The Prinsen af Wales Bjerge Formation Lavas, East Greenland: the Transition from Tholeiitic to Alkalic Magmatism during Palaeogene Continental Break-up

D. W. PEATE^{1*}, J. A. BAKER¹, J. BLICHERT-TOFT², D. R. HILTON³, M. STOREY¹, A. J. R. KENT¹[†], C. K. BROOKS^{1,4}, H. HANSEN¹[‡], A. K. PEDERSEN^{1,5} AND R. A. DUNCAN⁶

¹DANISH LITHOSPHERE CENTRE, ØSTER VOLDGADE 10-L, DK-1350 COPENHAGEN K, DENMARK ²LABORATOIRE DES SCIENCES DE LA TERRE, ÉCOLE NORMALE SUPÉRIEURE DE LYON, 46 ALLÉE D'ITALIE, 69364 LYON CEDEX 7, FRANCE

³GEOSCIENCES RESEARCH DIVISION, SCRIPPS INSTITUTION OF OCEANOGRAPHY, LA JOLLA, CA 92093-0220, USA ⁴GEOLOGICAL INSTITUTE, UNIVERSITY OF COPENHAGEN, ØSTER VOLDGADE 10-L, DK-1350 COPENHAGEN K, DENMARK

⁵GEOLOGICAL MUSEUM, ØSTER VOLDGADE 5, DK-1350 COPENHAGEN K, DENMARK

⁶COLLEGE OF OCEANIC AND ATMOSPHERIC SCIENCES, OREGON STATE UNIVERSITY, CORVALLIS, OR 97331, USA

RECEIVED NOVEMBER 1, 2001; REVISED TYPESCRIPT ACCEPTED AUGUST 8, 2002

We present elemental and isotopic (Sr-Nd-Pb-Hf-Os-He) data on primitive alkalic lavas from the Prinsen af Wales Bjerge, East Greenland. Stratigraphical, compositional and ⁴⁰Ar-³⁹Ar data indicate that this inland alkalic activity was contemporaneous with the upper parts of the main tholeiitic plateau basalts and also postdated them. The alkalic rocks show a marked crustal influence, indicating establishment of new magmatic plumbing systems distinct from the long-lived coastal systems that fed the relatively uncontaminated plateau basalts. The least contaminated lavas have high ${}^{3}He/{}^{4}He$ isotope ratios (R/R_A 12·4–18·5), sub-chondritic ¹⁸⁷Os/¹⁸⁸Os_i (0.120–0.126), low ϵNd_i (~ + 4) and ϵHf_i $(\sim + 6)$ that plot below the 'Nd-Hf mantle array', and trace element characteristics similar to HIMU ocean island basalt (OIB). The uncontaminated magma is inferred to have more radiogenic $^{206}Pb/^{204}Pb$ values (>19.2) than the plateau basalts and Icelandic basalts, and thus represents a possible 'enriched' component to explain the compositional variations within the plateau basalts. One model to explain these compositional features is preferential melting of recycled material within the plume upwelling beneath the

thick lithospheric cap, with ³He contributed from volatile-rich fluids from elsewhere in the Icelandic plume. The exact nature of the recycled component is not yet resolved, although Hf isotope compositions rule out any significant role for recycled pelagic sediment, and the low ¹⁸⁷Os/¹⁸⁸Os limits the participation of recycled basaltic material and argues instead for a contribution from the mantle section of the recycled slab.

KEY WORDS: alkalic lavas; flood basalts; high ³He/⁴He; East Greenland; recycled lithosphere; Iceland plume

INTRODUCTION

The extensive Early Palaeogene tholeiitic magmatism on the margins of Greenland and NW Europe, which

© Oxford University Press 2003

^{*}Corresponding author. Telephone: (+45) 38 14 2664. Fax: (+45) 38 10 0878. E-mail: dwp@dlc.ku.dk

[†]Present address: Department of Geosciences, Oregon State University, Corvallis, OR 97331-5506, USA.

[‡]Present address: Geological Survey of Greenland and Denmark, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark.

comprise the North Atlantic Igneous Province, is generally attributed to mantle decompression melting, driven both by the arrival of the Iceland mantle plume and the subsequent rifting that led to continental break-up and the opening of the North Atlantic Ocean (e.g. Saunders et al., 1997). Volumetrically minor alkalic magmatism is found along the East Greenland coast (66-74°N), especially as highly silica-undersaturated rocks that occur mainly as intrusive complexes, but with some lavas and tephra (Nielsen, 1987). The possible origins of such alkalic rocks associated with tholeiitic flood basalts include lowdegree melting of plume mantle beneath a thick lithospheric cap (e.g. Brown et al., 1996), preferential melting of enriched components within the plume such as recycled oceanic crust (e.g. Bernstein et al., 2000), and melting of enriched material within the continental mantle lithosphere by conductive heating from the plume (e.g. Carlson et al., 1996).

The most extensive sequence of alkalic lavas is in the inland Prinsen af Wales Bjerge (Fig. 1), where they form a series of small volcanic centres overlying the main tholeiitic plateau basalts (Wager, 1947; Brown *et al.*, 1996; Hansen *et al.*, 2002). Four stratigraphic profiles were sampled through lava sequences in the northern Prinsen af Wales Bjerge by parties from the Danish Lithosphere Centre. We present new elemental and isotopic (Sr-Nd-Pb-Hf-Os-He) data on these samples to investigate the relationship between the alkalic lavas and the underlying tholeiitic flood basalts. In addition, we address the nature of the mantle sources involved during the waning stages of magmatism that accompanied continental break-up in the North Atlantic region.

