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Characterizing the space–time variability in spatial distributions as well as understanding its drivers is basic to designing robust spatial management
plans. As a prerequisite, we analyse here how this variability relates to population dynamics in conjunction with environmental conditions. For that,
spatio-temporal statistical approaches are needed but seldom used in fisheries science. To fill this gap, we showcase the usefulness of the method of
empirical orthogonal functions (EOFs). Guidelines are given to apply the method on a series of gridded maps as derived from fisheries survey data-
series that now span over decades. The method is applied to the series, 2000–2012, of the spatial distributions of European anchovy in the Bay of
Biscay at spawning time. Across the series, the EOF decomposition allowed to identify three main types of spatial distributions. One type corre-
sponded to an extended distribution, another to a restricted distribution in core areas, and the third to a very coastal distribution. The coastal
spawning distribution corresponded to a low population growth rate as it was never followed by a large recruitment in the subsequent year.
We did not attempt to explain the spatial patterns per se but the drivers of change from one type of distribution to another. Stock size and
fish size as well as bottom temperature and water column stratification were the covariates that controlled the variability in the spatial distributions
over time. Further, the spatial distribution at spawning time related to recruitment in the following year, meaning that variability in the spatial
distribution of spawning affected population dynamics. The typology of maps based on EOF decomposition summarized this spatial variability
into spatial spawning configurations, which may serve spatial planning.
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Introduction
Habitats represent the environmental conditions that are favourable
for an organism (e.g. for its presence, growth) and thus habitat maps
provide the space–time envelops of suitable conditions. Statistical
regression has been widely used to model the habitats of the presence
of species (Guisan and Zimmermann, 2000; Austin, 2007) or fish
populations (Planque et al., 2011; Le Pape et al., 2014). But although
closely related, habitats and spatial distributions are different con-
cepts. Even if habitats are potentially suitable, their occupation
will rely on the ability of the fish to colonize them with varying
density. Thus, to link habitats (suitable conditions) to fish
spatial distributions, one needs to consider the mechanisms of
habitat occupancy. These mechanisms involve factors internal to
the population (e.g. abundance, demography, behaviour) as well

as interactions in the ecosystem (e.g. trophic interactions, connect-
ivity across the life cycle). We shall here focus on the former factors.
Density-dependent habitat selection models have been used to
explain how population spatial distributions vary with overall
population abundance in different ways (MacCall, 1990; Shepherd
and Litvak, 2004). Also physiological and behavioural mechanisms
have been invoked to explain the re-colonization of past habitats
during the rebuilding phase of a stock after its collapse (Petitgas
et al., 2010). Thus, we shall here consider that variability in spatial
distributions results from variability in environmental conditions
and internal population behaviour (Figure 1).

Further, we hypothesize that the spatial distribution of a popula-
tion at spawning time is not independent of its demographic dy-
namics as it affects subsequent recruitment and therefore there is
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a feedback (Figure 1), implying that a particular spatial spawning
configuration is associated with a given recruitment regime. Such
hypothesis is perhaps more relevant to short-lived species, which
show greater variability in their spatial and demographic dynamics.
Indeed, sensitivity analyses using coupled physical–biological
models demonstrate the importance of initial spawning conditions
on larval dispersion and survival for European anchovy (Huret et al.,
2010; Ospina-Alavrez et al., 2013). Here the hypothesis is tested
by identifying particular types of spawning spatial distributions
in fisheries survey dataseries. We suggest a space–time method for
doing so, that extracts principle spatial modes in the distribution.
Further, we showcase how the method offers the possibility to
relate these principal spatial modes to covariates obtained at differ-
ent spatial resolutions.

To characterize and understand the variability of fish spatial dis-
tributions over time, this study intends to showcase the usefulness of
applying the space–time decomposition method of empirical or-
thogonal functions (EOF: Preisendorfer, 1988) on fisheries survey
dataseries. In contrast to habitat models where focus is on explaining
the mean distribution and its potential change with external drivers
only, we here focus with EOFs on characterizing the observed vari-
ability around the mean and explaining it with both external and
internal population drivers.

