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Abstract : 

Characterizing the space–time variability in spatial distributions as well as understanding its drivers is 
basic to designing robust spatial management plans. As a prerequisite, we analyse here how this 
variability relates to population dynamics in conjunction with environmental conditions. For that, spatio-
temporal statistical approaches are needed but seldom used in fisheries science. To fill this gap, we 
showcase the usefulness of the method of empirical orthogonal functions (EOFs). Guidelines are given 
to apply the method on a series of gridded maps as derived from fisheries survey dataseries that now 
span over decades. The method is applied to the series, 2000–2012, of the spatial distributions of 
European anchovy in the Bay of Biscay at spawning time. Across the series, the EOF decomposition 
allowed to identify three main types of spatial distributions. One type corresponded to an extended 
distribution, another to a restricted distribution in core areas, and the third to a very coastal distribution. 
The coastal spawning distribution corresponded to a low population growth rate as it was never followed 
by a large recruitment in the subsequent year. We did not attempt to explain the spatial patterns per se 
but the drivers of change from one type of distribution to another. Stock size and fish size as well as 
bottom temperature and water column stratification were the covariates that controlled the variability in 
the spatial distributions over time. Further, the spatial distribution at spawning time related to 
recruitment in the following year, meaning that variability in the spatial distribution of spawning affected 
population dynamics. The typology of maps based on EOF decomposition summarized this spatial 
variability into spatial spawning configurations, which may serve spatial planning. 
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1. Introduction 
 
Habitats represent the environmental conditions that are favourable for an organism (e.g., for its 
presence, growth) and thus habitat maps provide the space-time envelops of suitable conditions. 
Statistical regression has been widely used to model the habitats of the presence of species (Guisan 
and Zimmermann, 2000; Austin, 2007) or fish populations (Planque et al., 2011; Le Pape et al., 2014). 
But although closely related, habitats and spatial distributions are different concepts. Even if habitats 
are potentially suitable, their occupation will rely on the ability of the fish to colonize them with varying 
density. Thus to link habitats (suitable conditions) to fish spatial distributions, one needs to consider the 
mechanisms of habitat occupancy. These mechanisms involve factors internal to the population (e.g., 
abundance, demography, behaviour) as well as interactions in the ecosystem (e.g., trophic interactions, 
connectivity across the life cycle). We shall here focus on the former factors. Density-dependent habitat 
selection models have been used to explain how population spatial distributions vary with overall 
population abundance in different ways (Shepherd and Litvak, 2004; MacCall, 1990). Also physiological 
and behavioural mechanisms have been invoked to explain the re55 colonisation of past habitats during 
the rebuilding phase of a stock after its collapse (Petitgas et al., 2010). Thus we shall here consider that 
variability in spatial distributions results from variability in environmental conditions and internal 
population behaviour (Fig.1). 
 
Further, we hypothesize that the spatial distribution of a population at spawning time is not independent 
of its demographic dynamics as it affects subsequent recruitment and therefore there is a feed-back 
(Fig. 1) implying that a particular spatial spawning 
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configuration is associated with a given recruitment regime. Such hypothesis is perhaps 63 

more relevant for short lived species, which show greater variability in their spatial and 64 

demographic dynamics. Indeed, sensitivity analyses using coupled physical-biological 65 

models demonstrate the importance of initial spawning conditions on larval dispersion 66 

and survival for European anchovy (Ospina-Alvarez et al., 2013; Huret et al., 2010). Here 67 

the hypothesis is tested by identifying particular types of spawning spatial distributions in 68 

fisheries survey data series. We suggest a space-time method for doing so, that extracts 69 

principle spatial modes in the distribution. Further, we showcase how the method offers 70 

the possibility to relate these principal spatial modes to covariates obtained at different 71 

spatial resolutions.   72 

 73 

To characterize and understand the variability of fish spatial distributions over time, this 74 

study intends to showcase the usefulness of applying the space-time decomposition 75 

method of Empirical Orthogonal Functions (EOF: Preisendorfer, 1988) on fisheries 76 

survey data series. In contrast to habitat models where focus is on explaining the mean 77 

distribution and its potential change with external drivers only, we here focus with EOFs 78 

on characterizing the observed variability around the mean and explaining it with both 79 

external and internal population drivers. 80 

 81 

In a fisheries management context, characterizing the variability in spatial distributions 82 

and understanding their consequences is important for at least two reasons. Marine 83 