GEOLOGICAL BACKGROUND TO THE PRINSEN AF WALES BJERGE LAVAS

East Greenland flood basalt succession

The main Palaeogene lava sequences in East Greenland are in the Blosseville Kyst region (Fig. 1a). The lava stratigraphy of the coastal region is well established, and most of these tholeiitic lavas were erupted in two distinct phases (Storey *et al.*, 1996) comparable with the main magmatic episodes recognized throughout the North Atlantic Igneous Province (Saunders *et al.*, 1997): (1) the earliest volcanic rocks that include the Lower Basalts (Nielsen *et al.*, 1981) at 61–57 Ma, followed by (2) the eruption at 56–54 Ma of the voluminous plateau basalts. The main phase of flood volcanism is divided into four stratigraphic formations (from base to top: Milne Land, Geikie Plateau, Rømer Fjord, and Skrænterne), based on field appearance, petrography, and composition (Larsen *et al.*, 1989; Pedersen *et al.*, 1997). The term 'plateau

Fig. 1. (a) Location map of the East Greenland flood basalts and their relationship to the Iceland plume. Place names enclosed in inverted commas are informal names in regular use that are not yet officially recognized. It should be noted that the nunataks officially referred to as Tjældbjerget (2 on map) are not the same location that Wager (1947) called 'Tjeldebjerge' (3 on map). (b) Map of the Prinsen af Wales Bjerge region showing the locations of the studied sections (informal profile names in italics). Details of the Urbjerget 1 and 2 and 1982 Nunatak profiles have been given by Hansen *et al.* (2002). Vent 1 is the location of sample 436231, which gives an ⁴⁰Arn⁻³⁹Ar age of 53 Ma, and vent 2 has been described by Hansen *et al.* (2002).

basalt(s)' is used here as a collective term for these four formations (after Hansen *et al.*, 2002). A younger magmatic phase (50–47 Ma) is represented by volumetrically minor Igtertivâ Formation lavas that cap the plateau basalts in the NE of the Blosseville Kyst region (Larsen *et al.*, 1989), by some mafic intrusions along the coast (Tegner *et al.*, 1998*a*), and by some offshore lavas (Tegner & Duncan, 1999). A tectonic model to account for these discrete mantle melting episodes has been proposed by Saunders *et al.* (1997) and Tegner *et al.* (1998*a*). The initial phase is inferred to represent the initial impact and rapid dispersal of Iceland plume-head material over a broad area in the shallow upper mantle, resulting in synchronous initiation of magmatism from Baffin Island to Scotland. The driving force behind the second phase of activity is likely to have been decompression melting accompanying the initial plate break-up and opening of the North Atlantic Ocean. Tegner *et al.* (1998*a*) interpreted the third phase as resulting from the passage of the Iceland plume stem beneath the East Greenland rifted margin, although hotspot track reconstructions (Lawver & Müller, 1994; Torsvik *et al.*, 2001) suggest that the plume axis was beneath the thick Greenland craton, ~ 300 km inland at this time.

The Prinsen af Wales Bjerge region and sampled profiles

The inland lavas north of Kangerlussuaq (Fig. 1) have rarely been visited. Previous expeditions to the Prinsen af Wales Bjerge region in 1935-1936 (Wager, 1947; Anwar, 1955; Fawcett et al., 1982; Noble et al., 1988; Brown et al., 1996, 2000) and 1982 (Hogg, 1985; Hogg et al., 1989; Hansen et al., 2002) found alkalic lavas with variable dips, overlying a series of flat-lying tholeiitic lavas. This was interpreted as a series of late-stage alkalic shield volcanoes that developed as the main plateau basalt eruptions came to an end. Published K-Ar ages for Prinsen af Wales Bjerge lavas lie in the range 51-60 Ma (Noble et al., 1988). Hansen et al. (2002) developed a regional stratigraphy for this inland area, based on photogrammetry, new sampled profiles (Fig. 1b), and a compilation of existing and new compositional data. Parts of these sequences can be correlated with the existing coastal stratigraphy (Pedersen et al., 1997), but some compositional units are not found at the coast. In the Urbjerget profiles, there are a few lavas, lying on basement gneisses, that are correlated stratigraphically with the coastal Lower Basalts, and dated by ⁴⁰Ar-³⁹Ar at ~ 61 Ma (Hansen *et al.*, 2002). These are overlain by a younger sequence of high-Ti picrites, unknown elsewhere along the Blosseville coast, and then by tholeiitic basalts inferred to be part of the Milne Land Formation, the lowermost part of the plateau basalts (Hansen et al., 2002). In the northern Prinsen af Wales Bjerge profiles, tholeiitic basalts are interbedded with, and overlain by, a series of alkalic lavas. These alkalic lavas have generally been referred to as the Prinsen af Wales basalts, but Hansen et al. (2002) formalized them as the Prinsen af Wales Bjerge Formation. Compositional data on the lower parts of this inland lava sequence as well as alkalic lavas from 1982 Nunatak (Fig. 1) have been given by Hansen et al. (2002). Here, we focus on the upper parts, to evaluate the origin of the alkalic basalts that make up the Prinsen af Wales Bjerge Formation, and their relationship to the underlying tholeiitic plateau basalts.

Multi-model photogrammetric analysis using stereo photographs obtained in 1994 (Pedersen *et al.*, 1997;

Fig. 2. Stratigraphic profiles sampled in the northern Prinsen af Wales Bjerge and 'Lindsay Nunatak'. Altitudes are approximate, based on using field altimeters plus some independent constraint from subsequent photogrammetry. The sample collection analysed from 'Lindsay Nunatak' came from a short reconnaissance visit in 1995, and their approximate stratigraphic locations have been estimated based on a more comprehensive profile made in 2000. Sample 429291 is from a loose block and either is a clast within the upper conglomerate or comes from one of the flow units that overlie the upper conglomerate unit. The lower conglomerate contains many clasts that are petrographically similar to samples from the nearby Gardiner Intrusion that has been dated at 56–54 Ma (Waight *et al.*, 2002*b*).