In a fisheries management context, characterizing the variability
in spatial distributions and understanding their consequences is im-
portant for at least two reasons. Marine protected areas (MPA) are
often designed based on habitats of particular life history stages
(Le Pape et al., 2014). However, variation in the spatial occupancy
across years may generate uncertainty in the temporal effectiveness
of an MPA as the fish may colonize other areas than the MPA
(van Keeken et al., 2007). Further, indicators of spatial distri-
butions have been shown to relate to population parameters (e.g.

recruitment, demography, mortality) over a large range of stocks
(Woillez et al., 2006). Thus, the characterization of how spatial
distributions vary over time will add robustness to population
diagnostics as well as spatial management plans.

EOFs have long been used in meteorology and physical ocean-
ography to decompose the time and space variability of a time-
series of maps. Fisheries survey series now span more than 10
years and thus offer sufficient space–time information on the
spatial distributions of fish populations to consider the use of
EOFs for analysing the variability in their spatial distributions.
Here, we apply this approach to the time-series of European
anchovy (Engraulis encrasicolus) spatial distributions at spawning
time to extract the main features of variability in spatial occupancy.
On that basis, we identify major spatial configurations of the
spawning population. We then relate these to year-class strength
in the subsequent year. We also explain the spawning configura-
tions with population and environmental parameters. In doing
so, we showcase how EOFs provide a methodological framework
to understand the ecology of population dynamics in its spatio-
temporal dimensions.

Material and methods
Method of empirical of orthogonal functions
The method of EOF (Preisendorfer, 1988) is a particular principal
component analysis (PCA) applied to a series of gridded maps,
which allows to decompose the space–time (residual) variability
in the time-series of maps into principal spatial modes and their
amplitudes. The decomposition is a linear factorization of spatial
components (eigenvectors) that are constant in time and am-
plitudes (principal components) that are variable in time. The vari-
ability around the mean map is thus modelled as the sum of

Figure 1. Schematics of the variability in spatial distributions. Environmental and population conditions affect habitats and behaviour,
respectively, which influence spatial distribution. In return, the spatial organization of the population also affects its dynamics and thus feeds back
into the loop of drivers affecting population behaviour.
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time-invariant spatial components that are weighted by their time-
varying amplitudes:

Z(t, s) = �Z(., s) +
∑q

m=1

Um(t)Em
T (s), (1)

where:
Z(t,s) is the variable under study at time t and spatial

coordinate s, �Z(., s) the time average at each coordinate s, Em (s)
the eigenvectors or EOFs (principal spatial modes) scaled to
unity, Um(t) the EOF amplitudes (principal components) scaled to����
lm

√
, where the lm are the q non-null eigenvalues associated with

the EOFs.
To achieve the decomposition, the method proceeds as follows.

Z(t,s) is a matrix containing the gridded maps as line vectors with
similar spatial order, thus having t ¼ 1, . . ., N lines and s ¼ 1, . . .,
K columns. Each grid cell must be valued. For missing information,
interpolation is needed or use of a coarser grid for data averaging. In
each grid cell, the cell time average is subtracted, which results in a
matrix of anomalies on which to perform the EOF decomposition:
X(t, s) = Z(t, s) − �Z(., s). Matrix S ¼ XTX/N is then the covariance
in space over time and matrix Sa ¼ XXT/K the covariance in time
over space. A principal components analysis of matrix S (or equiva-
lently Sa) leads to computing the eigenvalues lm, eigenvectors
Em(s), and principal components Um(t).

To retain the most meaningfulEOFs andinterpret their spatial pat-
terns, we used the eigenvalues (overall variance accounted for by the
components) and in addition the “local” explained variance (Schrum
et al., 2006; Woillez et al., 2010). The “local” explained variance at lo-
cation s associated with EOF of order m, hm(s), is the proportion of
variance across time that Um(t) and Em(s) explain at that location:

hm(s) =
Var[Ym](s)∑

m
Var[Ym](s)

,

where Ym = Um(t)ET
m(s).

