamical system with
more than just one degree of freedom.
The LSA provides an ideal framework where the mean state and the perturbations are perfectly sepa-

rated: We take advantage of knowing exactly the spatial structure of the most unstable perturbation to
rationalize its growth and dissipation by performing an energy budget. Because the flow considered in our
simulations is characterized by small Froude numbers and weak free surface deviations, we only focus on
the volume integrated kinetic energy KEV : the latter is found to be two order of magnitude larger than the
potential energy. After performing a Reynolds decomposition into mean and perturbation, the expression
for KEV writes as follows:

KEV =

∫
D
h

(
u2 + v2

2

)
dA =

∫
D
(h+ h′)

(
(u+ u′)2 + (v + v′)2

2

)
dA (27)

=

∫
D
h

(
u2 + v2

2

)
dA+

∫
D
h

(
u′2 + v′2

2

)
dA+

∫
D
h′

(
uu′ + vv′

)
dA . (28)

Equation (28) that suggests the volume integrated eddy kinetic energy EKEV cannot be restricted to the
second term. Nevertheless, practically, computing these terms for the eigenvectors shows that the third
term is more than 106 times smaller. Therefore, we define the depth integrated eddy kinetic energy as:

EKE = h

(
u′2 + v′2

2

)
(29)

In the weakly nonlinear regime, the latter is linked to the growth of the most unstable mode. After some
algebra, its equation of evolution reads:

< ∂tEKE >= < EKE∇ > + < EKEr > + < EKEν >, (30)

where EKE∇, EKEr and EKEν are the respective contributions of advection, friction, and viscous dissi-
pation:

EKE∇ =− hv·∇
(
u′2 + v′2

2

)
− hv′·∇

(
uu′ + vv′

)
, (31)

EKEr =− 2rh

(
u′2 + v′2

2

)
, (32)

EKEν =νh
(
u′∇2u′ + v′∇2v′

)
. (33)

Note that we show only the quadratic terms that have a significant contribution to the global average (all
the others have also been computed but have contributions 103 times smaller than the ones shown). We
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use the notation < · > for time-average over one period of oscillation T = 2π/ωi:

< · >=
1

T

∫ t+T

2

t−T

2

.(t′) dt′. (34)

For the oscillating modes found through the LSA, eigenvalues come as a pair of complex conjugates
ω = ωr± iωi, as well as the eigenvectors X

′ = Xr± iXi, and the associated solution in the real space reads:

X ′(t) = ℜ{(Xr + iXi) exp[(ωr + iωi)t]} = [Xr cos(ωit)−Xi sin(ωit)] exp(ωrt). (35)

We assume that the amplitude (exp(ωrt)) varies on a time scale τ = 1/ωr much larger than T , so that
the first order terms of the oscillating perturbation cancel and the quadratic terms can be estimated as
follows:

< X ′Y ′ > (t) =
1

T

∫ t+T

2

t−T

2

X ′(t′)Y ′(t′) dt′ ≃ XrYr +XiYi
2

exp(2ωrt). (36)

The spatial structure of the leading terms of (30) is shown in figure 11 for a forcing of +100 ml min−1 in
configuration I. The region where the nonlinear source term is mostly positive, westward of the source and
sink, clearly agrees with the barotropic instability criteria and the enstrophy budget performed earlier on
the nonlinear oscillation. In addition, after scaling the leading terms in the perturbations kinetic energy
budget by twice the total kinetic energy, and summing them all together, we are able to retrieve the exact
growth rate found by the LSA:

< ∂tEKE >

2 < EKE >
=

< EKE∇ + EKEν + EKEr >

2 < EKE >
= ωr. (37)

The contribution from the nonlinear term is clearly the source term for the oscillation: +8.86×10−3 s−1,
balanced by bottom friction: −6.00×10−3 s−1 and viscosity: −2.15×10−3 s−1; their sum gives +7.118×
10−4 s−1, very close to ωr= +7.113 × 10−4. In addition, we have computed the eddy PV fluxes associated
with the unstable mode for mean states under various forcing amplitude: as expected, their structure is
exactly the same as the ones computed in the nonlinear experiments (not shown).

7 Summary and discussion

This work revisits theoretically and numerically the laboratory experiments of Colin de Verdière (1977),
in which a mass source-sink dipole is used to force a double zonally-elongated gyre on a β-plane with a
western boundary. For the first time, a linear analytical solution of a simplified double-gyre system with
intensified western boundary currents closing the circulation is derived. Its robustness to the degree of
nonlinearity of the flow is tested numerically using the MICOM shallow-water model. The nondimensional
parameter Rov = U/(4βa2) (with U the maximum zonal velocity of the flow and 2a the distance between
the source and the sink) is used as a measure of the nonlinearity of the flow. Sensitivity experiments to the
relative position of the source and sink, and to the intensity of the dipole, either by varying the amplitude
of the mass injection and pumping or the source-sink distance, confirm the findings of Colin de Verdière
(1977): i) when the source is north of the sink (configuration I), the flow becomes unstable as soon as Rov
reaches 0.1; ii) when the source is south of the sink (configuration S), the flow remains stable until much
larger values of Rov (≃ 0.5), and the flow then begins to share some of the characteristics of a purely
inertial flow.
We analyse the stability properties of the flow by considering the point of view of Kuo (1949)’s instability