Hansen et al., 2002) was used to select four stratigraphic profiles for detailed flow-by-flow sampling during expeditions in 1995 and 2000. Profile locations and stratigraphic details are shown in Figs 1b and 2, respectively. Reconnaissance sampling in 1995 of 'Lindsay Nunatak' to the NW of the Prinsen af Wales Bjerge (Fig. 1) found younger, tholeiitic picrites above the alkalic lavas. We also present major element data on dykes from the southern part of the Prinsen af Wales Bjerge and from areas farther south to demonstrate their compositional similarity to the Prinsen af Wales Bjerge alkalic lavas, attesting to the widespread distribution of this compositional type: one dyke from the Urbjerget 2 section (Fig. 1b: Hansen et al., 2002), and five dykes collected in 1975 that cross-cut the \sim 445 Ma Batbjerg intrusion (Fig. 1a: Brooks et al., 1976; Fawcett et al., 1982).

Fig. 3. Total alkalis–silica classification diagram (Le Bas, 2000). All of the alkalic lavas that fall within the picro-basalt field are, in fact, picrites according to revised definitions of Le Bas (2000), with the exception of one of the Batbjerg dykes. The division between alkalic and tholeiite lavas is from MacDonald & Katsura (1964). Published analyses from Prinsen af Wales Bjerge and Trekantnunatakker alkalic and tholeiitic lavas are labelled as 'other' (Hogg, 1985; Hogg *et al.*, 1989; Brown *et al.*, 1996, 2000; Hansen *et al.*, 2002); field for coastal plateau basalts from Scoresby Sund (Larsen *et al.*, 1989). Highly altered samples with 'volatiles' (see Table 3 caption) >4 wt % are not plotted.

RESULTS

Sample classification and petrography

Using the IUGS classification scheme (Le Bas, 2000), most samples classify as picrites, basalts, trachybasalts and basanites. The total alkalis vs silica diagram (Fig. 3) shows the clear division of the analysed samples into alkalic and tholeiitic magmas, using the alkalic-tholeiitic boundary from Hawaii (MacDonald & Katsura, 1964). The tholeiitic lavas are found at the base of the sampled profiles, and overlap with the field for the coastal plateau basalts. The uppermost, tholeiitic flows at 'Lindsay Nunatak' are an exception as they overlie alkalic lavas that are younger than the plateau basalts based on new ⁴⁰Ar-³⁹Ar dating (see below). The alkalic lavas are mildly alkalic, with CIPW norm calculations indicating that just over half are nepheline normative. The lowermost flow at 'Lindsay Nunatak' (429289) is nepheline normative but different from the other alkalic rocks as it has lower SiO_2 and thus classifies as a nephelinite.

Detailed petrographic descriptions of the Prinsen af Wales Bjerge lavas have been given by Anwar (1955), Hogg (1985) and Brown *et al.* (1996, 2000). The tholeiitic lavas are virtually aphyric (<5% plagioclase phenocrysts), except for two samples (429246 and 429250) that have up to 15% plagioclase phenocrysts, and the uppermost flow at 'Lindsay Nunatak' that is olivine-phyric (429288:

Step	Temp. (°C)	Age (Ma)	2σ	% ⁴⁰ Ar _R	% total ³⁹ Ar
Sample 43	86231, plagi	oclase			
1	800	54.9	0.3	93-27	57.8
2	850	54.4	0.9	94.97	19.1
3	900	54.8	1.2	81.92	4.9
4	1000	55.3	2.1	76.91	4.7
5	1125	53.6	1.8	84.90	5.9
6	1325	54.3	1.2	83.70	7.6
Sample 43	86223, whol	e rock			
1	600	55.5	2.56	18.12	4.85
2	800	53.9	1.54	53.82	10.48
3	900	53.67	1.15	37.36	18.07
4	1000	52.7	0.56	71.26	28.51
5	1250	50.75	0.69	74.25	22.01
6	fusion	49.71	0.93	81.78	16.1

Table 1: ⁴⁰Ar/³⁹Ar age data for two Prinsen af Wales Bjerge Formation samples

Plagioclase sample 436231 is from a pegmatite from vent 1 (see Fig. 1). It was heated using a Heine, low-blank, double vacuum furnace, and the argon isotopic composition was analysed on a MAP 215-50 mass spectrometer. For this sample, plateau age (steps 1–6; 100% ³⁹Ar released) = **54**·88 \pm **0**·97 Ma; inverse isochron (steps 1–6) = **55**·07 \pm 1·08 Ma; $^{40}\text{Ar}/^{36}\text{Ar}_i = 284\cdot4 \pm 28\cdot6; J = 0.0016533 \pm 0.0000142$. Wholerock sample 436223 is from a lava from 'Lindsay Nunatak' (see Fig. 1). It was heated inductively using a radio-frequency induced heating coil and analysed on an AEI MS-10S mass spectrometer. For this sample, plateau age (steps 1–4; 61.9% ^{39}Ar released) = **53**·08 \pm 1·17 Ma; inverse isochron (steps 1–4) = **52**·52 \pm 1·10 Ma; $^{40}\text{Ar}/^{36}\text{Ar}_i = 299\cdot4 \pm 3\cdot1; J = 0.0014500 \pm 0.000135$. All calculations are relative to monitor FCT-3 biotite (28:04 \pm 0.12 Ma). All errors are 2 σ . [See Storey *et al.* (1998) for further details.]

~30% 1–2 mm euhedral olivine phenocrysts). Most alkalic samples are porphyritic, with up to 40% subto euhedral phenocrysts (2–10 mm) of olivine and/ or clinopyroxene, although a few are virtually aphyric. Although our samples are mainly picritic (olivine-dominated, with <5% clinopyroxene phenocrysts), Brown *et al.* (1996, 2000) documented some ankaramitic (clinopyroxene-dominated) flows from other localities.

