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A bimodal volcanic sequence of 230 m thickness on Skiff Bank, a
western salient of the northern Kerguelen Plateau, was drilled during
ODP Leg 183. The sequence comprises three main unils: a mafic
unit of trachybasalt flows sandwiched between two units of trachytic
or thyolitic flows and volcaniclastic rocks. Although interpretation
s complicated by moderate to strong alteration of the rocks, their
original chemical character can be established using the least mobile
major and trace elements (Al, Th, high field strength elements and
rare earth elements). High concentrations of alkalis and incompatible
trace elements indicate that both mafic and felsic rocks are alkalic.
The felsic rocks may have been derived by partial melting of mafic
rocks, followed by fractionation of feldspar, clinopyroxene, Fe—Ti
oxides and apatite. The mafic and felsic rocks have similar Nd and
Pb isotopic compositions; **°Pb/*" Pb ratios are low (17-5—18-0)
but, like the ""Nd/""'Nd ratios (0-5125-0-5126), they are
comparable with those of basalts from the central and southern
Rerguelen Plateau (e.g. Sites 747, 749, 750). The Sr isotopic
system s perturbed by later alteration. There is no chemical or
wsolopic evidence for a continental crustal component. The bimodal
alkalic character and the presence of quartz-phyric rhyolites 1is
interpreted to indicate that the sequence forms part of a shield
voleano built upon the volcanic plateau. The age of 68 Ma, obtained
on Site 1139 rocks by Duncan (A time frame for construction of
the Rerguelen Plateau and Broken Ridge, Journal of Petrology
43, 11091119, 2002), provides only a minimum age for the
underlying flood volcanic rocks. The high age indicates none the less
that Skiff Bank is not the present location of the Kerguelen plume.
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INTRODUCTION

The Kerguelen Plateau was for many years been con-
sidered, along with Ontong Java, as a type example of
an oceanic plateau. This plateau, a pile of mafic rocks
of 20-30 km thickness, covers an area of ~2 x 10° km?
(three times the size of France) in the southern Indian
Ocean. Like Ontong Java, it was thought to have formed
through massive basaltic volcanism, which erupted in an
entirely oceanic setting as a large mantle plume impinged
on the base of the oceanic lithosphere. As explained in
recent papers (Frey et al., 2000a; Weis et al., 2001; Ingle
et al., 2002), two discoveries have changed these ideas.
The first was the demonstration by Mahoney et al. (1995)
that basalts from the southern part of the plateau have
geochemical and isotopic compositions that indicate that
they had interacted with continental lithosphere. The
second was the recovery, at several sites of Leg 183 of
the Ocean Drilling Program (ODP), of volcanic and
sedimentary sequences whose geological and geochemical
characteristics provided clear evidence of emplacement
near continental crust. Because of these discoveries, Ker-
guelen is now thought of as a hybrid plateau, with an
older southern portion made up, at least in part, of
volcanic rocks resembling submerged continental flood
basalts, and a younger northern portion that erupted in
a purely oceanic setting (Frey et al., 2000q).

Skiff Bank (or Leclaire Rise), is the northwestward
extension of the Kerguelen Plateau (Fig. 1). It was
sampled by drilling during ODP Leg 183. The site, one
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Fig. 1. Bathymetric map of the Kerguelen Plateau. Contour is the 3 km isobath. Sites 738, 747, 749 and 750 were drilled during ODP Leg
120 and Sites 1137, 1138, 1139 and 1140 were sampled during Leg 183.

of six that reached volcanic basement, was selected for
two main reasons:

(1) one goal was to provide some information about
the age and the character of the volcanic rocks in the
northern part of the plateau. Before Leg 183, the only
available samples from the northern part of the Kerguelen
Plateau were from a suite of trachybasaltic lavas, micro-
gabbros, alkali granites and sedimentary rocks recovered
by dredging during the Kerimis cruise (Schlich et al., 1998;
Weis et al., 2002). Given the generally felsic character and
the diversity of rock types in this assemblage, these rocks
were interpreted as probable ice-rafted debris and not
the predominant rocks of this part of the Kerguelen
Plateau. The closest drill site that penetrated basement
was 747 of Leg 120, which is situated in the southern
part of the central plateau. As indicated in Fig. 1, Sites
1139 and 1140 were the two Leg 183 sites selected to
document the characteristics of the northern part of the
plateau.

(2) Knowledge of the age and the volcanic and tectonic
environment of this part of the Kerguelen Plateau is
crucial to our understanding of the overall evolution of
the plateau. A key issue stems from the proposition of
Duncan & Storey (1992) and Miiller et al. (1993) that
Skiff Bank is the current site of the Kerguelen plume. If
this were true, the volcanic sequence at the site would
include rocks that are much younger than those of the
main plateau, with distinctive petrological characteristics.

It is important to track the position of the plume if we
are to understand the interaction between magmatic and
tectonic events that led to the evolution of the plateau.

The drilling at Site 1139 passed through 460 m of
sediments, then penetrated a sequence of lavas and
volcaniclastic rocks of 230 m thickness. Two unexpected
results emerged immediately from shipboard study of the
volcanic drill core (Shipboard Scientific Party, 2000).
First, the volcanic rocks have bimodal mafic—felsic com-
positions with a strongly alkalic magmatic character; as
such, they are very different from the monotonous thole-
iitic flood basalts of normal oceanic plateaux. Second,
the Eocene to Oligocene age (33-34 Ma) of the sediments
that immediately overlie the volcanic sequence provides
arelatively high minimum age for the underlying volcanic
rocks. The volcanic rocks cannot, therefore, represent
the products of recent plume-related magmatism. How-
ever, this minimum age is also significantly less than the
~90Ma age inferred from available radiometric and
stratigraphic dating for the central part of the plateau.
The results suggested that the volcanic sequence at Site
1139 is distinct from those of both the main plateau and
from younger plume-related activity, such as that on the
Kerguelen Archipelago and on Heard and Macdonald
Islands.

In this paper we present the results of a detailed
petrological and geochemical investigation of samples
from Site 1139. Our study included inductively coupled
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plasma mass spectrometry (ICP-MS) analyses of a wide
suite of trace elements and determination of the Nd, Sr
and Pb isotopic compositions of the volcanic rocks. Our
new results, combined with new age dates of Duncan &
Pringle (2000) and Duncan (2002) and comparisons with
bimodal volcanic series from two other areas, allow us
to clarify (1) the volcanic and tectonic setting of Skiff
Bank, (2) the relationship between this region and the rest
of the northern plateau, and (3) the magmatic evolution of
the Kerguelen Plateau as a whole.

Geological setting

Skiff Bank is the westernmost salient of the northern
Kerguelen Plateau and lies ~ 350 km WSW of the Ker-
guelen Archipelago (Fig. 1). It is a broad, relatively flat
bank, about 300 km long and 150 km wide; the minimum
water depth on the central ridge is ~200 m, increasing
to ~3500 m at the margins. The bank is elongated in
an east-west direction, sub-perpendicular to fractures in
the surrounding Enderby Basin but parallel to the dir-
ection of rifting between the Indian and Antarctic con-
tinents. The southern border of the Bank is marked by
a large negative gravity anomaly, a feature absent from
the northern border (Sandwell & Smith, 1997; Shipboard
Scientific Party, 2000). In seismic profiles (Recq &
Charvis, 1986; Recq et al, 1990, 1994; Charvis et al.
1995), the structure of the northern plateau is relatively
simple. A thin sedimentary section (400-500 m) overlies
an igneous basement of 1419 km thickness.

