Autophagy in Pacific oyster, *Crassostrea gigas*

1. Is autophagy flux present and functional in Pacific oyster?

2. Could autophagy protect Pacific oyster against *Vibrio aestuarianus* infection?

3. Could autophagy protect Pacific oyster against OsHV-1 infection?

Autophagy in Pacific oyster, *Crassostrea gigas*

Pieerrick Moreau¹, Kevin Moreau², Morga Benjamin³, Delphine Tourbiez¹, Marie-Agnès Travers¹, David Rubinsztein² and Tristan Renault¹

¹ Research Institute for Oceanography and Fisheries (Ifremer), Laboratoire de Génétique et Pathologie des Mollusques Marins, Roscoff, France.
² Department of Clinical Sciences, Cambridge Institute for Medical Research, Cambridge CB2 0YE, United Kingdom.
³ University of Auckland, New Zealand. *Corresponding author: tristan.renault@ifremer.fr* Phone: 0033 5 46 76 26 10 Fax: 0033 5 46 76 11

Since 2008, the oyster aquaculture industry, which mainly relies on the production of the Pacific oyster, *Crassostrea gigas*, has been affected by mass mortality outbreaks in France and Europe. Two pathogens have been associated with mass mortality outbreaks, the virus *ostreid herpesvirus 1* (OsHV-1) and the bacterium *Vibrio aestuarianus*. A study was carried out in order to show that the autophagy pathway is present and functional in Pacific oysters. Moreover, interactions between oyster pathogens (OsHV-1 and *V. aestuarianus*) and autophagy were explored. Results suggested that autophagy as a conserved intracellular pathway can play a key role in innate immunity in the Pacific oyster.

A body of proof supporting autophagy flux in Pacific oyster

Autophagy may play a protective role during OsHV-1 infection

- LC3-II detection increases during viral infection
- Autophagy modulation is related to OsHV-1 infection susceptibility

Autophagy may protect oysters from *Vibrio aestuarianus* infection

- LC3-II detection decreases during bacterial infection
- Autophagy modulation is related *V. aestuarianus* infection susceptibility

Conclusions

- Results suggest that autophagy is induced upon OsHV-1 infection and unmodified (inhibited with NH4Cl) upon *V. aestuarianus* infection.

<table>
<thead>
<tr>
<th>NH4Cl</th>
<th>OsHV-1</th>
<th>V. aestuarianus</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Autophagy could be interpreted as protective pathway against OsHV-1 and *V. aestuarianus* infections

Perspectives

Mortality outbreaks are often observed during spring and summer where concentrations of algae, which represent the main source of energy for oysters, are important.

- It is well known that starvation is a potent stimulus of autophagy. It would be of interest to analyze if there is a correlation between food supply, autophagy and mortality outbreaks.

Fig A. Phylogenetic trees of ATG proteins

Fig B. Bacterial DNA quantification 20h post infection

Fig C. Western blot of protein LC3 20h post infection

Fig D. Transmission electron microscopy

Fig A. Monitoring of oyster survival during OsHV-1 infection

- LC3-II detection increases during viral infection
- Autophagy modulation is related to OsHV-1 infection susceptibility

Fig B. Monitoring of oyster survival during *V. aestuarianus* infection

- LC3-II detection decreases during bacterial infection
- Autophagy modulation is related *V. aestuarianus* infection susceptibility

Fig C. Western blot of protein LC3 20h post infection

Fig D. Quantification Western blot of protein LC3 20h post infection

Fig B. Bacterial DNA quantification 20h post infection

Fig C. Western blot of protein LC3 20h post infection

Fig D. Quantification Western blot of protein LC3 20h post infection

Fig D. Transmission electron microscopy

Fig D. Transmission electron microscopy