⁴⁰Ar-³⁹Ar geochronology

Two alkalic lava samples were selected for dating by the step-heating ${}^{40}\text{Ar}{-}^{39}\text{Ar}$ method. The data are presented in Table 1 [see table legend and Storey *et al.* (1998) for analytical details]. Sample 436223 is a lava from the middle of the 'Lindsay Nunatak' profile (Fig. 2), and a whole-rock sample gave a plateau age of $52 \cdot 5 \pm 0.3$ Ma

(Table 1). The isochron age for this sample is concordant with the plateau age and the initial 40 Ar/ 36 Ar ratio is within error of the atmospheric value. Sample 436231 is an evolved, pegmatitic sample from a vent site in the Spring Journey Nunataks (vent 1, Fig. 1). A plagioclase separate gave a plateau age of $54 \cdot 9 \pm 1 \cdot 0$ Ma and a concordant isochron age of $55 \cdot 1 \pm 1 \cdot 1$ Ma with an atmospheric initial 40 Ar/ 36 Ar ratio. The age for sample 436223 confirms inferences from field relations that parts of the Prinsen af Wales Bjerge Formation magmatism postdate the eruption of the coastal plateau basalts (56–54 Ma: Storey *et al.*, 1996). However, the older age for sample 436231 provides the first indication that some of this alkalic magmatism was contemporaneous with the plateau basalt eruptions.

Major element variations

Major element data on 77 samples, analysed by X-ray fluorescence spectrometry, are given in Table 2. The variations of selected major elements with MgO, an index of crystal fractionation, are shown in Fig. 4. Some samples have elevated 'volatiles' values (see table legend) consistent with petrographic evidence for post-eruptive alteration and weathering. However, these make up only a small proportion of the analysed samples (only 12 out of 77 analysed samples have 'volatiles' values >2.5 wt % and most of these are dykes). Although alteration affects most samples to some extent (e.g. the greater data scatter in Fig. 4 of K_2O , a fluid-mobile element, compared with TiO₂), we believe that our overall petrogenetic conclusions are robust as they are based in general on variations of the more immobile elements in the freshestlooking samples.

The main tholeiitic lavas have a restricted compositional range (MgO 6.0-7.2 wt %) and lower TiO₂, relative to the alkalic lavas (MgO 4-25 wt %). The youngest tholeiitic flow (429288) at 'Lindsay Nunatak' has high MgO (~ 20 wt %), and some other highly magnesian tholeiites have been reported from Trekantnunatakker and 'Tjeldebjerge' (Brown et al., 1996, 2000). The main tholeiitic lavas show a significant range in TiO₂ for a given MgO content, indicating that the samples cannot simply be related to a common parental magma by different extents of fractional crystallization. Two distinct subgroups can be recognized: Group 1 have $TiO_2 < 3.2$ wt % and $SiO_2 > 48.2$ wt %, whereas Group 2 have TiO₂ >3·2 wt % and SiO₂ <48·2 wt %. Two samples (429246 and 429250) have anomalously high Al₂O₃ indicative of plagioclase accumulation, which is consistent with their plagioclase-phyric petrography. The Group 1 flows dominate the tholeiitic lavas in the sampled profiles, with the Group 2 flows comprising just one or two relatively thin flows in each profile (Fig. 2).

Most of the alkalic lavas have between 7 and 20 wt % MgO, and they can be divided into two subgroups: a main group with low SiO₂ (41–45 wt %) and high TiO₂ (4·0–5·5 wt %), and an Si-enriched group with higher SiO₂ (46–51 wt %) and lower TiO₂ (2·5–4·7 wt %). The most mafic sample (429235; 25 wt % MgO) is also considered to belong to the high-Si group. The 'Lindsay Nunatak' nephelinite is distinct from the other alkalic lavas, in having very low SiO₂ (~39 wt %), low MgO (~7 wt %), and high TiO₂ (~8 wt %), although broadly similar compositions are found in dykes from the nearby Gardiner Intrusion (Fig. 1: Nielsen, 1994) and in dykes traversing the Kangerlussuaq region to the south (Brooks & Rucklidge, 1974).

For the high-MgO samples (>10 wt % MgO), major element variations are controlled by olivine fractionation or accumulation. Clinopyroxene joins the fractionating assemblage at ~10 wt % MgO, as indicated by the inflection on the CaO vs MgO diagram (Fig. 4e). Despite the high MgO contents of the alkalic lavas, their highly porphyritic nature suggests that they are unlikely to represent liquid compositions. However, Brown *et al.* (1996) found some very magnesian olivines (up to Fo₉₁₋₃) in one alkalic picrite, and commented that such olivines would be in equilibrium with a liquid similar in composition to the host bulk-rock sample, and therefore that such high-MgO (~18 wt %) magmas might have existed.

Trace element variations

Trace element data, analysed by inductively coupled plasma mass spectrometry (ICP-MS) on selected samples, are presented in Table 3. Primitive-mantle-normalized trace element patterns of representative unaltered samples are shown in Fig. 5a. The two tholeiitic compositional sub-groups, recognized from major element differences, are also distinct in terms of trace elements. The high-TiO₂ Group 2 lavas have higher incompatible element abundances and more light rare earth element (LREE) enriched patterns compared with the main low-TiO₂ Group 1 lavas (La/Yb_N 3·9-4·2 vs 3·0-3·5: where subscript N indicates chondrite normalized). The upper tholeiitic lava at 'Lindsay Nunatak' (429288) has a similar trace element pattern to the Group 2 tholeiites (La/Yb_N 4.9), except for higher Pb, Ba, Rb, K and Sr, whereas the other 'Lindsay Nunatak' tholeiite (429291) has an enriched pattern with La/Yb_N of 11, similar to some of the high-Si alkalic lavas (neither are illustrated in Fig. 5a). Similarly enriched tholeiitic lavas have been found at 1982 Nunatak (Hogg et al., 1989).