Site 1139 is located at 50-18°S and 63-94°E, ~50 km
south of the central ridge at a water depth of 1427 m,
and is on the flank of one of two broad edifices at the
surface of the plateau (Shipboard Scientific Party, 2000,
fig. F32). The maximum age of the overlying sediments
was established as early Oligocene to latest Eocene (Ship-
board Scientific Party, 2000).

Felsic volcanic rocks from Site 1139 were dated by
Duncan & Pringle (2000) and Duncan (2002) using the
Ar—Ar method. Incremental heating experiments on both
whole rocks and on feldspars separated from rhyolites
and trachytes yielded ages of 66-68 Ma. These ages are
~ 35 Myr greater than the 33-34 Ma age assigned to the
earliest Oligocene to latest Eocene sedimentary rocks that
directly overlie the volcanic units at the Site (Shipboard
Scientific Party, 2000).

Petrography and mineralogy of the volcanic
rocks of Site 1139

The 230 m basement sequence at Site 1139 is composed
of bimodal maficfelsic volcanic rocks with rare inter-
calated terrigenous and volcanogenic sediments. Detailed
descriptions of the petrological characteristics of these
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rocks, as determined through study of the drill core, are
given in the report of the Shipboard Scientific Party
(2000) and will not be repeated here. Instead we show
in Fig. 2 a log of the main units. We summarize the
main petrological features in the following paragraphs,
using a combination of shipboard observations and our
own petrographic investigations.

As shown in Fig. 2, a 73 m series of trachybasaltic lava
flows is sandwiched between two series of felsic volcanic
rocks. The upper 125 m felsic series contains both rhy-
olitic and trachytic lava flows and volcanoclastic rocks;
the lower 32 m series is made up of two trachytic lava
flows. Core recovery was poor, ~21%, in the upper
felsic sequence, probably because of the presence of
numerous rubbly breccia zones, but better in the more
massive mafic and lower felsic sequences (61 % and 68%).
Interpretation of volcanic structures and textures led the
Shipboard Scientific Party (2000) to conclude that the
rocks erupted subaerially.

Five units were recognized in the upper felsic sequence.
Unit 1 consists of rhyolite rubble and breccia, with thin
interbedded layers of bioclastic sandstone and vol-
caniclastic sediments. Most of the rock is sparsely phyric
to glassy, in one case with perlitic textures. Phenocrysts
are sparse, mainly sanidine with rare quartz. Haematite
in the groundmass imparts a reddish brown colour to
the rocks. The perlitic glass in the basal breccia appears
silicified and contains a small amount of chalcedony.
The vesicle content of this unit is very low, <2%.

Unit 2 is a dark red (oxidized) rhyolite containing
~10% sanidine and minor quartz phenocrysts. Flat-
tening and agglutination of fragments suggest that this
unit is a welded pyroclastic flow. Many of the quartz and
sanidine phenocrysts are shattered. No ferromagnesian
minerals are present, but clays and oxides are abundant
and could be the products of the alteration of mafic
phases. The unit contains <2% vesicles.

Unit 3 is strikingly different from the overlying units.
It consists of a green-coloured, highly altered crystal-
vitric tuff containing abundant sanidine (15%) and rarer
quartz phenocrysts and lithic clasts in a perlitic, and
locally banded glassy matrix. This unit is interpreted as
the densely welded core of a pyroclastic flow deposit.
The green colour arises from intense alteration of the
matrix glass.

Unit 4 is a massive to brecciated, vesicular, dark red
(oxidized) rhyolite similar to Unit 2. Here again the
quartz and sanidine phenocrysts are shattered and some
show embayments at their margins. Goethite is abundant
in the groundmass cement.

Unit 5 consists of a central zone of massive, highly
altered trachytic lava bounded at both margins by brec-
ciated zones. This unit is interpreted as a differentiated
lava flow. Phenocryst phases are sanidine, and ferro-
magnesian minerals that are completely replaced by
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Fig. 2. Simplified log of the volcanic sequence with petrographic descriptions and rock types.

secondary chlorite, carbonate and clays. The same min-
erals fill fissures and vesicles (<5%).

The middle sequence, Units 6-17, comprises 12 flows
or flow units with mafic to intermediate compositions.
These units, whose thickness varies from 2 to almost
20 m, have massive interiors overlain by thin flow-top
breccias. Unit 10 consists of small pahochoe lobes, Unit
11 1s an aa flow, and the other units have brecciated
margins of indeterminate character. These features in-
dicate subaerial emplacement. These units contain be-
tween 0 and 20% of vesicles filled with secondary minerals
(clays, zeolite, carbonate and chlorite).

The lava has a pale grey colour and contains 1-3%
plagioclase and sanidine phenocrysts in a fine-grained,
trachytic-textured groundmass. The least altered samples
contain 1-2% of unaltered phenocrysts of pale brown,
Ti-rich clinopyroxene in a matrix of feldspar, abundant
opaque minerals and patches of secondary minerals (clay

minerals and carbonate) that could represent altered
clinopyroxene. Some of the feldspar crystals have the
form and habit of primary magmatic sanidine; others
could represent altered plagioclase. The more altered
samples contain feldspar phenocrysts in a matrix com-
pletely altered to secondary minerals. The most common
alteration minerals are siderite, calcite, chlorite, sepiolite,
and secondary Fe oxides. Patches of Fe oxides and clay
minerals could represent completely altered ferro-
magnesian minerals.

The lower felsic sequence, Units 18 and 19, consists
of an almost complete section through one lava flow
(Unit 18) and the upper part of a second flow (Unit
19). Both units were originally composed of porphyritic
trachyte containing 10-30% clinopyroxene and sanidine
phenocrysts in a fine-grained, poorly vesicular matrix.
Subsequent moderate to intense alteration has destroyed
most of the primary minerals. Clay minerals or siderite has
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replaced all the clinopyroxene, and rare titanomagnetite
phenocrysts are altered to maghemite or haematite. The
groundmass is composed of alkali feldspar (some of which
may be altered plagioclase), quartz, magnetite and altered
glass. Secondary phases in the matrix include clay min-
erals, abundant siderite, haematite and chalcedony.

ANALYTICAL METHODS

The samples were ground in an agate mortar. Major
elements and certain trace elements (Ni, Cr and V) were
analysed by X-ray fluorescence (XRF) at the University
of Massachusetts, Amherst (Rhodes, 1983). Other trace
elements were analysed by ICP-MS at the University of
Grenoble following the procedure of Barrat et al. (1996,
2000). The error on major element determinations is
<5%. For the trace elements Rb, Sr, Ba, Hf, Zr, Ta,
Nb, U, Th, Pb, Y and rare earth elements (REE), the
accuracy 1s better than 5%; for Cs it is ~10%. Table 1
contains the major and trace element data, along with
measurements of standards BIR1, BHVO and RGM.
The results are in excellent agreement with the data of
Eggins et al. (1997). The data that are reported in Table
1 and plotted in the figures were recalculated on a
volatile-free basis.