When the map of local variance shows subregional patterns, the
EOF explains variability in these areas and a biological interpretation
can be looked for. Further, when the patterns in the EOF (higher/
lower values) can be superimposed on that in the local explained vari-
ance, the EOF isdynamically relevant in timeand the EOF decompos-
ition well suited to capture the space–time variability in the series of
maps. Note that the sign of Ym(t,s) depends on the combination of the
EOF and its amplitude: it is positive when Em(s) and Um(t) are of the
same sign and negative when they are of opposite signs.

Fish survey data
The survey series considered was the yearly spring acoustic survey
series PELGAS, 2000–2012, undertaken by IFREMER on board RV
“Thalassa” over the French shelf of the Bay of Biscay in May. The
survey design is made of parallel transects, orientated perpendicular
to the isobaths and regularly spaced 12 nautical miles (n.m.) apart,
from 43.58N to 48.88N and from coast (10 m depth) to the shelf
break. Along the transects, 38 kHz acoustic records are collected con-
tinuously by day, at 10 knots (Doray et al., 2010). Opportunistic
pelagic trawl hauls are performed depending on the echotraces and
provide information on species proportions, length distributions,
weight, and age. During night-time, conductivity–temperature–
depth (CTD) profiles are performed on a regular grid of stations
(Figure 2), providing measurements of environmental condition.

The anchovy population is surveyed in May at its peak spawning
time and its distribution is contained inside the surveyed area (ICES,

2010, chapter 8). European anchovy is mature at age 1 at its first
spring and spawning starts in all length groups when surface tem-
perature is above 138C, corresponding in the Bay of Biscay to the
onset of seasonal thermal stratification (Motos, 1996). Thus, the
surveyed population corresponds to the spawning adults.

In the Bay of Biscay, because of the multispecies context and
variable schooling characteristics (Massé et al., 1996), the school
echotraces cannot be identified to species from their acoustic
properties alone with the echosounder currently in use for the as-
sessment. Echotraces are identified to species at a coarser spatial
resolution based on pelagic trawl hauls, which are performed
over several n.m. to capture aggregations of echotraces. The com-
bination of the trawl haul data with the acoustic data allow to
convert acoustic backscatter into fish abundance by species
(Simmonds and MacLennan, 2005, section 9; Doray et al.,
2010). The resulting data are abundance (tonnes) by species
n.m.22 for each n.m. along the survey track. The survey series con-
tains rare but very high values, which may mask the regional pat-
terns of variability. There is uncertainty in these very high values
because of uncertainty in allocating acoustic backscatter to
species (measurement error) and because extreme biological ag-
gregation is rare and thus little predictable. Thus, we followed a
practice used in geoscience in the study of ore deposits when mea-
sured concentrations exceed the capability of the measurement
device (Rivoirard et al., 2012). Values over a threshold, q, are trun-
cated to that threshold [if Z(x,t) . q, then Z(x,t) ¼ q]. The thresh-
old considered here was 200 t n.m.22, which corresponded to
reported maximum concentration of anchovy school aggregations
(2 t per school, 5 schools km21: Massé et al., 1996; Petitgas et al.,
2001). Values .200 were rare with a frequency of 0.002 in the
dataset. We considered the spatio-temporal series of these (trun-
cated) data, with one survey per year, 2000–2012.

Block averaging
Before the EOF analysis, the data were averaged by block over a grid,
which was the same in all years. The grid mesh size selected was 0.48
in latitude and 0.48 in longitude, with origin x0 at 438N and 68W.

Figure 2. Localization of acoustic transects, CTD stations, and polygon
of study.
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The mean in block (i, j, x0) was the simple average of the data inside
the block and it was positioned at the location of the block centre.
The limits of block (i, j, x0) depend on the origin x0 and therefore,
the samples involved in computing the block mean. To decondition
the block means from the grid origin, the point origin x0 was rando-
mized in the lowest left corner block one 100 times as in Petitgas et al.
(2009). At each randomization k, the grid origin xk varies and the
mean in block of rank (i, j) is computed. Each block of rank (i, j)
has then one 100 means associated with it. The mean of all 100
means was then calculated and positioned at the centre of the
block (i, j, x0). This blocking procedure results in an implicit kernel-
like interpolation where each data take part in the block average with
a frequency (weight) depending on its distance to the block centre.
Finally, blocks which were not valued due to lack of samples in a
given year were omitted in the analysis as well as the blocks which
had their centre point outside the polygon defining the survey
area (Figure 2). Several trials with different mesh sizes were under-
taken and the mesh retained was the smallest one for which the
first two principal components explained more than 50% of total
variance. The grid mesh size retained allowed a reasonable com-
promise between enough fine scale smoothing and sufficient large
and mesoscale details. Finally, instead of biomass per cell, we used
the percentage biomass: P(t, s) = 1000Z(t, s)/