The alkalic lavas have higher incompatible trace element abundances and strongly LREE-enriched patterns relative to the tholeiitic lavas (La/Yb_N 12–28 vs 3–5). The main group show relatively smooth patterns, with

Table 2: Major element and selected trace element data for lavas from the Prinsen af Wales Bjerge, East Greenland

Sample	Profile	Alt. (m	SiO ₂ (۱)	TiO ₂	AI_2O_3	Fe ₂ O ₃ (t) MnO	MgO	CaO	Na_2O	K ₂ 0	P_2O_5		Total	Fe ₂ O ₃	FeO \	C A	Z Z	:	cu Z	n Sr	Zr	
Alkalic Iâ	avas (Prinse	n af Wa.	les Bjerç	ge Form	ation)																		
Low-Si t	Ape																						
429239	Midway 1	1965	44-83	5.23	8.50	16.29	0.19	9-55	10-52	3.06	1.19	0.64	1.64	<u> 99-65</u>	4.82	10.19	378	463	311 2	1.	48 7	74 43	6
429241	Midway 1	1990	42.96	5.38	7.27	15.96	0.20	12.93	10.65	2.86	1.10	0.71	2.01	99.50	4.05	10.52 🔅	370	901	445 2	21 1	44 9	92 47	33
429242	Midway 1	2010	42.94	5.41	7.34	15-97	0.20	13-00	11-52	2.06	0.81	0.73	3.00	99.32	3.92	10.49	374	889	437 1	78 1	48 12	29 47	0
429244	Midway 1	2040	41.98	4.46	5.46	16-67	0.20	18-53	10.01	1.03	1.11	0.55	2.21	99.38	3.32	11.79	328 1	162	876 2	1	47 12	78 37	33
429245	Midway 1	2050	42.30	4.60	5.85	16-93	0.20	15-80	11.30	1.71	0.80	0.52	2.09	69.66	4.42	11-07	358	858	675 2	53 1	52 14	99 3E	10
429294	Midway 1	2100	42-09	5.32	6.07	17-54	0.21	13.66	11-92	1.90	0.64	0.66	2.50	99·88	2.12	14-12 🔅	398	778	542 2	53 1.	71 10	51 38	22
429295	Midway 1	2100	44-33	6.36	8.76	17.02	0.21	7-90	10.77	2.31	1.54	0.79	1.38	100.08	2.06	13.70	192	325	171 2	64 1	73 7	46 50	5
429296	Midway 1	2100	44-55	5.84	7.61	16-84	0.21	9.48	11.64	2.05	1.10	0.68	1.43	69.66	2.03	13-55 4	130	678	265 2	1 1	72 6	75 41	2
429297	Midway 1	2100	45-21	5.33	9.63	15-51	0.19	9-49	9.92	2.73	1.33	0.67	1.70	06.66	1.87	12.47	380	566	267 2	33 1	59 7	23 39	16
429299A	Midway 1	2100	46-44	5.00	10.93	15.10	0.19	7-46	9.96	2.66	1.53	0.73	2·82	99.54	1.82	12.13	371	316	151 1	40 1	55 9	49 39	1
429299B	Midway 1	2100	44-21	6.41	10.22	15.95	0.21	5-92	10.73	3.36	1.92	1.07	3.57	99.53	1.92	12.83 4	414	47	103 2	95 1	58 12	94 57	8
458815	Midway 2	1889	43.88	3.74	7.19	14.82	0.20	16.38	9.97	1.96	1.38	0.48	1.92	99.53	4.13	9.44	273 1	114	716 1	84 –	- 10	53 42	8
458821	Midway 2	1937	44.60	5.89	10.00	17.02	0.22	7-01	9-95	2.99	1.56	0.76	2.05	99.62	7.22	8-60	400	196	177 2	- 11	- 7	97 62	4
458822	Midway 2	1940	42-03	4.25	5.68	16-35	0-20	17-99	10.32	2.03	0.63	0.52	2.18	99 <i>-</i> 82	4.77	10-24	308 1	048	869 2	- 14	- 10	09 46	35
458823	Midway 2	1955	41-88	4.17	5.33	16-59	0.20	18-63	10-24	1.88	0.60	0.48	2.06	69·66	5.80	9.51	317 1	126	922 2	02	1	32 45	12
458824	Midway 2	1964	43.57	4.02	6.86	15-41	0.19	16-12	9.60	2.70	1-04	0.48	1.89	99.54	4.56	9.58	316 1	051	764 2	15 -	ی ۱	83 42	56
458825	Midway 2	1972	45.49	5.52	9-04	15-85	0.19	7-57	11.21	3.10	1.38	0-66	1.53	99 [.] 93	6.69	8-14	396	205	187 2	-	6	13 56	35
458826	Midway 2	1988	41-83	4.09	5.05	16-25	0.19	21-93	8-05	1-41	0.74	0.46	1.36	99·66	4.69	10.32	281 1	363 1.	215 1	- 62	9	91 46	34
458829	Midway 2	2022	44.18	5-06	7.90	16-56	0.20	11-54	10.26	2.61	1.11	0.58	1.49	99.77	5.24	10.10	362	652	481 2	1	00	45 52	2
458831	Midway 2	2061	42.05	4.62	6.06	16-87	0.21	15-86	11.22	2.26	0.33	0.52	2.22	99.54	4.55	10-87	336	812	733 2	37 –	6	71 45	10
458832	Midway 2	2067	44.19	4.54	8-29	15-74	0.20	12.19	10-84	2.41	1.08	0.52	2.19	99.47	5.37	60.6	340	704	476 2	138	-	30 4E	12
429265	Polar Bear	1875	41.99	4-01	4.97	16.75	0.20	19.60	9.83	1.37	0.82	0.48	1-41	89·68	3.52	11-84 🗧	329 1	396	925 1	73 1	48 7	24 32	22
429266	Polar Bear	1900	39.72	3.29	3.11	17.43	0.21	28-28	7.31	0.25	0.03	0.37	5.83	99.19	6-04	9.37	237 1	645 1.	516 1	37 1	42 2	97 25	0
429269	Polar Bear	1970	45-31	4-94	7.95	16-08	0.19	10-86	10.88	2.13	1.09	0.57	1.87	99.36	4.63	10.10	386	539	374 2	38	45 15	20 40	0
429270	Polar Bear	1995	45.79	4-99	8.15	15-59	0.18	9.72	11-56	2.31	1.14	0.57	1.59	99·62	4.87	9-52	393	511	300 2	30 1	42 14	22 40	10
429271	Polar Bear	2005	45.26	5.29	8.32	15-81	0.19	9.16	11.20	3.03	1.15	0.59	2.21	99.54	8.89	5.94	402	406	225 2	34 1	41 3	43 41	5
429272	Polar Bear	2020	43.43	5.85	7.07	16-05	0.19	11.97	11-45	2.17	1.16	0.66	1.51	99.31	5.50	9-33	418	706	438 2	47 1	43 7	33 46	90
436223	Lindsay	1938	43.47	4.42	6.77	16-36	0.20	15.49	10-40	1.47	0.95	0.48	2.53	99.21	4.53	10.35 -	1	1		1		I	
436231	Vent 1	Ι	45-21	5.12	13.99	14.65	0.19	4.18	10.21	4-00	1-56	0.89	1.94	99.57	3.36	- 66.6	I I	I I	1	1		I	