Nd, Sr and Pb isotopic analyses were carried out
at Universit¢ Libre de Bruxelles on a VG 54 mass
spectrometer using the procedure described by Weis e
al. (1987). All samples were leached in 6N HCI in
an ultrasonic bath to remove secondary minerals and
seawater following the procedure described by Weis &
Frey (1991). Each leaching period was 20 min and the
procedure was repeated 10 or more times, until a clear
solution was obtained. The average total weight loss
during leaching varied between 21 and 64%. No cor-
relation between loss on ignition (LOI) and weight loss
was evident and there was no difference between mafic
and felsic rocks. To evaluate the effects of leaching, two
duplicate analyses were also run on unleached samples.
Sr isotopic ratios were normalized to *Sr/*Sr = 0-1194
and Nd isotopic data were normalized using "“°Nd/
"Nd = 0-7219. The average ¥Sr/®Sr value for NBS
987 Sr standard was 0:710278 + 12 (26, on the basis
of 12 samples). Analyses of the Rennes Nd standard
yielded "*Nd/"Nd = 0-511970 + 7 (26,, on the basis
of 12 samples). Pb isotopic ratios were measured on
single Re filament using the H;PO,silica gel technique.
All Pb isotopic compositions were corrected for mass
fractionation (0-12 + 0-04% per a.m.u.) based on 10
analyses of NBS 981 Pb standard run at a temperature
between 1090 and 1200°C.

SHIELD VOLCANO ON SKIFF BANK

Influence of alteration on chemical
compositions

Interpretation of the chemical compositions of Site 1139
rocks is greatly complicated by the moderate to intense
alteration that has affected all samples. As is discussed
in a later section, this alteration has had major effects
on the compositions of the lavas, but these effects are
different in the mafic and felsic rocks. Particularly in the
felsic lavas, the crystallization of feldspar and minor
phases complicates the distinction between mobile and
immobile behaviour. The removal of these minerals
drastically changes the concentrations and ratios of ele-
ments such as Ti, P, Eu, Sr and Ba. Furthermore, the
peculiar and intense nature of the alteration appears to
have changed the concentrations of some elements that
are normally considered to be immobile.

Some examples of complex behaviour of minor and
trace elements in the felsic lavas are illustrated in the
variation diagrams plotted as Fig. 3. Zirconium correlates
well with Nb, an element normally considered immobile,
but poorly with Ti, another high field strength element
(HFSE) that is also thought to resist alteration. The
scatter in the Zr vs Ti diagram probably is not due
to mobility of Ti but to variable amounts of oxide
fractionation. The REE, with the exception of Eu and
Ce, are also thought to be relatively immobile. However,
two representative REE, La and Yb, show almost as
much scatter as Ba and Rb, elements that are regarded
as moderately to highly mobile. The mafic lavas plot as
a tight group in most trace element diagrams, as shown
in a subsequent section, but we will demonstrate later
that their major element compositions may have been
strongly affected by alteration.

In view of these complications, it is not possible to
define, in general terms, which elements are mobile and
which elements are not. For this reason we have chosen
first to present the geochemical data, making reference
where appropriate to the possible influences of alteration.
Then, in the discussion section, we consider how the
alteration has influenced the compositions of both the
mafic and felsic lavas and establish which elements can
be used to infer the magmatic histories of the two rock
suites.

Major and trace elements

In the total alkalis—silica diagram (Le Bas et al, 1986;
Fig. 4), the mafic rocks plot in the fields of trachybasalt,
basaltic trachyandesite, tephrite or phonotephrite. To
avoid these rather cumbersome names we will refer to
these rocks simply as trachybasalts. The felsic lavas show
a wide range of compositions extending from trachyte
well into the field of rhyolite. All these rocks plot in the
alkalic domain, above the line that separates tholeiitic
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B Upper felsic sequence

SHIELD VOLCANO ON SKIFF BANK

O Lower felsic sequence

250 250
200f [ (1 1200
— L m| u L] J =
g_ 150 ] 150 g
= Him (W k=)
5 100f o w0 - - 100 3
@ - [ s
501 m g O 150
II_.-. | u
0 N mam ¥ ‘ . . . 0
O
= |
6000 L]
E - - m 200 £
=4 [ 8
<, 4000 - ;8
Q i = 3
- Ch®™ - o 1100
2000 g UEE W 0
e mm ]
0 : : : : : : : : 0
I = u ]
200 . o T
£ m ]
g 150} Clap . 1z
2 i 18 8
z 2
100} m U ]
00 .".l'-. G . ns b=
14
50
0 : - - - : - - - 0
0 500 1000 1500 2000 O 500 1000 1500 2000 2500

Zr (ppm)

Zr (ppm)

Fig. 3. Variation diagrams illustrating a good correlation in the felsic rocks between two immobile elements (Zr and Nb) and poor correlation
between other pairs of elements. In some cases the poor correlation results from mobility during alteration (e.g. Rb vs Zr), in some cases it is
the result of variable extents of fractional crystallization (TiO, vs Zr), and in the other cases both processes are implicated.

and alkalic rocks (Kuno, 1966). A notable exception is
the altered vitric tuff (Unit 3), which plots in the tholeiitic
domain, in the field of dacite.

Stratigraphic variations in major and trace element
compositions, from base to top of the drilled section, are
illustrated in Fig. 5a and b. The maficfelsic bimodality
of the volcanic suites is immediately apparent. The mafic
lavas have a restricted range of relatively low SiO,
contents, from 46 to 54 wt %, and the felsic rocks show
a wider range, from 61 to >80 wt %. There is little
systematic up-section evolution in major and trace ele-
ment compositions, and few differences between com-
positions in the upper and lower felsic suites. An exception
1s Al,Os, which is lower in rhyolites in the upper part of
the section than in trachyte flows from both the lower
part of the upper felsic series (Unit 5) and from the lower
series (Units 18 and 19).

The highly altered green vitric tuff’ (sample 56R3
101-107; Unit 3) again plots separately from the other
samples. It has unusually high MgO, AL, O, P,O;, LOI,
Cs, Sr, REE and Y, and low K,O, Na,O and Rb (Fig.
5a and b).

In the variation diagrams (Fig. 6a and b), the samples
also fall into two distinct groups. Concentrations of most
major elements in the high-SiO, felsic rocks are distinctly
lower than in the trachybasalts. Elements that are in-
compatible with ferromagnesian minerals, such as Th,
Zr and most of the REE, are present in high con-
centrations in the felsic rocks, whereas elements com-
patible with feldspar (Sr, Eu and Ba) or minor mineral
phases (Ti, P) are relatively depleted.

In the REE and mantle-normalized trace eclement
diagrams plotted as Fig. 7, the felsic volcanic rocks plot
as relatively smooth spectra punctuated by large troughs
(negative anomalies) at Ba, Sr, Eu, T1 and P. A notable
feature 1is the relatively flat slope of the more compatible
elements and the relatively wide range in the con-
centrations for these elements. Ytterbium contents, for
example, vary by a factor of about three, from 5 to 13-5
ppm. This behaviour is shown more specifically in Fig.
8, in which a heavy REE (HREE) ratio (Gd/Yb)y is
plotted against the concentrations of light REE (LREE)
and HREE. Three samples of rhyolite from Unit 1 in
the upper sequence (51R1 13-19, 52R1 2-7 and 54R1
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Fig. 4. Total alkalis (Na,O + K,O) vs SiO, diagram after Le Bas et al. (1986). Fields representing rocks from the Kerguelen Archipelago are
from Weis et al. (1993, 1998), Yang et al. (1998) and Frey et al. (20004). Those for the Kerguelen Plateau are from Salters et al. (1992), Storey et
al. (1992), Shipboard Scientific Party (2000) and Frey et al. (2002). The tholeiitic-alkalic dividing line is from Kuno (1966). Numbers on samples

or open fields identify the volcanic units from Site 1139 (see Fig. 2).