criteria, enstrophy budgets, and linear stability analysis (LSA). All three methods converge to attribute
the asymmetry observed in the stability of the two configurations to the growth of an unstable mode
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Figure 10. Linear stability analysis. a) Spectrum of the leading eigenvalues ω = ωr± iωi in configuration I for increasing values of IV and
2a = 10 cm (top left). The mean flow promotes one single oscillatory eigenvector, whose growth rate increases from negative to positive
values, while its period (T = 2π/ωi) decreases from 300 s (no forcing), to 235 s (at the bifurcation) and 200 s (for IV = 100 ml min−1).
b) Leading eigenvalue (real and imaginary parts) and nonlinear oscillation pulsation as a function of IV in configuration I (bottom left).
We compare the imaginary part of the fastest growing mode (ωi, black +) with the nonlinear oscillation pulsation (2π/T , blue o) only
known after the bifurcation (green dashed). c) Eigenvector of the fastest growing mode in configuration I for IV = 100 ml min−1 and
2a = 10 cm (right). The oscillation period is 192 s and the growth rate 1406 s−1. Thick line: zero value; dashed lines: negative values;
solid lines: positive value (amplitude is arbitrary). The two phases of the layer thickness are separated by a quarter period and evolve
as: PHASE 1 → - PHASE 2 → - PHASE 1 → PHASE 2 . . . The topographic Rossby wave propagates westward and is amplified by the
barotropic instability that occurs within the westward jet, in between the source and sink. Colour version online.

intensified in the westward jets. Indeed, the Kuo (1949)’s criteria, based on the necessity to have an
inversion of the PV gradient somewhere in the flow, can only be met within the westward jets whose
relative vorticity gradient opposes the ambient topographic PV gradient, βT . It is satisfied for less intense
forcing in configuration I than in configuration S, because the central westward jet is more sheared than
the external ones. Budgets of eddy kinetic energy (computed from the unstable mode given by the LSA)
and enstrophy (computed from the numerical solution) show that the perturbations are damped in the
westward jets before they reach the western boundary.
The novelty of the experimental setup is that the fluid is forced locally as compared to wind-driven gyres

where the forcing is distributed over the entire basin. Indeed, the analytical solution is the Green function
of the barotropic β-plane wind-driven gyre problem with a western boundary. The circulation which is
free almost everywhere, results from advection of vorticity injected solely at the source and sink, and
compensation by advection of fluid columns across the ambient PV gradient. For weakly inertial flows, the
balance of vorticity is achieved by Ekman friction and viscous dissipation. When the flow becomes more
inertial, eddies are generated through barotropic instability of the westward jets. They provide a route
towards dissipation of the input of vorticity before it enters the western boundary layers. In addition,
in configuration I, they contribute significantly to the irreversible exchange of water masses between the
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Figure 11. Energy budget of the leading eigenvector for the simulation corresponding to IV = 100 ml min−1 and 2a = 10 cm in
configuration I. Nonlinear eddy kinetic energy source term EKE∇ (top left); dissipation by bottom friction EKEr (bottom left); dissipation
by viscosity EKEν (bottom right); eddy kinetic energy growth rate (top right). Contributions to the EKE budget are scaled by twice
the total EKE, such that they sum up to the growth rate of the unstable mode. Note that the color scale varies according to the panel.
The black circles show the source and sink location. Thin solid/dashed/dotted contours are for positive/negative/zero values. Contour
interval is 0.03 s−1 for EKE∇ (top left), 0.001 s−1 for ∂tEKE (top right), 0.01 s−1 for EKEr (bottom left) and EKEν (bottom right).
Colour version online.

anticyclonic and cyclonic gyres (Lozier and Riser 1990, Fox-Kemper 2005).
One puzzling result from our experiments is the absence of eddies and meanders in the eastward jets,

in particular in the regions of separation of the western boundary currents. In our simulations, in config-
uration S, the tongues of PV that emerge from the western boundary mix together to create a region of
homogeneous PV equal to zero, which prevents the possibility to have PV gradients reversals in the east-
ward jet. This mechanism contrasts with the homogenization of PV occurring all around each gyre due to
shear enhanced mixing, as described in Rhines and Young (1982). Here, there is homogenization of the PV
coming from the anticyclonic and cyclonic reservoir at the convergence of the western boundary currents.
The strict anti-symmetry in our forcing probably explains why tongues of PV advected in the eastward
jets exactly compensate each other (Moro 1990, Cessi 1991, Haidvogel et al. 1992). Ierley (1987) and Ier-
ley and Young (1991) also emphasize the possibility for viscous instabilities to take place in the viscous
western boundary layer provided the Reynolds number was above some threshold value. Those instabilities
are hypothesized to trigger the generation of mesoscale eddies at the separation of the western boundary
currents (Chassignet 1995, Verron and Le Provost 1991). However, the presence of bottom friction in our
simulations and the lack of resolution in a viscous sub-layer (l =

√
δIν)/U ≃ 4 mm for IV = 100 ml min−1

and 2a = 10 cm) (Pedlosky 1987) may explain why we never find the growth of eddies in the western
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boundary currents. The presence of enhanced friction in our simulations may also explain why, in our con-
figuration S (Romax

v ≃ 2), we do not find such intense inertial flows such as the ones observed in Colin de
Verdière (1977) [Romax

v ≃ 5]. Because in our simulations, increasing IV above 400 ml min−1 (Rov > 1.4)
leads to the interaction of the double-gyre with the lateral boundaries, and sometimes to a numerical
instability near these boundaries, we have not been able to conduct such experiments. That interaction
could enhance the meridional shear of the external jets and favour instability. With this perspective in
mind, it will be necessary to set up the experiments again to pursue the quantitative comparison.
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