Sample	Profile	Alt. (m	1) SiO ₂	TiO ₂	AI ₂ O ₃	Fe ₂ O ₃ (t) MnO	MgO	CaO	Na ₂ O	K ₂ 0	P_2O_5	.Vol.	Total	Fe ₂ O ₃	Fe0 \		2	i,	Cu Cu	Zn Sr	N	5
High-Si t	ype																						
429235	Midway 1	1885	42.97	2.48	4.58	15-56	0.19	25.32	6.48	1.45	0.66	0.30	1.70	99.52	3.02	11.15 2	16 1	513 1	354	142	125 3	16 2	07
429236	Midway 1	1930	51.22	2.99	9-87	11-86	0.15	8.34	10.39	3.30	1-44	0.43	1.73	99.62	4-87	6.14 2	19	386	137	180	102 8	52 2	56
429237	Midway 1	1945	51.05	3.31	11-09	12.55	0.16	6-69	9.11	3.73	1.85	0-47	1.52	99-74	6.92	4-92 2	87	199	66	201	114 5	88	90
429238	Midway 1	1955	46-84	4.25	7.93	14-71	0.18	11.89	10.16	2.48	1.05	0.49	1.68	99.22	3.96	9.49	\$22	757	363	207	145 8	59 3	42
429240	Midway 1	1985	47-36	3.85	9-95	14.09	0.18	9.86	9.74	3.12	1.31	0.53	2.47	99-51	3.99	8.84	804	569	276	167	126 12	35 3	28
429243	Midway 1	2025	46-77	2.50	7.81	12.59	0.16	15.99	9.72	2.88	1.17	0.41	1.61	99.62	3.04	8.47 2	141	873	648	185	104 13	36 2	19
429298	Midway 1	2100	48-73	4.36	13.36	13.95	0.18	5.48	7.26	4.23	1.73	0.71	2.28	99-95	1.68	11.20	\$28	9	37	28	11 11	91 3	96
458830	Midway 2	2047	46.48	2.58	8-04	12.76	0.17	15.43	9.58	3.15	1.42	0.40	1.39	09-66	2.89	8.79 2	32	950	642	192 -	5	17 3	11
458827	Midway 2	2000	46-27	3.47	8.14	14.75	0.19	13.23	9.70	2.77	1.09	0.40	1.53	99.92	4.16	9.46 2	97	821	482	- 190	- 12	03 3	98
458828	Midway 2	2009	47-05	4.47	8-33	14-27	0.18	11-53	9.54	2.88	1.25	0.49	1.62	99-62	4.11	9.02	86	717	377	218 -	-	86 4	55
458816	Midway 2	1900	46-07	2.89	8-27	13.47	0.18	16.45	8.91	2.26	1.12	0.37	2·03	99.75	3.50	8.82	1	093	751	150 -	1	61 3	50
458818	Midway 2	1912	45-96	2.78	8.08	13.50	0.19	17.27	8.83	1.90	1.15	0.35	2.19	99.81	3.51	8.82	1 1	023	6 <i>LL</i>	144 -	5	12 3	58
429258	Polar Bear	1730	46-91	2.73	8.65	13-01	0.18	15.62	9.40	1.98	1.15	0.36	1.89	99.71	3.43	8.48	55 1	038	627	147	115 6	06 2	25
429264	Polar Bear	1845	46-36	3.25	6.79	14.40	0.18	16.33	9.32	1.97	1.04	0.36	1.67	99.57	3.20	9.95 2	82 1	167	. 695	180	125 8	01 2	67
429267	Polar Bear	1930	45-88	3.53	7.03	14.40	0.17	16.78	8.74	2.07	0.97	0.41	1.87	99.54	2.35	10.70 2	90 1	032	. 917	159	124 9	46 2	86
429268	Polar Bear	1950	46-07	3.82	7.42	14-73	0.17	15.27	9-07	2.07	0.95	0.42	2.01	68·39	3.59	9.82	804	974	889	125	125 13	08 2	98
429273	Polar Bear	2035	46-85	4.48	9.28	14.29	0.18	9-86	10-24	3.04	1.20	0-57	1.28	99.13	5.36	7.87	846	647	262	192	126 7	16 3	85
429290	Lindsay	1890	47-02	4.72	8.79	14.77	0.21	9-42	10.76	2.65	1.10	0.56	1.69	99-85	1.78	11-86 3	999	494	263	247	150 6	11 3	43
Nephelin	ite ('Lindsa	y Nunat	tak')																				
429289	Lindsay	1883	38-81	7.97	7.55	17.35	0.28	6.94	16-51	2.28	1.10	1.21	2.64	99.43	2.10	13.97 4	:70	27	118 4	401	190 14	95 5	87
Alkalic d	ykes (comp	ositiona	illy equiv	valent t	o the Pri	nsen af	Wales E	3jerge Fc	rmatio	n lavas,	_												
Low-Si t	/pe																						
429274	Polar Bear	dyke	41.21	4.31	5.18	17.22	0.20	19.48	9.38	1.68	0.81	0.54	1·38	99.26	3.80	11-95	316 1	294	923	211	146 11	94 3	50
30210	Batbjerg	dyke	42.75	6.35	8.38	17.35	0.17	8-06	13-59	1.89	0.64	0.82	3.90	99-56	5.80	9.88	1	1				I	I
30204	Batbjerg	dyke	45-55	5.45	9-34	15-61	0.17	7.73	11.76	2.26	1-41	0.72	3.16	100-08	7.52	- 96-9	1	1				I	I
30269	Batbjerg	dyke	43.50	5.48	7.69	15-80	0.16	11.96	11-04	2.45	1.27	0.67	3.61	100.12	3.72	10.54 -	1	1				I	I
30223	Batbjerg	dyke	42.58	5.06	6-85	15-57	0.18	16.42	9-03	2.17	1.38	0.75	2.17	100-01	4.42	9.88	1	1				I	I
421718	Urbjerget2	dyke	44-23	5.32	13.58	14-74	0.26	4.75	12.74	2.96	0-69	0.71	3.78	99-02	7.13	6.31 -						I	1
High-Si t	ype																						
30213	Batbjerg	dyke	46.29	4-60	7.96	13-97	0.16	9.30	13.69	2·32	1.12	0.59	3.44	100-04	6.17	- 69.9		1				I	,