1-9) have trace eclement patterns very different from
those of the other felsic rocks. They all have relatively
low abundances of LREE, but their HREE are as high
as, or higher than those in the other samples. This
behaviour is also illustrated in Fig. 8, in which (La/Sm)y
1s plotted against (Gd/Yb)y. It is notable that the samples
with relatively low LREE have the lowest Ba, Sr, Eu and
P contents. These samples are relatively rich in spherulitic
textured glass, and they may have been more susceptible
to alteration than the other samples.

Another group of elements, including Cs, U, Rb and
Ce, shows wide variation that appears decoupled from
normally immobile elements such as Th and Zr (Fig. 8a
and b). As mentioned in the introduction to this section,
this scatter is probably due to mobility of these elements
during alteration of the rocks.

In contrast to the diversity of trace element patterns
of the felsic rocks, all the trachybasalts have very
similar patterns (Figs 6 and 7). They are depleted in
HREE compared with middle REE (MREE) to LREE
[(Gd/Yb)x = 2-3-1] and have strongly sloping trace
element patterns. Levels of LREE are similar to those
in the least-enriched felsic lavas. All samples have low
Cs contents, large negative Th and U anomalies, and
small but variable Nb, Pb, Sr and Ti anomalies (Fig.
7). Small positive Ba and Eu anomalies are present in
some samples. As discussed in a later section, these
variations are due in part to alteration, in part to

fractional crystallization, and perhaps in part to source
characteristics.

In the trace element correlation diagrams (Fig. 8a and
b), the mafic and felsic rocks again show contrasting
patterns. Only for a few elements is there a close cor-
relation (e.g. Zr, Th and Nb). In the T1 vs Zr diagram,
two very different trends are seen: in the mafic lavas T1
varies widely whereas Zr remains constant; in the felsic
lavas, T1 is more constant whereas Zr varies. A similar
pattern 1s seen when Ba, Eu, Sr, P and Pb are plotted
against Zr or La.

Isotopic compositions

Isotopic data are listed in Table 2 and plotted in Figs 9
and 10. Measured values in the mafic lavas are relatively
uniform; except for three samples with slightly higher
Nd isotope ratios, '"Nd/'**Nd ranges only from 0-51251
to 0-51259 and Sr/®Sr from 0-7057 to 0-7071. Initial
isotope ratios were calculated for an age of 68 Ma,
using element ratios measured by ICP-MS on unleached
powders. Initial neodymium isotope ratios ('*Nd/
"Nd)gs o range from 0-51246 to 0-51271 (eNdggy, =
3:0 to —1-8) and initial strontium ratios (¥Sr/®Sr)ss .
from 0-7054 to 0-7059.

The felsic samples have a restricted range of Nd isotope
compositions (0:51250-0-51262) that coincides with val-
ues in the mafic lavas. Initial ("*Nd/"**Nd)g \1, calculated
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Fig. 5.

using Sm/Nd ratios measured by ICP-MS in the whole-
rock powders range from 0-51245 to 0-51257. Strontium
isotope ratios measured on leached powders show an
enormous range, from 0-7105 to 1-58; measurements of
two unleached samples, in contrast, gave values that are
still very high, but in a more restricted range (0-7810—
0-7912). The leachates gave values between 0-7108 and
0-7269.

Measured lead isotope compositions are plotted in Fig.
10. The felsic volcanic rocks have slightly higher ***Pb/
"Ph than the mafic lavas (17-6-17-9 compared with
17:-5-17-6). The same relationship is seen for **Ph/
*™Ph, but not for *’Pb/**Ph. When initial Pb isotope
compositions are calculated using U/Pb from the ICP-
MS analyses and an age of 68 Ma, two samples of felsic
rock plot within the field of the mafic lavas, but the
remainder plot as a separate group, still with slightly
higher **Pb/**Pb and ***Ph/***Pb.

(O Trachybasalts

B Upper felsic sequence

COMPARISON WITH OTHER PARTS
OF THE KERGUELEN PLATEAU

The alkalic character and the high concentrations of
incompatible trace elements of samples from Site 1139
distinguish them from the majority of volcanic rocks of
the Kerguelen Plateau, which are flood basalts with
tholeiitic compositions (Salters et al., 1992; Storey et al.,
1992; Weis & Frey, 2002). The Site 1139 samples more
closely resemble some of the younger (<10 Ma) rocks on
the Kerguelen Archipelago (Fig. 11). As described by
Weis et al. (1993), Yang et al. (1998), Frey et al. (20000)
and Doucet et al. (2002), the Archipelago consists mainly
of two series of flood basalts, an older 30—28 Ma series
with a tholeiitic to transitional character, and a younger
~25-24 Ma alkalic series. These rocks are overlain by
much younger (<10 Ma) alkalic lavas and volcaniclastic
rocks, particularly in the South East Province (Gautier
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Fig. 5. Downcore variations in major (a) and trace element (b) concentrations.

et al., 1990; Weis et al., 1993) and Mt Ross (Weis et al.,
1998). Differentiated suites of mafic to felsic alkalic rocks
erupted as part of the still-active volcanism on Heard
Island (Barling et al., 1994).

Large differences exist between the compositions of
the trachybasaltic lavas from Site 1139 and those of mafic
lavas from other locations on the Kerguelen Plateau and
Archipelago. In Fig. 11, the trachybasalts are seen to
have low contents of MgO (4:3-0-7%) and CaO (2-2—
9:9%), which causes them to plot separately from rocks
from throughout the Kerguelen Plateau and Archipelago.
In addition, some Site 1139 samples have unusually high
Fe,O4 and P,O; contents.

In Fig. 9, the Nd and Sr isotope ratios of mafic lavas
from Site 1139 plot close to the trend of Heard Island
lavas and near those of basalts of Sites 747, 748 and
1137, which are all located in the central part of the
Kerguelen Plateau (Salters et al., 1992; Barling et al.,
1994; Weis et al., 2001; Frey et al., 2002; Ingle et al.,
2002). The 1sotopic compositions also are similar to those
of younger alkaline lavas from the Kerguelen Archipelago
(Weis et al., 1993, 1998; Frey et al., 20005). Strongly

negative initial eNd values, like those of crust-con-
taminated lavas from Site 738 (Mahoney et al., 1995),
are absent.

In Pb/Pb diagrams (Fig. 10), the measured isotopic
compositions of the mafic lavas from Site 1139 plot at
the high *’Pb/**Pb end of the fields defined by Sites
747 and 750 (Salters et al., 1992; Frey et al., 2002). Both
the mafic and the felsic rocks have compositions near
the unradiogenic end of Heard Island trend, close to the
compositions of Site 749 but with higher **Ph/***Pb vs
26Ph/2Ph. In Site 1139 lavas, **Pb/***Pb and ***Pb/
“Ph, but not *"Ph/*'Ph, are distinctly lower than in
rocks from the Kerguelen Archipelago (Weis et al., 1993,
1998; Yang et al., 1998; Frey et al., 20005).

