


Supplementary Figure 1. Effect of magnesium concentration on *Pab* DNA polymerase synthesis efficiency. Primer extension was measured on a short single-stranded linear DNA template (87 mer) annealed to a 5' fluorescently-labeled primer (33 mer) as shown in Figure 2. Reactions contained 0.5 units (1.35 pmoles) of *Pab*polB (A), 0.05 units of *Pab*polD (4.3 pmoles) (B), and increasing concentrations of MgCl₂. Lane 1: 87 mer template; Lane 2: 33 mer primer. The reaction products were analyzed on a denaturing 12% polyacrylamide gel.

Supplementary Figure 2.

Effect of magnesium concentration on slippage efficiency during primer extension by \it{Taq} (A) and \it{Pfu} (B) DNA polymerases. Primer extension reactions were carried out with radiolabelled nucleotides as described in the Material and Methods on 25 ng of template at 60 °C. Reactions contained increasing concentrations of MgCl₂ and 0.1 and 0.5 units of \it{Taq} and \it{Pfu} DNA polymerases, respectively. Lanes 1-9 contained 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 15 and 20 mM MgCl₂. P, H and S refer to parental, heteroduplex and stalled molecules, respectively.