∑
s Z(t, s). Matrix

P(t,s) was then centred by column to form matrix X.

Typology of maps
The EOF decompositionbeinga principal components analysis where
the years are the lines (individual observations) and the map grid cells
the columns(variables), it ispossible toperform a hierarchical cluster-
ing of the years, applying a clustering procedure on the matrix of dis-
tances between years in the factorial space of the first p components
(p , K). The clustering was performed using the Ward criterium
(minimize the intragroup variance), which aims at finding compact
groups. The average map in group g, �Zg(., s), was estimated by
taking the simple average of maps Z for the years of group g. The clus-
tering resulted in defining types of spatial distributions, thus summar-
izing the meaningful variability in the series of maps.

Explicative covariates
In a classical habitat statistical approach (e.g. Le Pape et al., 2014),
the fish distribution map (response) and the maps of (explanatory)
covariates are produced on the same spatial grid and each point in
the maps contribute to an overall correlation model linking fish
presence to covariates. Here, the EOF framework proposes
another approach. The EOF patterns of variability are defined em-
pirically from the data and are invariant in time. The variation
over time in the spatial distribution is taken in charge by the varia-
tions in the weights of the EOF patterns as given by the EOF ampli-
tude time-series. We thus focused on explaining the EOF amplitudes
time-series with covariates. Based on our conceptual approach

(Figure 1), covariates considered were population parameters
affecting population behaviour via density-dependent processes
and hydrological conditions affecting habitat suitability.

Population parameters
Following Cotter et al. (2009), we considered three indices to char-
acterize population status: total (spawning) biomass and two length
distribution percentiles. Population biomass was estimated from
the survey as reported to ICES (2012). The length distribution per-
centiles were the 25 and 75% percentiles. The length distribution in
the population was estimated as follows. The (local) frequency dis-
tribution of length in a trawl haul was weighted by fish biomass along
the acoustic transects within a radius of 10 n.m. from the traul haul
position. The population length distribution was the weighted
average of all local distributions.

Hydrological indices
Hydrological condition was characterized using indices calculated
from the CTD profiles at the stations (Figure 2). We considered
four indices (Table 1) to characterize typical features on the shelf
in spring (Huret et al., 2013): surface and bottom temperature, a
water column stratification index, and a river plume index. These
were calculated following the procedures detailed in Huret et al.
(2013). Surface values were taken at 7 m depth. Bottom values
were 5 m above bottom. The deficit of potential energy, Dep, is
the energy required to homogenize the water column. The greater
the Dep value, the greater the stratification. It was calculated from
surface to 60 m depth for the profiles where bottom depth exceeded
60 m. The equivalent freshwater height, Hfw, measures the height of
accumulated freshwater considering a reference seawater salinity
(35.85 psu: mean bottom salinity). Compared with surface salinity,
Hfw is less affected by vertical mixing and thus reflects better the past
history of river discharge over a few months. The indices were calcu-
lated at each station and the overall spatial mean was calculated to
obtain time-series of mean indices.

Correlation between amplitudes of EOFs and covariates
The time-series of each amplitude Um(t) associated with EOF of
order m was linearly regressed on that of the different covariates
Xj(t): Um(t) =

∑p
j=0 ajXj(t); where X0(t) ¼ 1. For each m, the

most probable model was selected using Akaike’s information cri-
terion (AIC: Burnham and Anderson, 2002). For each m, we consid-
ered the 127 possible models, given the set of the seven covariates.
For each m, the model retained was that with the lowest AIC
value. To identify the most explanatory covariates (i.e. those
involved in the most probable models), we computed their relative
importance weights. For that, each covariate j involved in model i
explaining amplitude Um was attributed the model probability
pm(i) as deduced from its AIC value or zero if model i did

Table 1. Hydrological indices calculated using CTD profiles collected during the PelGas cruises.