Protected Areas (MPA) are often designed based on habitats of particular life history 84 

stages (Le Pape et al., 2014). However, variation in the spatial occupancy across years 85 

may generate uncertainty in the temporal effectiveness of an MPA as the fish may 86 

colonize other areas than the MPA (van Keeken et al. 2007). Further, indicators of spatial 87 

distributions have been shown to relate to population parameters (e.g., recruitment, 88 

demography, mortality) over a large range of stocks (Woillez et al. 2006). Thus the 89 

characterization of how spatial distributions vary over time will add robustness to 90 

population diagnostics as well as spatial management plans.  91 

 92 
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Empricial Orthogonal Functions have long been used in meteorology and physical 93 

oceanography to decompose the time and space variability of a time series of maps. 94 

Fisheries survey series now span more than ten years and thus offer sufficient space-time 95 

information on the spatial distributions of fish populations to consider the use of EOFs 96 

for analysing the variability in their spatial distributions. Here we apply this approach to 97 

the time series of European anchovy (Engraulis encrasicolus) spatial distributions at 98 

spawning time to extract the main features of variability in spatial occupancy. On that 99 

basis, we identify major spatial configurations of the spawning population. We then relate 100 

these to year class strength in the subsequent year. We also explain the spawning 101 

configurations with population and environmental parameters. In doing so, we showcase 102 

how EOFs provide a methodological framework to understand the ecology of population 103 

dynamics in its spatio-temporal dimensions. 104 

 105 

Material and Methods 106 

Method of Empirical of Orthogonal Functions  107 

The method of EOF (Preisendorfer 1988) is a particular Principal Component Analysis 108 

(PCA) applied to a series of gridded maps, which allows to decompose the space-time 109 

(residual) variability in the time series of maps into principal spatial modes and their 110 

amplitudes. The decomposition is a linear factorisation of spatial components 111 

(eigenvectors) that are constant in time and amplitudes (principal components) that are 112 

variable in time. The variability around the mean map is thus modelled as the sum of 113 

time-invariant spatial components that are weighted by their time-varying amplitudes :  114 
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where: 116 

 Z(t,s) is the variable under study at time t and spatial coordinate s,  117 

)(.,sZ  the time average at each coordinate s,  118 

)(sEm  the eigen vectors or EOFs (principal spatial modes) scaled to unity,  119 

Um(t)  the EOF amplitudes (principal components) scaled to mλ  , where the mλ are the 120 

q non null eigen values associated with the EOFs 121 



 5

 122 

To achieve the decomposition, the method proceeds as follows. Z(t,s) is a matrix 123 

containing the gridded maps as line vectors with similar spatial order, thus having t = 1, 124 

…, N lines and s = 1, …, K columns. Each grid cell must be valued. In case of missing 125 

information interpolation is needed or use of a coarser grid for data averaging. In each 126 

grid cell, the cell time average is subtracted, which results in a matrix of anomalies on 127 

which to perform the EOF decomposition: )(.,),(),( sZstZstX −= . Matrix S = XTX /N  is 128 

then the covariance in space over time and matrix Sa = XXT /K the covariance in time 129 

over space. A principal components analysis of matrix S (or equivalently Sa) leads to 130 

computing the eigenvalues λm, eigenvectors Em(s) and principal components Um(t).  131 

 132 

To retain the most meaningful EOFs and interpret their spatial patterns we used the eigen 133 

values (overall variance accounted for by the components) and in addition the ‘local’ 134 

explained variance (Schrum et al. 2006, Woillez et al. 2010). The ‘local’ explained 135 

variance at location s associated with EOF of order m, ηm(s), is the proportion of variance 136 

across time that Um(t) and Em(s) explain at that location :  137 

∑=
m
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When the map of local variance shows sub-regional patterns, the EOF explains variability 139 

in these areas and a biological interpretation can be looked for. Further, when the patterns 140 

in the EOF (higher/ lower values) can be superimposed on that in the local explained 141 

variance, the EOF is dynamically relevant in time and the EOF decomposition well suited 142 

to capture the space-time variability in the series of maps. Note that the sign of Ym(t,s) 143 

depends on the combination of the EOF and its amplitude: it is positive when Em(s) and 144 

Um(t) are of the same sign and negative when they are of opposite signs. 145 

 146 

Fish survey data  147 

The survey series considered was the yearly spring acoustic survey series PELGAS, 148 