DISCUSSION

Effects of alteration on the compositions of
the mafic lavas

Many chemical characteristics of the volcanic rocks from
Site 1139 can be attributed to fractional crystallization
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of the phenocryst phases in the lavas. The relatively
evolved, trachybasaltic (rather than basaltic) chemical
compositions of the mafic lavas are broadly consistent
with their mineral assemblages, which have high feldspar
contents and low abundances of ferromagnesian minerals.
For example, the mineral modes of the trachybasalts
contain 70-80% feldspar, 0-3% mafic minerals, 5-10%
Fe-Ti oxides and 10-20% clay minerals. As explained
above, the oxides are interpreted to represent the altered
relicts of mafic minerals such as clinopyroxene or am-
phibole. Because of this alteration, it is difficult to obtain
reliable information about the original magmatic min-
eralogy.

It is probable that these rocks acquired their evolved
character, at least in part, by fractional crystallization of
more mafic, basaltic, parental magmas. None the less,

(O Trachybasalts

SO, (wt %)

B Upper felsic sequence

their peculiar position in the variation diagrams (Iig.
11), where they plot apart from the mafic to felsic volcanic
series of the Kerguelen Archipelago (Weis et al., 1993,
1998; Yang et al., 1998; Frey et al., 20005) probably has
another cause. Comparison of petrographic features of
lavas of the younger suites from the Kerguelen Ar-
chipelago and Site 1139 reveals few differences in the
inferred primary mineral assemblages (Weis et al., 1998;
Frey et al., 20005). What distinguishes the two is the
degree of alteration, particularly the almost complete
replacement of primary ferromagnesian minerals in Site
1139 lavas by an assemblage of clay minerals and Fe
oxides.

To estimate the pre-alteration composition of the
mafic lavas we made four assumptions: (1) the lavas
originally had major element compositions that plotted
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Fig. 6. Variation diagrams of major elements (a) and trace elements (b) vs silica.

on the broad trend defined by lavas from the Kerguelen
Archipelago; (2) Zr was immobile during alteration; (3)
the pre-alteration Zr contents of the Site 1139 rocks
were similar to those of Kerguelen Archipelago lavas;
(4) orthopyroxene was absent from the norm of these

alkalic rocks. As shown in Fig. 12 for MgO, we
added MgO and CaO, and subtracted FeO from the
compositions of Site 1139 lavas until their compositions
plotted within the trend of the Archipelago samples,
and refined the adjustment until orthopyroxene was
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eliminated from the norm. No adjustments were made
to the other elements, except to renormalize the
compositions to 100%. After correction, the rocks
retain their principal chemical characteristics; in the
total alkalis vs SiO, diagram, for example, they still

plot within or near the trachybasalt field and still lie
in the alkalic domain. The normative mineralogical
assemblage corresponding to the adjusted composition
contains, on average, 11% olivine, 12% clinopyroxene,
44% plagioclase and 18% orthoclase.
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The relatively uniform abundances and ratios, in the
entire trachybasalt suite, of REE, HFSE (except for Ti)
and Th suggest that these elements were little affected
by alteration. All these rocks have very similar REE
patterns (Fig. 7) and plot in a very tight group in Fig.
8a. The greater scatter of Cs and U in Fig. 8a indicates,
in contrast, that these elements were mobile. In Figs 7
and 8b, Sr and Eu also scatter widely, probably because
of a combination of alteration and feldspar fractionation.
The large variation of Tiand P contents, which is partially
responsible for the contrasting trends for mafic and felsic
lavas in Fig. 8b, can be attributed to fractionation of Fe
oxides and apatite.

Origin of the mafic lavas

The steeply sloping trace element patterns and the high
concentrations of the more incompatible elements can
be interpreted as the result of either (1) low-degree mantle
melting under conditions that left garnet as a residual
phase or (2) partial melting of a source that itself was
enriched and had sloping REE patterns. The initial Nd
isotopic compositions range from 0-51246 to 0-51271
(eNdggaa = + 3 to —1-8), but the majority have relatively
constant low values around 0-51247. The relative con-
stancy of Sr and Pb isotopic compositions, as illustrated
i Figs 9 and 10, suggests that these compositions may
not been greatly affected by alteration. These values
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fractional crystallization ('T1i, Sr, Ba, Eu, P).

indicate that the mantle source had an intermediate
composition, neither strongly depleted nor enriched, like
that of most samples from the southern and central
plateau (Fig. 10). The transition from the relatively flat
trace element patterns in the majority of Kerguelen
Plateau basalts (Salters et al., 1992) to the more enriched
patterns in the Site 1139 lavas may indicate a change in
the conditions of melting (an increase in the depth of
melting associated with a fall in the temperature of the
source) or a change in the composition of the source.
We attempt to distinguish between these interpretations
after discussion of the tectonic evolution of the northern
part of the plateau.

Felsic volcanic rocks

We cannot learn a great deal about the magmatic pro-
cesses that produce felsic volcanic rocks solely by studying
two relatively thin sequences of highly altered rocks. Even
in regions where bimodal volcanic sequences are well
preserved and can be studied in outcrop, there is often
no consensus as to whether the felsic rocks formed through
fractional crystallization of basaltic parental magmas or
by partial melting of mafic rocks (e.g. Bohrson & Reid,
1997; Trua et al., 1999; Ayalew, 2000; Deniel ez al., 2000).
In view of these complications, our approach has been
first to attempt to distinguish between the effects of
alteration and magmatic processes, then to compare the
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Fig. 9. ("Sr/"Sr), vs ("*Nd/'**Nd),. Compositions are age corrected to 68 Ma using ICP-MS data. Most of the felsic samples have very high
¥Sr/*Sr ratios and plot off scale. Fields representing rocks from other parts of the Kerguelen Plateau are from Salters et al. (1992), Mahoney et
al. (1995) and Frey et al. (2002); those for the Archipelago are from Weis e al. (1993, 1998), Yang et al. (1998) and Frey et al. (20006). The Heard
Island trend is taken from Barling et al. (1994) and the field representing the Indian Ridge is from Mahoney et al. (1992) and Dosso et al. (1988).

compositions and characteristics of the Site 1139 rocks
with those of well-preserved sequences from regions
where the tectonic setting 1s better understood. In this
way we can establish the significance of the petrological
and chemical features preserved in the Site 1139 volcanic
rocks and then use these features to determine the tectonic
setting in which the rocks were erupted.

Recorded in the trace element patterns of the Site
1139 felsic lavas is evidence of two separate processes:
low-pressure fractional crystallization, and alteration. The
extremely low concentrations of certain elements pinpoint
the role of the major fractionating minerals: Sr and Eu
were extracted by plagioclase and K-feldspar; Ba by K-
feldspar; P by apatite; and Tiby Fe—Ti oxides. In addition
to these minerals, one or more ferromagnesian minerals
must have fractionated to reduce the MgO and FeO
contents. Because of the alteration we cannot use major
elements to model this fractionation and instead have to
rely on the trace elements. The procedure we adopted
was to assume that the mantle-normalized pattern for
the parental magma contained no anomalies. We then
estimated the proportions of fractionating minerals, sub-
tracting each mineral from the mafic composition until
the anomalies in the felsic rocks are reproduced. The
procedure depends strongly on the sets of partition co-
efficients adopted, but using standard values from Green’s
(1994) compilation, we calculated that the felsic rocks