Index Units Formula

Stratification index
Deficit of potential energy (Dep) kg m21 s22 Dep = 1

H

∫0

−H
(�r− r(z))gzdz; �r = 1

H

∫0

−H
r(z)dz

River plume index
Equivalent freshwater height (Hfw) m Hfw =

�0
−H

s0 − s(z)
s0

dz; s0 = 35.85
Hydrological indices

Surface (7 m) temperature (Ts) 8C
Bottom temperature (Tb) 8C

r, water density; z, depth; H, bottom depth or 60 m when bottom depth was greater; g, gravitational acceleration; s0, reference seawater salinity.
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not involve the covariate. The relative importance weight of co-
variate j in explaining amplitude Um was the sum over all
model probabilities:

∑127
i=1 pm(i), where pm(i) = exp[−0.5D(i,m)]/∑127

i=1 exp[−0.5D(i,m)], withD(i,m) ¼ AIC(i,m)2min(AIC(i,m)).

The relative importance weight varies between 0 and 1. Typically,
strong explanatory covariates will have a relative importance weight
around 0.9, moderately explanatory between 0.6 and 0.9, and
weakly explanatory between 0.5 and 0.6. Below 0.5, covariates will
often be little relevant.

Results
Patterns of variability
The average distribution over all years (Figure 3) shows anchovy to
be mainly located south of 468N with low abundance in the north,
mainly in coastal areas. The major concentration is located off the
Gironde estuary (45–468N, 1.5 –28W), along the coast and on the
shelf off Landes. The principal spatial modes of yearly variability
around the mean were extracted using the EOF decomposition
technique. Four principal components were retained (m ¼ 4).
Each explained more than 10% of total variance (Table 2) and
showed a strong spatial pattern in their EOF as well as in the
map of local explained variance (Figures 4 and 5). The first EOF
(Figure 4) captured the variability along the coast of Landes and
off Gironde estuary: the lower the abundance along the coast of
Landes, the higher the concentration off Gironde. The second
EOF (Figure 4) captured a large-scale pattern where less abun-
dance in the south was associated with more abundance in
the north. More specifically, EOF2 captured the variability at the
shelf break off Landes, the central part of the shelf off Gironde
and Bretagne: the lower the abundance at the coast off Gironde

and along the shelf break off Landes, the greater it was in
Bretagne and in the central part of the shelf off Gironde. The
third EOF (Figure 5) captured the variability along the coast of
Vendée and also in the area where the shelf break is curved
(458N, 28W): the lower the abundance on the shelf off Landes,
the greater it was along the coast of Vendée. The fourth EOF
(Figure 5) captured the variability along the shelf break north of
458N: the lower the abundance at the coast off Vendée and at
458N, the higher at the shelf break.

Typology of maps and their relationship with recruitment
Using the first four principal components associated with the EOFs
described previously, three groups of maps were identified by hier-
archical clustering (Figure 6). The differences among the average
maps of each group denoted strong differences in the spatial distri-
butions over the years (Figure 7). Group 1 (Figure 7: maps in years
2000, 2001, 2008, 2009, 2011, 2012) corresponded to the largest
spatial extension. The distribution extended in the northern part,
on the shelf break north of 458N and along the coast of Vendée
and Bretagne, although the largest concentration was off Gironde
and on the shelf of Landes. In constrast, Group 2 (Figure 7: maps
in years 2002, 2005, 2010) corresponded to the smallest spatial ex-
tension and showed higher concentrations in two areas, off
Gironde and at the shelf break off Landes. Group 3 (Figure 7:
maps in years 2003, 2004, 2006, 2007) corresponded to a coastal
spatial distribution with high concentrations along the coast
south of 468N. This typology of spatial patterns at spawning time
related to biomass in the current year and to recruitment (age 1
fish) in the subsequent year (Figure 8): very coastal spawning distri-
butions of type G3 occurred when biomass was low only and at low
biomass level, spawning distributions G3 and G2, which had smaller
spatial extension than G1, were never followed by high recruitment.