2000-2012, undertaken by IFREMER on board RV “Thalassa” over the French shelf of 149 

the Bay of Biscay in May. The survey design is made of parallel transects, orientated 150 

perpendicular to the isobaths and regularly spaced 12 nautical miles (n.m.) apart, from 151 
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43.5 N to 48.8 N and from coast (10 m depth) to the shelf break. Along the transects 152 

38kHz acoustic records are collected continuously by day, at 10 knots (Doray et al., 153 

2010). Opportunistic pelagic trawl hauls are performed depending on the echotraces and 154 

provide information on species proportions, length distributions, weight and age. During 155 

night-time, conductivity–temperature–depth (CTD) profiles are performed on a regular 156 

grid of stations (Fig. 2), providing measurements of environmental condition. 157 

 158 

The anchovy population is surveyed in May at its peak spawning time and its distribution 159 

is contained inside the surveyed area (ICES 2010). Europrean anchovy is mature at age 1 160 

at its first spring and spawning starts in all length groups when surface temperature is 161 

above 13 °C, corresponding in the Bay of Biscay to the onset of seasonal thermal 162 

stratification (Motos, 1996). Thus the surveyed population corresponds to the spawning 163 

adults.  164 

 165 

In the Bay of Biscay, because of the multi-species context and variable schooling 166 

characteristics (Massé et al., 1996), the school echotraces cannot be identified to species 167 

from their acoustic properties alone with the echosounder currently in use for the 168 

assessment. Echotraces are identified to species at a coarser spatial resolution based on 169 

pelagic trawl hauls, which are performed over several n.m. to capture aggregations of 170 

echotraces. The combination of the trawl haul data with the acoustic data allow to convert 171 

acoustic backscatter into fish abundance by species (MacLennan and Simmonds, 2005, 172 

section 9; Doray et al., 2010). The resulting data are abundance (tonnes) by species per 173 

n.m.-2 for each n.m. along the survey track. The survey series contains rare but very high 174 

values, which may mask the regional patterns of variability. There is uncertainty in these 175 

very high values because of uncertainty in allocating acoustic backscatter to species 176 

(measurement error) and because extreme biological aggregation is rare and thus little 177 

predictable. Thus, we followed a practice used in geoscience in the study of ore deposits 178 

when measured concentrations exceed the capability of the measurement device  179 

(Rivoirard et al., 2012). Values over a threshold, q, are truncated to that threshold (if 180 

Z(x,t)>q, then Z(x,t)=q). The threshold considered here was 200 tonnes  n.m.-2, which 181 

corresponded to reported maximum concentration of anchovy school aggregations (2 182 
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tonnes per school, 5 schools per km: Massé et al., 1996; Petitgas et al. 2001). Values 183 

greater than 200 were rare with a frequency of 0.002 in the data set. We considered the 184 

spatio-temporal series of these (truncated) data, with one survey per year, 2000-2012.  185 

 186 

Block averaging 187 

Prior to the EOF analysis, the data were averaged by block over a grid, which was the 188 

same in all years. The grid mesh size selected was 0.4° in latitude and 0.4° in longitude, 189 

with origin x0 at 43°N and 6°W. The mean in block (i, j, x0) was the simple average of the 190 

data inside the block and it was positioned at the location of the block centre. The limits 191 

of block (i, j, x0) depend on the origin x0 and therefore the samples involved in computing 192 

the block mean. To decondition the block means from the grid origin, the point origin x0 193 

was randomized in the lowest left corner block one 100 times as in Petitgas et al. (2009). 194 

At each randomization k, the grid origin xk varies and the mean in block of rank (i, j) is 195 

computed. Each block of rank (i, j) has then one 100 means associated to it. The mean of 196 

all 100 means was then calculated and positioned at the centre of block (i, j, x0). This 197 

blocking procedure results in an implicit kernel-like interpolation where each data takes 198 

part in the block average with a frequency (weight) depending on its distance to the block 199 

centre. Finally, blocks which were not valued due to lack of samples in a given year were 200 

omitted in the analysis as well as the blocks which had their centre point outside the 201 

polygon defining the survey area (Fig. 2). Several trials with different mesh sizes were 202 

undertaken and the mesh retained was the smallest one for which the first two principal 203 

components explained more than 50% of total variance. The grid mesh size retained 204 

allowed a reasonable compromise between enough fine scale smoothing and sufficient 205 

large and mesoscale details. Finally, instead of biomass per cell we used the percentage 206 

biomass: ),(/),(1000),( stZstZstP
s
∑= . Matrix P(t,s) was then centred by column to form 207 

matrix X.  208 

 209 

Typology of maps 210 

The EOF decomposition being a Principal Components Analysis where the years are the 211 

lines (individual observations) and the map grid cells the columns (variables), it is 212 

possible to perform a hierarchical clustering of the years, applying a clustering procedure 213 
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on the matrix of distances between years in the factorial space of the first p components 214 