PEATE et al. PALAEOGENE ALKALIC MAGMATISM, EAST GREENLAND

Sample	Profile	Alt. (n	r) SiO2	TIO2	AI ₂ O ₃	Fe ₂ O ₃ (t) MnO	MgO	CaO	Na ₂ O	K ₂ 0	P ₂ O ₅	Vol. T	otal	Fe ₂ O ₃	FeO		Z		Du Z	N.	, Zr	Ι.
Tholeiitic	: lavas (equ	ivalent	to plate	au basa	It lavas (of the B	losseville	e Kyst)															
,Group 1																							
429246	Midway 1	1675	48-30	2.49	15.13	13.23	0.18	5-96	11.70	2.47	0.29	0.25	1.26 1	60.00	7.42	5.16	358	150	90	250 1	00 27	5 10	32
429247	Midway 1	1710	48-41	2.92	13.59	14.41	0.20	6-59	11.02	2.36	0.22	0.28	1.32 1	00.44	4.25	9.16 4	126	142	108 2	240 1	14 27	0 22	7
429248	Midway 1	1685	49.23	2.36	14.30	13.33	0.19	6-84	10.37	2.97	0.19	0.23	2.05 1	00.27	5.32	7.09	345	127	102 1	192	97 24	5 18	ñ
429250	Midway 1	1730	48.71	2.32	15-57	12.66	0.20	6.23	11-51	2.40	0.17	0.23	1.60 1	00.16	4.66	7.13	345	125	92 1	175	92 26	6 17	5
429251	Midway 1	1755	48.73	2.86	13-64	13.97	0.19	6-71	10.68	2.36	0.58	0.28 (0.96 1	00.25	4.29	8.74	t11	206	117 2	21 1	11 25	9 21	6
429252	Midway 1	1800	48.30	2.77	13.73	13.93	0.19	7.19	10-51	2.46	0.65	0.26	2.49 1	00.52	3.50	9.27	398	266	141 2	35 1	04 33	32 21	0
458813	Midway 2	1870	48-08	2.73	13.75	13.95	0.20	7.48	10-42	2.73	0.40	0.26	2.14 1	00.11	2.58	10.12	375	254	167 2		36	8 32	56
429260	Polar Bear	1775	48-97	2.76	13-55	13.95	0.19	6-66	11.02	2.42	0.22	0.27	1-07	99-93	4.91	8.10	388	260	111 2	207 1	09 24	9 20	14
429261	Polar Bear	1785	48.62	2.65	13.73	13.72	0.19	7.19	11.10	2.33	0.20	0.27	1.22 1	90.00	5.91	6.98	385	282	124 1	197 1	08 24	3 20	12
429262	Polar Bear	1795	49.05	2.76	13-97	13.87	0.19	6-40	10-81	2.49	0.20	0.27	1.11	99.84	6.46	09-9	373	132	102 1	168	09 25	3 20	12
429263	Polar Bear	1815	49-09	2.97	13.15	14.87	0.21	6-02	10-34	2.57	0.48	0.30	0.91 1	60.00	3.82	9.98	t19	88	81	284 1	24 25	50 23	õ
'Group 2	2																						
429233	Midway 1	1835	48-20	3.27	13-64	14.22	0.20	6.62	10.58	2.50	0.44	0.33	1.28	99·85	4.43	8.75	90t	203	113 1	17 1	11 29	6 24	с г
429234	Midway 1	1820	47.98	3.37	13.71	14.47	0.18	6.42	10.86	2.41	0.26	0.34	1.62	99-94	5.55	7.93 4	137	139	66	251 1	22 32	9 25	51
429253	Midway 1	1820	47-82	3.58	13.26	14.82	0.18	6-53	10.90	2.31	0.26	0.34	1.68 1	00.07	6-86	7.06	142	127	104 2	219 1	21 34	0 26	34
429256	Midway 1	1820	48.13	3.47	13-41	14.69	0.19	6-37	10.70	2.44	0.27	0.34	1.38	99.81	5.62	8.08	132	128	97 2	260 1	13 3,	9 25	10
429257	Midway 1	1820	47.91	3.50	13.68	14.56	0.18	6.35	10.87	2.37	0.21	0.36	1.53 1	00.07	4.55	8-95 4	138	138	102 2	256 1	20 33	31 26	35
458819	Midway 2	1922	47.39	3.68	13.27	15.24	0.20	6.70	10.64	2.35	0.20	0.34	1.94	99.79	5.97	8.17	124	117	119 2	- 48	- 40	17 35	94
458820	Midway 2	1928	47.75	3.30	14-01	14.26	0.20	6-56	10.82	2.53	0.24	0.33	1.26	96.66	5.14	8.15 4	t03	213	178 2	- 37	- 40	9 37	33
429259	Polar Bear	1775	47-47	3.32	13-80	14.58	0.20	6-81	10.66	2.41	0.43	0.33	1.32	<u> 99-95</u>	6.73	66-9	t10	207	120 2	248 1	18 3,	6 25	00
Late-staç	je tholeiitic	lavas ('	'Lindsay	Nunata	k')																		
429288A	Lindsay	2068	47.01	1.43	9.41	12.86	0.18	18.61	8.72	1.38	0-26	0.16	1.78	99-81	3.17	8.70	240 1	678	850 1	139	73 19	11 11	-
429288B	Lindsay	2068	46-77	1.33	8.42	13.15	0.18	20.45	7.80	1.45	0.31	0.13 (0-88	99-94	3.08	9.13	219 1	682 10	022 1	139	82 19	8 10	90
429291	Lindsay	1925	48-44	2.71	96.6	14.10	0.19	11.20	10.05	2.31	0.75	0.32	2.12	88·66	3.23	9-76	303	778	291 1	134 1	06 4(3 20	10
All anal Geoche Kystol { measur	الالالالالالالالالالالالالالالالالالال	(-ray fl oratory (1999). (vol' d	uoresc of the Major enotes	ence s Geolog elemei 'volatil	pectron gical Su nt data 'es' and	netry o irvey ot are pr is calc	n glass f Denma esentec ulated a	discs ark and on a sthe lo	(excep Greer volatile oss on	ot Na ₂ C nland, (3-free ł ignitio) and (Copenh basis n n corre	Cu by lagen. I lormali octed fo	atomic Details zed to vr the ca	absorp of anal 100% v alculate	ttion sp ytical p with to ed gain	ectron rocedu al Fe of wei	netry, å ures an as Fe ₂ C ght ow	and Fe d data J ₃ (t), al ing to F	O by qualit nd the te oxi	titratio y have e totals dation	n) at been giver during	the Rc given are t g igniti	by b
(Kystol	& Larsen,	1999.	Sample	es 429.	288A ar	1d 4292	SSB are	e taken	trom c	aitterer.	nt parts	OT THE	same	ava tio	, 	elemen	t not a	nalyse	о .				