Correlates of amplitudes of EOFs
Based on the AIC criteria, the selected models showed high R2

ranging 0.48–0.70 (Table 3) and made sense biologically.
Temperature alone explained amplitude of EOF 4, which character-
ized variability along the shelf break. In contrast, amplitude of EOF 3
(which characterized variability along the coast off Vendée) was
explained by population parameters only. EOF amplitudes 1 and
2 were explained by a combination of population and environmen-
tal indices. Population biomass intervened as covariate of the ampli-
tudes of the three first EOFs, meaning that variability in the
distributions was strongly density-dependent. Also, the length dis-
tribution influenced the amplitudes of EOFs 1 and 3, which both
involved variability in coastal waters. Bottom temperature and
water column stratification were covariates of the amplitudes of
EOFs 1 and 2, which both involved expansion to the north and vari-
ability on mid-shelf. It is noteworthy that the river plume index was
never selected as a covariate. The relative importance weights of the
covariates (Table 4) confirmed that the covariates in the models
selected were the most explanatory ones. Yet, for the amplitude of
EOF1, the most probable model (Table 3) involved the stratification
index (Dep) which had a low importance weight (Table 4). The
model without the stratification index (i.e. with SSB, q75, and Tb

Figure 3. Mean distribution map, 2000–2012. The map represents the
average percentage (×1000) of population biomass in grid cells of
0.48 × 0.48.

Table 2. Cumulated per cent total variance explained by the principal components of the EOF decomposition.

PC 1 2 3 4 5 6 7 8 9 10 11 12 13

% var 0.30 0.50 0.65 0.77 0.84 0.89 0.93 0.95 0.97 0.98 0.99 1.00 1.00
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Figure 4. EOFs 1 and 2 (left) and their associated local explained variance (right). EOF1 (top) corresponds to the following pattern of variability:
when there is less fish at the coast off Landes (negative values), there is more fish off Gironde (positive values) and vice versa. For EOF2 (bottom), the
pattern of variability is the following: when there is less fish in southern Biscay (negative values), there is more fish in northern Biscay (positive values)
and vice versa.
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Figure 5. EOFs 3 and 4 (left) and their associated local explained variance (right). EOF3 (top) corresponds to the following pattern of variability:
when there is less fish on shelf off Landes (negative values), there is more fish at coast off Vendée (positive values) and vice versa. For EOF4 (bottom),
the pattern of variability is the following: when there is less fish on shelf off Landes (negative values), there is more fish at the shelf edge in North
(positive values) and vice versa.
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only) was ranked second most probable with a probability of 0.85
and thus was nearly as probable as the retained model (with SSB,
q75, Tb, and Dep: Table 3). The stratification index played a slightly
minor role relative to the other three covariates in explaining
the amplitude of EOF1. For the amplitude of EOF3, the most prob-
able (Table 3) model involved SSB which also had a low importance
weight (Table 4). The model without SSB (with q25 and q75
only: Table 3) was ranked second best model but with the low prob-
ability of 0.49, meaning that SSB should nevertheless be retained as a
covariate. In all, biomass (SSB), proportion of large fish (third

quartile q75), bottom temperature (Tb), and water column stratifi-
cation (Dep) were the most explanatory covariates of the changes
over time in the spatial distributions.

Discussion
The EOF decomposition characterized the variability in the spatial
distributions over time by extracting time-invariant principal
spatial modes and their time-varying amplitudes. The EOF decom-
position served to classify maps. The typology of the spawning
spatial distributions related to population subsequent recruitment.
The time-series of amplitudes were explained by population para-
meters (abundance, length distribution) and environmental condi-
tions (bottom temperature, water column stratification). Thus,
changes in the spatial distribution were modelled depending on
how the time-varying amplitudes (weights of the principal EOF
patterns) varied with covariates.