(p<K). The clustering was performed using the Ward criterium (minimize the intra group 215 

variance), which aims at finding compact groups. The average map in group g, )(.,sZg , 216 

was estimated by taking the simple average of maps Z for the years of group g. The 217 

clustering resulted in defining types of spatial distributions thus summarizing the 218 

meaningful variability in the series of maps.  219 

 220 

Explicative covariates 221 

In a classical habitat statistical approach (e.g., Le Pape et al., 2014) the fish distribution 222 

map (response) and the maps of (explanatory) covariates are produced on the same spatial 223 

grid and each point in the maps contribute to an overall correlation model linking fish 224 

presence to covariates. Here, the EOF framework proposes another approach. The EOF 225 

patterns of variability are defined empirically from the data and are invariant in time. The 226 

variation over time in the spatial distribution is taken in charge by the variations in the 227 

weights of the EOF patterns as given by the EOF amplitude time series. We thus focussed 228 

on explaining the EOF amplitudes time series with covariates. Based on our conceptual 229 

approach (Fig. 1) covariates considered were population parameters affecting population 230 

behaviour via density-dependent processes and hydrological conditions affecting habitat 231 

suitability. 232 

 233 

Population parameters. Following Cotter et al. (2009), we considered three indices to 234 

characterize population status: total (spawning) biomass and two length distribution 235 

percentiles. Population biomass was estimated from the survey as reported to ICES 236 

(2012). The length distribution percentiles were the 25% and 75% percentiles. The length 237 

distribution in the population was estimated as follows. The (local) frequency distribution 238 

of length in a trawl haul was weighted by fish biomass along the acoustic transects within 239 

a radius of 10 n.m. from the traul haul position. The population length distribution was 240 

the weighted average of all local distributions.  241 

 242 

Hydrological indices. Hydrological condition was characterized using indices calculated 243 

from the CTD profiles at the stations (Fig. 2). We considered 4 indices (Table 1) to 244 



 9

characterize typical features on the shelf in spring (Huret et al., 2013): surface and bottom 245 

temperature, a water column stratification index and a river plume index. These were 246 

calculated following the procedures detailed in  Huret et al. (2013). Surface values were 247 

taken at 7 m depth. Bottom values were 5 m above bottom. The deficit of potential 248 

energy, Dep, is the energy required to homogeneize the water column. The greater the 249 

Dep value the greater the stratification. It was calculated from surface to 60 m depth for 250 

the profiles where bottom depth exceeded 60 m. The equivalent fresh water height, Ηfw, 251 

measures the height of accumulated fresh water considering a reference sea water salinity 252 

(35.85 psu: mean bottom salinity). In comparison to surface salinity, Ηfw is less affected 253 

by vertical mixing and thus reflects better the past history of river discharge over a few 254 

months. The indices were calculated at each station and the overall spatial mean was 255 

calculated to obtain time series of mean indices.  256 

 257 

Correlation between amplitudes of EOFs and covariates. The time series of each 258 

amplitude Um(t) associated with EOF of order m was linearly regressed on that of the 259 

different covariates Xj(t): 
∑

=
=

p

j

jjm tXatU
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)()(
; where X0(t)=1. For each m, the most 260 

probable model was selected using Akaike’s information criterium (AIC: Burnham and 261 

Anderson, 2002). For each m, we considered the 127 possible models given the set of the 262 

seven covariates. For each m, the model retained was that with the lowest AIC value. To 263 

identify the most explanatory covariates (i.e., those involved in the most probable 264 

models) we computed their relative importance weights. For that, each covariate j 265 

involved in model i explaining amplitude Um was attributed the model probability pm(i) 266 

as deduced from its AIC value or zero if model i did not involve the covariate. The 267 

relative importance weight of covariate j in explaining amplitude Um was the sum over 268 

all model probabilities:
∑
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)),(min(),(),( miAICmiAICmi −=∆ . The relative importance weight varies between 0 and 1. 270 

Typically, strong explanatory covariates will have a relative importance weight around 271 

0.9, moderatly explanatory between 0.6 - 0.9 and weakly explanatory between 0.5 - 0.6. 272 