could have formed a parental trachybasaltic magma by
90% crystallization of an assemblage consisting of 10%
clinopyroxene, 9% hornblende, 15% plagioclase, 51%
K-feldspar, 7% apatite and 8% ilmenite (Fig. 13).
Because the REE, with the exception of Eu, are in-
compatible with feldspar, fractionation of plagioclase
and K-feldspar will increase the concentrations of these
elements. In contrast to their behaviour in mafic minerals,
in feldspar the LREE are more compatible than the
HREE (Arth, 1976). Magmas that evolve through feldspar
fractionation therefore should have higher REE contents
and flatter REE patterns than their parental magmas.
Qualitatively, the removal of feldspar provides an
explanation for the relatively flat patterns of the three
anomalous rhyolite samples from Unit 1 (51R1 13-19,
52R1 2-7 and 54R1 1-9; Fig. 7). These samples have
extremely low contents not only of Sr and Eu but also
of P and T1, indicating that they underwent large amounts
of fractional crystallization. Quantitatively, however, the
explanation does not work. First, there is no correlation
with modal mineralogy and major element compositions:
samples with low REE contents and low La/Yb ratios
include both high-Si rhyolites and (relatively) low-Si
trachytes. Second, the changes in the concentrations and
ratios of the REE are far greater than can be expected
from feldspar fractionation alone. As shown in Fig. 13,
extraction of 66% feldspar (the amount calculated from

1277



JOURNAL OF PETROLOGY VOLUME 43 ‘ NUMBER 7 JULY 2002
15.8}
Kerguelen
L Archipelago
(<10 Ma)
15.7}F
1137
o i basalt
g Heard
S 15.6) _lsland
o 7 = " trend
& L 1139 2
] mafic JT——————"Kerguelen
1551 22222 Archipelago
: Vi (> 22 Ma)
| 7
15.4} 747
750
17 17.5 18 18.5 19
206pp / 204pPp
Kerguelen
40 ¢ Archipelago
(<10 Ma) Kerguelen
Archipelago
r (> 22 Ma) N
g asatt 17 7/ isiand
g 39| 738 ] r‘” trend
o 139  u —
é | felsicm _ =
g -~
1139 4
38 | mafic %)
747,
I 750
Indian Ridge
17 17.5 18 18.5 19

Fig. 10. Lead isotope diagrams. Data sources as in Fig. 9. Compositions are not age corrected.

Ba, Sr and Eu contents), as well as the minor phases
listed above, can account for only a fraction of the
variations of REE concentrations and ratios measured
in the felsic rocks. These discrepancies could be taken as
evidence cither for mobility of the REE, or for in-
dependent derivation of the mafic and felsic lavas.

Sr and Pb isotopic compositions

As mentioned in an earlier section, both the measured
and initial Pb isotopic ratios of the felsic lavas are slightly
higher than in the mafic lavas. In view of the evidence
of element mobility, how much significance can be placed
on initial ratios calculated from U, Th and Pb contents
of the whole rocks?

Three arguments suggest that the two groups of rocks
could originally have had similar Pb isotopic composition
and that the difference in measured isotopic composition
1s due to isotopic evolution: (1) the measured Pb 1sotope
compositions, when viewed at the scale of variations
throughout the entire Kerguelen Plateau, are not widely
different in the two groups of rocks; (2) the U/Pb and
Th/Pb ratios required if the felsic lavas were to evolve
to their present position are 0-32 and 1-49, similar to
those of the unaltered felsic lavas on the Kerguelen
Archipelago (~0-3 and ~ 1-35); (3) the initial Nd isotopic
compositions of the felsic lavas are identical, within error,
to those of the mafic lavas.

These parent-daughter ratios are significantly higher
than those measured by ICP-MS on whole-rock samples.
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Fig. 11. Comparison of the major and trace element compositions of Site 1139 lavas with rocks from other parts of the plateau. Data are from

Weis et al. (1993, 1998), Yang et al. (1998) and Frey et al. (20006).

The Zr vs Pb diagram (Fig. 8b) shows that most samples
fall on a moderately tight trend, but five samples have
lower Pb contents. If these are excluded, the average
ratios are U/Pb ~0-14 and Th/Pb ~0-83. To explain
the difference between the required ratios and those
actually measured in the samples, one solution is that
the felsic rocks had gained Pb. However, unless the
foreign Pb had the same composition as that of the

samples, Pb gain would have changed the isotopic com-
position. Another possibility is that the samples lost U
and Th, and that this loss was relatively recent. Although
U is a mobile element, Th is assumed to be immobile,
as is confirmed by its very good correlation with Zr (Fig.
8a). The measured Th/Pb ratio (0-83) is far from the
calculated value of 149, which implies that the Pb
isotopic composition of the felsic and mafic lavas may
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Fig. 12. Procedure used to correct the major element compositions of trachybasalts from Site 1139. The grey field represents the compositions
of unaltered alkalic rocks from the Kerguelen Archipelago (from Weis et al., 1993, 1998; Frey et al., 20006). A similar procedure was used to

correct CaO and Fe,O;.

mitially have been slightly different. The felsic magmas
could perhaps have fractionated in crustal magma cham-
bers where they interacted with slightly older, possibly
altered surrounding rocks.

The high ¥Sr/®Sr ratios measured in the leached felsic
lavas probably result from preferential removal in the
leachate of a component with a high Sr content and low
Rb/Sr. The elimination of this component left a residue
with high Rb/Sr that evolved to give high *’Sr/®Sr. This
hypothesis is confirmed by the low *’Sr/®Sr ratios of the
leachates (0-7108 and 0-7194). Cousens et al. (1993)
observed similar behaviour during their leaching ex-
periments on felsic volcanic rocks from the Canary
Islands. We did not measure Rb/Sr in the leached residue
and cannot calculate reliable mitial values. The mobility
of REE elements casts some doubt on the validity of

the initial Nd isotopic compositions of the felsic lavas.
However, in this case their compositions fall within the
same range as the mafic lavas, and the correction for
1sotopic decay over 68 Ma i1s relatively low.

What emerges from this discussion is the following.
The trace element contents of the felsic volcanic rocks,
and probably their Sr and Pb isotope compositions as
well, were affected to some extent by alteration. The
concentrations and the ratios of most trace elements,
including the normally resistant REE, differ from those
in the original magmas. For the HREE, the four-fold
difference in concentrations (e.g. 4:3-18:5 ppm for Er)
1s at least in part a secondary effect. However, the overall
form of the trace element patterns—their relatively flat
slopes and large negative anomalies—is probably a true
reflection of their original compositions. Furthermore,
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Fig. 13. Results of a model to simulate derivation of the felsic rocks from parental trachybasalt by crystal fractionation of clinopyroxene,
plagioclase, K-feldspar, hornblende, ilmenite and apatite. The poor fit between the analytical data and the calculated trend implies that the
felsic rocks were not derived from the trachybasalts by simple fractional crystallization.

the concentrations of a few elements, such as the HFSE
and perhaps Th as well, may have been little affected by
alteration.

In this light we cautiously interpret the varations in
major and trace elements in Fig. 13 as evidence that the
felsic volcanic rocks were not derived directly by fractional
crystallization of the trachybasalts. In each of these dia-
grams, many of the felsic volcanic rocks plot well off the
fractional crystallization trends. The concentrations of
Th and La in many of the felsic rocks are similar to, or
only slightly higher than those in the trachybasalts (Figs
7, 8 and 13). The fractional crystallization models, on
the other hand, produce melts that have Th and La
abundances up to five times higher than in the felsic
lavas. Taken together with the possibility that the Pb
isotope compositions of the two groups of rocks may
have differed, these results suggest that the felsic magmas
formed not by fractional crystallization but by partial

melting of a mafic source. A series of melts with inter-
mediate compositions and variable extents of silica sat-
uration may have been produced, and these fractionally
crystallized to form the trachytes and rhyolites. The flat
HREE patterns indicate that the melting took place in
the absence of garnet, which suggests melting at relatively
shallow depths, perhaps near the base of the volcanic
pile.