How meaningful are EOFs
The EOFs characterize spatial patterns of variability around the
mean map that are constant in time. It is their amplitudes that
vary over time not the EOFs. Such mathematical decomposition is
not always suited to characterize complex natural space–time vari-
ability and we here discuss how to acknowledge their suitability to
the case study. The EOF decomposition is little adapted to situations
where areas of variability change location over time. The local
explained variance (Schrum et al., 2006) is a way to test for that. If
the local explained variance displays similar spatial patterns than
the EOFs, the EOFs are then dynamically relevant in time. Here,
EOFs and their local explained variance showed similar maps.
Another point of consideration is that the mathematical property

Figure 6. Typology of maps (hierarchical clustering) based on the first
four principal components associated with the EOFs. Three groups
were retained.

Figure 7. Mean map in each of the three identified groups of maps: G1 (years 2000, 2001, 2008, 2009, 2011, 2012), G2 (years 2002, 2005, 2010), and
G3 (years 2003, 2004, 2006, 2007).
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of spatial orthogonality in the EOF decomposition may generate
artifactual patterns in the spatial modes with little physical inter-
pretation, such as, for example, dipole structures (Dommenget
and Latif, 2002). It is therefore key to be able to critically interpret
the spatial patterns in the EOFs by relating them to physical or
biological phenomena. To increase interpretation, orthogonal
(Varimax) rotation of EOFs has been proposed to extract more
locally defined spatial patterns (e.g. Richman, 1986). But this ap-
proach has its limitations: the ability to extract global spatial pat-
terns in the modes is lower (Dommenget and Latif, 2002) and the
rotation may introduce correlation between amplitudes of rotated
modes (Mestas-Nuñez, 2000) and thus reduce the ability to recon-
struct the data and classify maps. Here, the EOFs identified local
areas that were meaningful for the stock (coast, Gironde, shelf
break), making unnecessary to find more localized patterns by rota-
tion. The EOF decomposition was thus considered suitable here to
characterize the space–time variability in the series of anchovy
spawning spatial distributions.

Data smoothing on a grid before the EOF decomposition
EOFs are best interpretable when their spatial patterns develop over
several grid cells at regional or subregional scale. The grid mesh size
over which to block average the data should thus be adequate. Here,
we used the amount of variance in the EOFs to define the grid mesh
size. The scale in the EOF patterns was greater than 18latitude ×
18longitude, which was compatible with the mesoscale/subregional
aggregation pattern of schools in the area (Petitgas, 2003). The
dataset contained rare extreme values, which were uncertain given
current knowledge of schooling aggregation in the area (Petitgas
et al., 2001). To deal with them, the data were truncated. The trun-
cation threshold was not defined statistically but based on known
schooling behaviour, similarly as for filtering unreliable informa-
tion. Morfin et al. (2012) took a different approach to study the vari-
ability of spatial patterns: (i) they worked on log-transformed data
to diminish the influence of high values; (ii) they interpolated the
transformed data by kriging on a grid of small mesh size, which
amounts to smoothing. In contrast, our analysis provides guidelines
to work on the raw data and makes full use of the local explained
variance to interpret the EOFs and their dynamics in time.

Covariates
The regression of EOF amplitudes on series of explicative covariates
was a flexible approach as it allowed to relate spatial patterns at re-
gional and subregional scales (EOFs) in the fish distribution to cov-
ariates obtained at other spatial resolutions (e.g. population scale).
The three major patterns of variability in the spatial distribution
(Table 3) amounted to range expansion to northern Biscay,
coastal distribution, aggregation off Gironde estuary. Their relative
importance was controlled by a combination of environmental con-
ditions and population parameters. Population biomass, popula-
tion length distribution, bottom temperature, and water column
stratification were influential in making the spatial distributions
vary, which agrees with the literature. Range expansion with popu-
lation abundance has been observed in many fish stocks (Shepherd
and Litvak, 2004) and was originally observed on anchovy in the
California current (MacCall, 1990). Also, anchovy in the Bay of
Biscay shows a gradient in length from coast to offshore (Petitgas
et al., 2003), the smaller fish being more coastal. It is therefore not
surprising that the anchovy distribution varies with population
abundance and length distribution and our analysis models
how this happens. Also bottom temperature and water column

Figure 8. Relationship between recruitment in year (t + 1),
spawning-stock biomass, and spawning distribution map type (G1–
G3) in year (t). At low spawning biomass level, maps of type G3 and G2
in year (t) are never followed with a high recruitment in year (t + 1).
Map of type G3 is observed only at low biomass level.