Below 0.5 covariates will often be little relevant.  273 
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 274 

Results 275 

Patterns of variability 276 

The average distribution over all years (Fig. 3) shows anchovy to be mainly located south 277 

of 46°N with low abundance in the north mainly in coastal areas. The major 278 

concentration is located off the Gironde estuary (45-46°N, 1.5-2°W), along the coast and 279 

on the shelf off Landes. The principal spatial modes of yearly variability around the mean 280 

were extracted using the EOF decomposition technique. Four principal components were 281 

retained (m=4). Each explained more than 10% of total variance (Table 2) and showed a 282 

strong spatial pattern in their EOF as well as in the map of local explained variance (Figs. 283 

4 and 5). The first EOF (Fig. 4) captured the variability along the coast of Landes and off 284 

Gironde estuary: the lower the abundance along the coast of Landes, the higher the 285 

concentration off Gironde. The second EOF (Fig. 4) captured a large scale pattern where 286 

less abundance in the south was associated to more abundance in the north. More 287 

specifically, EOF 2 captured the variability at the shelf break off Landes, the central part 288 

of the shelf off Gironde and Bretagne: the lower the abundance at the coast off Gironde 289 

and along the shelf break off Landes, the greater it was in Bretagne and in the central part 290 

of the shelf off Gironde. The third EOF (Fig. 5) captured the variability along the coast of 291 

Vendée and also in the area where the shelf break is curved (45°N, 2°W): the lower the 292 

abundance on the shelf off Landes, the greater it was along the coast of Vendée. The 293 

fourth EOF (Fig. 5) captured the variability along the shelf break north of 45°N: the 294 

lower the abundance at the coast off Vendée and at 45°N, the higher at the shelf break.  295 

 296 

Typology of maps and their relationship with recruitment 297 

Using the first four principal components associated with the EOFs described previously, 298 

three groups of maps were identified by hierarchical clustering (Fig. 6). The differences 299 

among the average maps of each group denoted strong differences in the spatial 300 

distributions over the years (Fig. 7). Group 1 (Fig. 7: maps in years 2000, 2001, 2008, 301 

2009, 2011, 2012) corresponded to the largest spatial extension. The distribution 302 

extended in the northern part, on the shelf break north of 45°N and along the coast of 303 

Vendée and Bretagne although the largest concentration was off Gironde and on the shelf 304 
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of Landes. In constrast, Group 2 (Fig. 7: maps in years 2002, 2005, 2010) corresponded 305 

to the smallest spatial extension and showed higher concentrations in 2 areas, off Gironde 306 

and at the shelf break off Landes. Group 3 (Fig. 7: maps in years 2003, 2004, 2006, 2007) 307 

corrresponded to a coastal spatial distribution with high concentrations along the coast 308 

south of 46°N. This typology of spatial patterns at spawning time related to biomass in 309 

the current year and to recruitment (age 1 fish) in the subsequent year (Fig. 8): very 310 

coastal spawning distributions of type G3 occurred when biomass was low only and at 311 

low biomass level, spawning distributions G3 and G2, which had smaller spatial 312 

extension than G1, were never followed by high recruitment.  313 

 314 

Correlates of amplitudes of EOFs 315 

Based on the AIC criteria, the selected models showed high R-square ranging 0.48 – 0.70 316 

(Table 3) and made sense biologically. Temperature alone explained amplitude of EOF 4, 317 

which characterized variability along the shelf break. By contrast amplitude of EOF 3 318 

(which characterized variability along the coast off Vendée) was explained by population 319 

parameters only. EOF amplitudes 1 and 2 were explained by a combination of population 320 

and environmental indices. Population biomass intervened as covariate of the amplitudes 321 

of the three first EOFs, meaning that variability in the distributions was strongly density-322 

dependent. Also, the length distribution influenced the amplitudes of EOFs 1 and 3, 323 

which both involved variability in coastal waters. Bottom temperature and water column 324 

stratification were covariates of the amplitudes of EOFs 1 and 2, which both involved 325 

expansion to the north and variability on mid-shelf. It is noteworthy that the river plume 326 

index was never selected as a covariate. The relative importance weights of the covariates 327 