Nature and timing of the alteration

In the initial report of the Shipboard Scientific Party,
the structures and textures of the volcanic rocks of Site
1139 were interpreted to indicate subaerial eruption.
From the age dating of Duncan (2002), we know that
the eruption took place 68-66 Ma ago. The age of the
chalk of the sedimentary Unit III (Shipboard Scientific
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Party, 2000), which lies ~80 m above the volcanic rocks,
is ~ 34 Ma, but a sequence of shallow-water sedimentary
rocks intervenes between this unit and the volcanic rocks.
We infer, therefore, that the rocks remained subaerial
for some unknown portion of the 32 Myr period between
the eruption of the volcanic rocks and deposition of the
chalk. The problem is to establish the timing and origin
of the intense alteration that has affected the rocks. Unless
the plateau foundered immediately after eruption of the
Site 1139 volcanic rocks, the role of seawater is unlikely
to be important.

It is most likely that the alteration resulted from pro-
cesses within the subaerial volcanic pile. The nature of
the secondary minerals in the intensely altered lower
trachytic flows, particularly the presence of siderite, chal-
cedony and clay minerals in the matrix of these rocks,
resembles those of rocks affected by the circulation of
fluids derived from high-level alkalic intrusions (Var-
tiainen & Wooley, 1976).

Another possibility is that the rocks were affected by
fumarolic activity or by weathering, which may have
contributed to the removal of MgO and CaO and
addition of FeO seen in the mafic lavas. For a better
understanding of these processes we await the results of
a parallel study of mineralogical aspects of the alteration
of Site 1139 volcanic rocks, which is currently being
undertaken by D. Teagle at the Southampton Oceano-
graphic Institute.

Continental crust contamination

An important element in the interpretation of lavas from
the Kerguelen Plateau is the extent to which they record
interaction with continental lithosphere. The presence of
a continental component in rocks from Sites 738 and
1137 (Mahoney et al., 1995; Weis et al., 2001; Ingle et al.,
2002) provides convincing arguments that basalts in
several parts of the older southern plateau and Elan Bank
erupted onto or near continental lithosphere, in the
manner of continental flood basalts.

The volcanic rocks of Site 1139 show no convincing
evidence of continental material. The trachybasalts have
relatively low Nb/La ratios, which could be taken as an
indication of a crustal component, but the same lavas
also contain low concentrations of Th and U. In most
rocks from the upper continental crust—granitoids, sedi-
ments and metamorphic rocks—mantle-normalized Th
contents are far higher than mantle-normalized Nb con-
tents (Rudnick, 1995). The signature of crust con-
tamination is a negative Nb anomaly—low Nb/La
accompanied by high Th/Nb. Some high-grade gran-
ulites are relatively depleted in Th, but this depletion
normally 13 accompanied by far more pronounced de-
pletion of elements such as Rb and U (Rudnick &
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Fountain, 1995). In the trachybasalts, Rb is undepleted.
We are aware that these elements may be mobile and
recognize the possibility that their concentrations could
have been increased during the later alteration. However,
the relative constancy, particularly of Th/Nb ratios,
suggests that low Th is a primary feature. Negative Th
and U anomalies have been recognized in several other
suites of plume-related basalts, such as in non-con-
taminated members of the Coppermine and Ethiopian
continental flood basalts (Griselin & Arndt, 1996; Pik et
al., 1999). In these series, the low Th and U contents
are interpreted as a source feature of unknown origin.

The felsic volcanic rocks show a wide range of Nb/
La ratios, which, as explained above, is the combined
result of fractional crystallization and element mobility.
If these rocks had once had low Nb/La, this feature has
been masked by subsequent element mobility.

On balance, it seems that the volcanic rocks from Site
1139 have not interacted with continental lithosphere.

Tectonic setting

In an earlier section we compared the compositions of
Site 1139 lavas with those of lavas from the rest of the
plateau. Broadly speaking, the Site 1139 rocks can be
distinguished from the tholeiitic flood basalts throughout
the plateau by their bimodal, alkalic character and by
their strong enrichment of incompatible trace elements.
Their Pb isotopic compositions are similar to those of
lavas from Kerguelen Plateau (Sites 747 and 750) but
different from those from Sites 738 and 1137, which
were affected by contamination with upper crust.

In terms of their petrological character and their trace
element contents, the Site 1139 lavas are more like
some of the younger volcanic rocks on the Kerguelen
Archipelago. The two suites are distinguished, however,
by the presence of high-Si quartz-phyric rhyolites at Site
1139 and by low *Pb/*"*Pb ratios in the Site 1139
rocks. In addition, there are the previously mentioned
differences in the degree of alteration, and in the ages of
the two groups of rocks: the Site 1139 rocks were dated
at 68 Ma whereas the volcanism on the Kerguelen Ar-
chipelago ranges in age from 30 Ma to virtually the
present (Weis et al., 1993, 1998; Nicolaysen, 2000).

How can we explain these differences, and what do
they tell us about the tectonic setting in which the rocks
of Site 1139 were emplaced? We answer this question
by comparing the rocks from Site 1139 with bimodal
volcanic suites from three other regions: the Kerguelen
Archipelago, modern oceanic islands, and the Ethiopia
volcanic plateau.

The Kerguelen Archipelago is composed dominantly
of tholeiitic to transitional flood basalts, overlain by
younger volcanic edifices, some of which contain alkalic,
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mafic to felsic suites. These volcanic rocks differ in two
significant ways from the Site 1139 assemblage: (1) instead
of having a bimodal distribution, the volcanic rocks
display a semi-continuous range of composition, from
mafic to felsic; (2) the most evolved members have
trachytic to phonolitic compositions, and quartz-phyric
rhyolites, like those of the upper series at Site 1139, are
absent (Weis et al., 1993, 1998; Frey et al., 20005).

Bimodal volcanic suites are present in a few oceanic
islands. The best-known example is Iceland, where rhyo-
lites make up ~12% of a volcanic pile dominated by
tholeiitic basalts (Sigurdson, 1977; Johannesson & Sa-
emundsson, 1989; Marsh et al., 1991). Alkalic rocks are
restricted to shield volcanoes, but these also contain a
continuous range of compositions from basalt or basanite
to trachyte. The association of siliceous rhyolite with
alkalic mafic rocks is uncommon or absent. On islands
such as the Canaries, Galapagos and Socorro, bimodal
alkalic suites are present, but on these islands the felsic
lavas are trachytes or low-Si rhyolites. We know of no
reports, in modern oceanic islands, of high-Si quartz-
phyric lavas like those from the upper series at Site 1139
(e.g. Cousens, 1990; Cousens et al, 1993; Bohrson &
Reid, 1997; Civetta et al., 1998).