Table 3. Selected linear regression models of EOF amplitudes Um on covariates.

EOF EOF1 EOF2 EOF3 EOF4

EOF description
Less at coast off Landes,
more off Gironde

Less in southern
Biscay, more in North

Less on shelf off Landes,
more at coast off Vendée

Less on shelf off Landes,
more at shelf edge in North

Amplitudes U1 U2 U3 U4

Intercept 97.44 2201.3 196.3 2127.432
SSB 0.0005875 0.0002659 0.0002982 –
q25 – – 224.87 –
q75 12.54 – 31.93 –
Ts – – – 8.789
Tb 229.93 12.98 – –
Dep 0.4274 0.5136 – –
Hfw – – – –
R2 0.68 0.70 0.43 0.52

Covariates are: SSB, stock biomass as estimated by the survey (t); q25 and q75, the 25 and 75 percentiles of the length distribution (cm); Ts and Tb, the surface
and bottom temperature (8C); Dep, the index of stratification; Hfw, the index of river plume (Table 1). Values tabled are the coefficients estimated for each
covariate. R2 is the variance explained by the linear model (12residual variance/total variance).
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stratification were influential. During daytime, anchovy forms
schools well below the thermocline generally 10–20 m above the
bottom (Massé, 1996), which may explain why bottom temperature
may influence habitat suitability and thus anchovy spatial distribu-
tion. Water column stratification is under the influence of river
plumes and warming surface temperature. River plumes are
related to early season plankton production (Labry et al., 2001)
and warming surface temperature triggers spawning (Motos,
1996) that occurs at night close to surface. Water column stratifica-
tion is thus also naturally involved in determining spawning habitat
suitability.

EOFs and typology of maps
Based on the EOF decomposition, we classified the varying spawn-
ing distributions into three major types of maps: distributions
extending over many habitats including northern parts of Biscay
(type G1), distributions contracted on two core habitats in south
Biscay (type G2), and distributions limited to coastal areas in
south Biscay (typeG3). At low biomass level, the distributions of
type G3 and G2 that were more contracted spatially and coastal
were never followed by a high recruitment in the following year.
The coastal distribution of type G3 occurred when biomass was
lower, fish length smaller, and water column stratification greater.
In these circumstances, total annual fecundity can be expected to
be lower because of lower spawning biomass and a shorter spawning
period as predicted by bioenergetics (Pecquerie et al., 2009). Also
when too high, water column stratification can be detrimental for
larval survival (Allain et al., 2007). At low biomass level, the spawn-
ing distribution of type G2 was associated with larger fish and colder
bottom temperature. These conditions could also result in lower
total fecundity over the restricted G2 habitats. Further, the spatial
initial conditions for larvae drifts will be more coastal and with
less spatial extension for types G3 and G2 than for G1 and this
may also influence larval trajectories and survival probability.
Whether G2 and G3 spawning types at biomass level can be asso-
ciated with low subsequent recruitment could be mechanistically
tested with a coupled biophysical larval model predicting larval
transport and survival. In doing so, a given spawning map type
could be used as initial condition to the larval model, following
the approach of Ospina-Alavrez et al. (2013). Using different egg
maps as initial condition for their transport larval model as
derived from survey data, they found significant differences in
larval drift trajectories.

Dynamic update of maps
Variability in the spatial distributions under both population and
environmental conditions is a useful knowledge for increasing ro-
bustness in spatial management measures. Based on the regressions

of EOF amplitudes on covariates, spatial distributions could be pre-
dicted to update dynamically the spawning maps depending on
combined population and environmental scenarios. Robustness
of spatial management measures could then be tested on that
basis. The study provides a typology of spawning distributions
that can be input to dynamic population spatial models.
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