(Table 4) confirmed that the covariates in the models selected were the most explanatory 328 

ones. Yet, for the amplitude of EOF1, the most probable model (Table 3) involved the 329 

stratification index (Dep) which had a low importance weight (Table 4). The model 330 

without the stratification index (i.e., with SSB, q75, and Tb only) was ranked second 331 

most probable with a probability of 0.85 and thus was nearly as probable as the retained 332 

model (with SSB, q75, Tb, and Dep: Table 3). The stratification index played a slightly 333 

minor role relative to the other three covariates in explaining the amplitude of EOF1. For 334 

the amplitude of EOF3, the most probable (Table 3) model involved SSB which also had 335 
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a low importance weight (Table 4). The model without SSB (with q25 and q75 only: 336 

Table 3) was ranked second best model but with the low probability of 0.49, meaning that 337 

SSB should nevertheless be retained as a covariate. In all, Biomass (SSB), proportion of 338 

large fish (third quartile q75), bottom temperature (Tb) and water column stratification 339 

(Dep) were the most explanatory covariates of the changes over time in the spatial 340 

distributions. 341 

 342 

Discussion 343 

The EOF decomposition characterized the variability in the spatial distributions over time 344 

by extracting time-invariant principal spatial modes and their time-varying amplitudes. 345 

The EOF decomposition served to classify maps. The typology of the spawning spatial 346 

distributions related to population subsequent recruitment. The time series of amplitudes 347 

were explained by population parameters (abundance, length distribution) and 348 

environmental conditions (bottom temperature, water column stratification). Thus 349 

changes in the spatial distribution were modelled depending on how the time-varying 350 

amplitudes (weights of the principal EOF patterns) varied with covariates.  351 

 352 

How meaningful are EOFs. The EOFs characterize spatial patterns of variability around 353 

the mean map that are constant in time. It is their amplitudes that vary over time not the 354 

EOFs. Such mathematical decomposition is not always suited to characterize complex 355 

natural space-time variability and we here discuss how to acknowledge their suitability to 356 

the case study. The EOF decomposition is little adapted to situations where areas of 357 

variability change location over time. The local explained variance (Schrum et al., 2006) 358 

is a way to test for that. If the local explained variance displays similar spatial patterns 359 

than the EOFs, the EOFs are then dynamically relevant in time. Here, EOFs and their 360 

local explained variance showed similar maps. Another point of consideration is that the 361 

mathematical property of spatial orthogonality in the EOF decomposition may generate 362 

artifactual patterns in the spatial modes with little physical interpretation, such as, e.g., 363 

dipole structures (Dommenget and Latif, 2002). It is therefore key to be able to critically 364 

interpret the spatial patterns in the EOFs by relating them to physical or biological 365 

phenomena. To increase interpretation, orthogonal (Varimax) rotation of EOFs has been 366 
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proposed to extract more locally defined spatial patterns (e.g., Richman 1986). But this 367 

approach has its limitations: the ability to extract global spatial patterns in the modes is 368 

lower (Dommenget & Latif 2002) and the rotation may introduce correlation between 369 

amplitudes of rotated modes (Mestas-Nunez 2000) and thus reduce the ability to 370 

reconstruct the data and classify maps. Here, the EOFs identified local areas that were 371 

meaningful for the stock (coast, Gironde, shelf-break), making unecessary to find more 372 

localised patterns by rotation. The EOF decomposition was thus considered suitable here 373 

to characterize the space-time variability in the series of anchovy spawning spatial 374 

distributions.  375 

 376 

Data smooting on a grid prior to the EOF decomposition. EOFs are best interpretable 377 

when their spatial patterns develop over several grid cells at regional or sub-regional 378 

scale. The grid mesh size over which to block average the data should thus be adequate. 379 

Here, we used the amount of variance in the EOFs to define the grid mesh size. The scale 380 

in the EOF patterns was greater than 1°Latitude x 1°Longitude, which was compatible 381 

with the meso-scale / subregional aggregation pattern of schools in the area (Petitgas, 382 

2003). The data set contained rare extreme values, which were uncertain given current 383 

knowledge of schooling aggregation in the area (Petitgas et al., 2001). To deal with them, 384 

the data were truncated. The truncation threshold was not defined statistically but based 385 

on known schooling behaviour, similarly as for filtering unreliable information. Morfin et 386 

al. (2012) took a different approach to study the variability of spatial patterns: (i) they 387 

worked on log-transformed data to diminishing the influence of high values; (ii) they 388 

interpolated the transformed data by kriging on a grid of small mesh size, which amounts 389 

to smoothing. In contrast, our analysis provides guidelines to work on the raw data and 390 

makes full use of the local explained variance to interpret the EOFs and their dynamics in 391 

time.  392 

 393 

Covariates. The regression of EOF amplitudes on series of explicative covariates was a 394 

flexible approach as it allowed to relate spatial patterns at regional and sub-regional 395 

scales (EOFs) in the fish distribution to covariates obtained at other spatial resolutions 396 