Most of the Ethiopian plateau formed by flood vol-
canism during an ~ 1 Myr interval at 30 Ma (Mohr &
Zanettin, 1988; Hofmann et al., 1997). Although the
volcanic sequence is dominated by tholeiitic basalts,
abundant (up to 30%) rhyolitic lavas and pyroclastic
rocks are also present. Constructed on the volcanic
plateau are numerous large shield volcanoes. The oldest
of these appear to be penecontemporanecous with the
flood volcanic rocks; others have ages ranging down to
~ 10 Ma, some 20 Myr younger than the flood basalts.
There appears to be a systematic relationship between
the age and the petrological character of the shield
volcanoes (Kieffer e al, in preparation). The older
(~30 Ma) volcanoes are composed dominantly of thole-
itic basalt; alkalic rocks, where present, are restricted to
minor late-stage eruptions. The younger shields contain
a higher proportion of alkalic lavas. They commonly
are bimodal, containing mafic members of basaltic to
phonolitic compositions and felsic members with both
trachytic and quartz-phyric rhyolitic compositions. Al-
though the volcanic plateau was constructed on con-
tinental lithosphere, only the older tholeiitic lavas show
trace element and isotopic evidence of interaction with
continental crust (Pik ez al., 1999). Such evidence is totally
lacking in the bimodal volcanic series of the younger
shield volcanoes.

In the light of this comparison, we suggest that the
volcanic sequence at Site 1139 formed part of a shield
volcano constructed on an older volcanic plateau. Only
in such settings do we find bimodal sequences of alkalic
mafic lavas and felsic rocks that contain both trachyte
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and rhyolite. If the analogy is correct, we have to accept
that the underlying flood basalts may be significantly
older than the 68 Ma eruption age of the Site 1139 rocks.

We have very few independent constraints on the age
of the thick crustal sequence that underlies the volcanic
rocks drilled at Site 1139. The time of eruption is
bracketed by the 90 Ma age obtained from Site 1138 in
the central plateau, ~800km SE of Site 1139, ages
around 94 Ma from Site 1142 on the eastern part of
Broken Ridge (Pringle & Duncan, 2000; Duncan, 2002),
and an age of 34 Ma from Site 1140 in the northern
plateau (Duncan, 2002), ~500km to the NE of Site
1139. A similar low age of 38 Ma was obtained from
Site 254 on the southern end of Ninetyeast Ridge (Dun-
can, 1978). As summarized by Duncan (2002), and Coffin
et al. (2002), the age of the plateau broadly decreases
from the southern to central plateau, from 119 Ma to
~94 Ma, and ages younger than ~ 35 Ma are restricted
to those parts of the plateau adjacent to the Southeast
Indian Ridge, at the northernmost end of the Kerguelen
Plateau and the western end of Broken Ridge. It can be
concluded therefore that the bimodal volcanic series at
Site 1139 erupted onto a volcanic plateau whose age was
somewhere between 68 Ma and ~90 Ma.

It 1s in this context that questions concerning the
magmatic and tectonic history of the plateau, and the
past location of the ‘Kerguelen hotspot’, must be ad-
dressed. Skiff Bank certainly does not correspond to the
present site of the hotspot, as proposed by Miiller ez al.
(1993); the volcanism is far too old. This result cor-
roborates the interpretation of Steinberger (2000) and
Weis et al. (2002), who do not place the plume below
Skiff Bank. Steinberger proposed a location below the
Kerguelen Archipelago on the basis of plume advection
in a realistic mantle flow field, whereas Weis et al. used
age data and geochemical results to infer a plume track
between Heard Island and the Archipelago. Nor can it
be assumed that the hotspot was located at Site 1139
68 Myr ago, because, in Ethiopia, the distribution of
shield volcanoes appears to be controlled by structural
features and to be unrelated to the inferred site of the
mantle plume.

The volcanic rocks of Site 1139, as well as the flood
basalts at the neighbouring Sites 1137 and 1138, are
thought to have erupted subaerially (Frey e al.,, 2000a).
It is likely, therefore, that the upper parts of the 14-19 km
thick crust that underlies the bimodal volcanic rocks of
Site 1139 also consists of subaerial volcanic rocks, at least
in part. The nature of the lower part of the crust and
lithosphere is uncertain. Unlike Site 1137 on Elan Bank,
which is interpreted as a microcontinent on the basis of
geophysical data (Charvis et al, 1997; Borissova et al.,
2000) and where the volcanic rocks contain clear geo-
logical and geochemical evidence of interaction with
continental material, there is no direct evidence for the
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presence of continental material at Site 1139. At Site
1139, all that can be said is that the volcanic rocks were
emplaced subaerially onto a thick volcanic platform.

How then do we explain the alkalic character of Site
1139 rocks? In several continental flood basalt provinces
(e.g. Ethiopia, Merla et al., 1979; Mohr & Zanettin, 1988;
and Siberia, Arndt ef al., 1998), alkalic volcanic rocks
erupted penecontemporaneously with tholeiitic basalts.
The difference in magmatic character is best interpreted
in terms of differences in the degree of melting of their
mantle source. These differences are not readily at-
tributable to differences in lithosphere thickness nor to
variations in the composition of the mantle source (there
1s little difference 1n the isotopic compositions of the two
types of magma). In these regions, tholeiitic volcanism,
the product of high-degree melting, may continue to the
end of the volcanic episode, to form the uppermost flows
in kilometre-thick volcanic piles. This is also the case in
most of the Sites on the southern and central Kerguelen
Plateau. In other sections through the Siberian flood
volcanic rocks, tholetitic flows are intercalated with alkalic
flows, indicating contemporaneous eruption. In each of
these regions, the differences between alkalic and tholetitic
magmas appear to be related mainly to variations in the
temperature of the source (Kieffer et al., in preparation).
If these arguments are correct, then the alkalic character
of Site 1139 lavas indicates only that the parental magmas
were derived from a cooler part of the source; the
composition of these rocks provides little information
about the structure of the lithosphere, nor about their
tectonic setting.

CONCLUSIONS

(1) The volcanic basement at Site 1139 consists of a
sequence of 73 m thickness of trachybasaltic lava flows
between two sequences of felsic lavas and volcaniclastic
rocks.

(2) All the volcanic rocks are moderately to highly
altered. The mafic lavas appear to have lost MgO and
CaO and in some cases gained FeO; the felsic lavas are
characterized by mobility of a wide range of major and
trace elements. Interpretation of the magmatic evolution
of these rocks relies mainly on their petrographic char-
acteristics and on a small range of immobile trace ele-
ments. These include the HFSE, Th and with some
caveats, the REE.

(3) Despite these complications it appears that the
entire sequence had an alkalic magmatic character, as
indicated by high concentrations of alkalis and in-
compatible trace elements.

(4) Magmas parental to the trachybasalts formed
through low degrees of melting of a relatively cool part of
the mantle source. The felsic lavas formed independently,

VOLUME 43

NUMBER 7 JULY 2002

probably through partial melting of mafic rocks within
the volcanic pile. Both types of magma then evolved
through the fractional crystallization of mafic minerals,
feldspar, Fe oxides and apatite.

(5) The volcanic sequence at Site 1139 probably
formed part of a shield volcanic constructed ~ 68 Myr
ago on an older volcanic platform. The age and the
nature of this platform are poorly constrained. It probably
was ecrupted subaerially, at least in its upper portions,
sometime between 68 and 90 Ma. We cannot totally
exclude the presence of continental material in the crust
onto which the underlying flood basalts erupted, but
there i1s no evidence that any such material interacted
with the lavas that were sampled at Site 1139.
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