(e.g., population scale). The three major patterns of variability in the spatial distribution  397 
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(Table 3) amounted to range expansion to northern Biscay, coastal distribution, 398 

aggregation off  Gironde estuary. Their relative importance was controlled by a 399 

combination of environmental conditions and population parameters. Population biomass, 400 

population length distribution, bottom temperature and water-column stratification were 401 

influential in making the spatial distributions vary, which agrees with the literature. 402 

Range expansion with population abundance has been observed in many fish stocks 403 

(Shepherd and Litvack, 2004) and was originally observed on anchovy in the California 404 

current (MacCall, 1990). Also, anchovy in the bay of Biscay shows a gradient in length 405 

from coast to off-shore (Petitgas et al., 2003), the smaller fish being more coastal. It is 406 

therefore not surprising that the anchovy distribution varies with population abundance 407 

and length distribution and our analysis models how this happens. Also bottom 408 

temperature and water column stratification were influential. During day-time, anchovy 409 

forms schools well below the thermocline generally 10-20 m above the bottom (Massé, 410 

1996), which may explain why bottom temperature may influence habitat suitability and 411 

thus anchovy spatial distribution. Water column stratification is under the influence of 412 

river plumes and warming surface temperature. River plumes are related to early season 413 

plankton production (Labry et al., 2001) and warming surface temperature triggers 414 

spawning (Motos, 1996) that occurs at night close to surface. Water column stratification 415 

is thus also naturally involved in determining spawning habitat suitability. 416 

 417 

EOFs and typology of maps. Based on the EOF decompositon, we classified the varying 418 

spawning distributions into 3 major types of maps: distributions extending over many 419 

habitats including northern parts of Biscay (type G1), distributions contracted on two core 420 

habitats in south Biscay (type G2) and distributions limited to coastal areas in south 421 

Biscay (typeG3). At low biomass level the distributions of type G3 and G2 that were 422 

more contracted spatially and coastal were never followed by a high recruitment in the 423 

following year. The coastal distribution of type G3 occurred when biomass was lower, 424 

fish length smaller and water column stratification greater. In these circumstances total 425 

annual fecundity can be expected to be lower because of lower spawning biomass and a 426 

shorter spawning period as predicted by bioenergetics (Pecquerie et al., 2009). Also when 427 

too high, water column stratification can be detrimental for larval survival (Allain et al., 428 
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2007). At low biomass level, the spawning distribution of type G2 was associated with 429 

larger fish and colder bottom temperature. These conditions could also result in lower 430 

total fecundity over the restricted G2 habitats. Further, the spatial initial conditions for 431 

larvae drifts will be more coastal and with less spatial extension for types G3 and G2 than 432 

for G1 and this may also influence laval trajectories and survival probability. Whether G2 433 

and G3 spawning types at biomass level can be associated with low subsequent 434 

recruitment could be mechanistically tested with a coupled bio-physical larval model 435 

predicting larval transport and survival. In doing so, a given spawning map type could be 436 

used as initial condition to the larval model, following the approach of Ospina-Alvarez et 437 

al. (2013). Using different egg maps as initial condition for their transport larval model as 438 

derived from survey data, they found significant differences in larval drift trajectories.  439 

 440 

Dynamic update of maps. Variability in the spatial distributions under both population 441 

and environmental conditions is a useful knowledge for increasing robustness in spatial 442 

management measures. Based on the regressions of EOF amplitudes on covariates, spatial 443 

distributions could be predicted to update dynamically the spawning maps depending on 444 

combined population and environmental scenarios. Robustness of spatial management 445 

measures could then be tested on that basis. The study provides a typology of spawning 446 

distributions that can be input to dynamic population spatial models.  447 
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  559 

Table 1: hydrological indices calculated using CTD profiles collected during the PelGas 560 

cruises. ρ: water density; z: depth; H: bottom depth or 60 m when bottom depth was 561 

greater; g: gravitational acceleration; s0: reference sea water salinity 562 

 563 

Index units Formula 

Stratification index 
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 565 

Table 2 : Cumulated percent total variance explained by the principal components of the 566 

EOF decomposition. 567 

 568 

PC 1 2 3 4 5 6 7 8 9 10 11 12 13 

% 

var 

0.30 0.50 0.65 0.77 0.84 0.89 0.93 0.95 0.97 0.98 0.99 1.00 1.00 

 569 

 570 

 571 

 572 

 573 
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Table 3 : Selected linear regression models of EOF amplitudes Um on covariates. 574 

Covariates are: SSB: stock biomass as estimated by the survey (tonnes), q25 and q75 the 575 

25 and 75 percentiles of the length distribution (cm), Ts and Tb the surface and bottom 576 

temperature (°C), Dep the index of stratification, Hfw the index of river plume (see table 577 

1). Values tabled are the coefficients estimated for each covariate. R-square is the 578 

variance explained by the linear model (1- residual variance/total variance).  579 

 580 

EOF EOF1 EOF2 EOF3 EOF4 

EOF 

description 

Less at coast off 

Landes, more off 

Gironde 

Less in southern 

Biscay, more in 

North 

Less on shelf off 

Landes, more at 

coast off Vendée 

Less on shelf off 

Landes, more at 

shelf edge in North  

Amplitudes U1 U2 U3 U4 

Intercept 97.44 -201.3 196.3 -127.432 

SSB  0.0005875 0.0002659 0.0002982 - 

q25 - - -24.87 - 

q75 12.54 - 31.93 - 

Ts - - - 8.789 

Tb -29.93 12.98 - - 

Dep 0.4274 0.5136 - - 

Hfw - - - - 

R-square 0.68 0.70 0.43 0.52 

 581 

 582 

583 
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Table 4: Relative importance weights of covariates over the 127 candidate linear models 583 

for each EOF amplitude Um. Covariates are defined in Table 3.  584 

 585 

 U1 U2 U3 U4 

SSB  0.97 0.80 0.47 0.32 

q25 0.47 0.40 0.63 0.47 

q75 0.55 0.45 0.53 0.40 

Ts 0.40 0.44 0.32 0.81 

Tb 0.87 0.60 0.36 0.36 

Dep 0.43 0.62 0.30 0.42 

Hfw 0.38 0.38 0.34 0.48 

 586 
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Fig. 1: Schematics of the variability in spatial distributions. Environmental and 587 

population conditions affecting habitats and behaviour respectively, which influence 588 

spatial distribution. In return, the spatial organisation of the population also affects its 589 

dynamics and thus feeds back into the loop of drivers affecting population behaviour.  590 

 591 

Fig. 2 : Localization of acoustic transects, CTD stations and polygon of study 592 

 593 

Fig. 3 : Mean distribution map, 2000-2012. The map represents the average percentage 594 

(x1000) of population biomass in grid cells of 0.4°x0.4°.  595 

 596 

Fig. 4: EOFs 1 and 2 (left) and their associated local explained variance (right). EOF1 597 

(top) corresponds to the following pattern of variability: when there is less fish at the 598 

coast off Landes (negative values), there is more fish off Gironde (positive values) and 599 

vice versa. For EOF2 (bottom) the pattern of variability is the following: when there is 600 

less fish in southern Biscay (negative values), there is more fish in northern Biscay 601 

(positive values) and vice versa. 602 

 603 

Fig. 5: EOFs 3 and 4 (left) and their associated local explained variance (right). EOF3 604 

(top) corresponds to the following pattern of variability: when there is less fish on shelf 605 

off Landes (negative values), there is more fish at coast off Vendée (positive values) and 606 

vice versa. For EOF4 (bottom) the pattern of variability is the following: when there is 607 

less fish on shelf off Landes (negative values), there is more fish at the shelf-edge in 608 

North (positive values) and vice versa. 609 

 610 

Fig. 6: Typology of maps (hierarchical clustering) based on the first four principal 611 

components associated to the EOFs. Three groups were retained.  612 

 613 

Fig. 7: Mean map in each of the three identified groups of maps: G1 (years 2000, 2001, 614 

2008, 2009, 2011, 2012), G2 (years 2002, 2005, 2010), G3 (years 2003, 2004, 2006, 615 

2007). 616 

 617 
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Fig. 8: Relationship between recruitment in year (t+1), spawning stock biomass and 618 

spawning distribution map type (G1-G3) in year (t).  At low spawning biomass level 619 

maps of type G3 and G2 in year (t) are never followed with a high recruitment in year 620 

(t+1). Map of type G3 is observed only at low biomass level. 621 

622 
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