Table 2: continued

NUMBER 2

Fig. 4. Major element variation diagrams: MgO vs (a) SiO₂, (b) TiO₂, (c) Fe₂O₃(t), (d) K₂O, (e) CaO (data sources as for Fig. 3). \times in (a) represents highly alkaline ultrabasic lavas from the Nunatak Region, NE Greenland (Bernstein *et al.*, 2000). (f) shows an enlarged portion of the MgO vs TiO₂ diagram to highlight the compositional variations just within the lower tholeiitic lavas of the Northern Prinsen af Wales Bjerge.

primitive-mantle-normalized abundances reaching a maximum at Nb and Ta. The Si-enriched group tend to have lower extents of heavy REE (HREE) fractionation, i.e. lower Dy/Yb_N, than the main group (Fig. 6: Dy/Yb_N 1.9-2.3 vs 2.3-2.7). The Si-enriched example plotted in Fig. 5a shows a broadly similar trace element pattern to the main group, but with enrichments in Rb, Ba, K, and especially Pb and Sr.

The 'Lindsay Nunatak' nephelinite has very different trace element characteristics from the other lavas, with much higher incompatible trace element contents, a strongly LREE-enriched pattern (La/Yb_N 49), and

marked relative depletions in K, Pb, Sr and P, and low Cs, Rb and Ba (Fig. 5a). These features are also seen in nephelinites from the Gardiner Intrusion (T. F. D. Nielsen & C. K. Brooks, unpublished data, 1997) that is of broadly similar age (56–54 Ma: Waight *et al.*, 2002*b*).

Radiogenic isotopes

Sr, Nd, Pb, Hf and Os isotope data on selected samples are presented in Tables 4 and 5. Additional Sr–Nd–Pb isotope data on lavas from the Prinsen af Wales Bjerge,

Greenland
East
Bjerge,
Wales .
af
Prinsen
the .
from i
lavas
selected
for
data
element
Trace
\widetilde{S}
Table

Sample L	ab. S	Sc <	υ Γ	Co	Ż	Си	Zn	Rb	s	≻	Z, Z	9 qN	S.	a La	Се	P	Nd	Sm	Ец	Gd	đ	2	Ho	н Ш	dY M	Lu	Hf	Та	Pb	Ч	
' 		'		;	,																										
Alkalic lava	s (Prinsi	en af	Wales	Bjerge	Forn	nation)																									
Low-Si typ∈	<i>6</i> \																														
429239 C	SU 2	28 32	27 3.	29 63	3 28	191	159	26-2	770	28.0	409	78.4 ().21 34	11 5.	7.6 133	3 17.	.69 0	9 13-3	3-80	10.3	1.47	7.76	1.10	2.84 0.	.32 1.9	15 0.2	-6 9.E	59 5-08	3 5-84	4-82	1.32
429241 C	SU 2	27 32	26 78	89 68	9 38	0 187	142	26-5	1026	28.9	429	79.7 (.11 37	79 5{	8.1 133	3 16.	3 67.4	8 13.3	3.74	11.0	1.38	6.53	1.08	2.52 0.	31 1.8	33 0.2	5 10.3	3 5-18	3 4.45	4.90	1.50
429241 E	OUR 2	28 3.	78 11 [.]	17 78	3 47	 ლ	Ι	30.1	1114	29.5	449	82.3 ().09 35	33 5(9.4 135	5 17.	5 66.	7 14.1	3-90	10.6	1.35	. 09-9	1.09	2.46 0.	31 1.8	31 0.2:	5 10.5	5.43	3 4.31	4.99	1.47
429244 C	SU 2	23 3(08 11(00 85	5 78	3 184	145	30-3	1272	22.6	334	67-5 ().39 26	38 4{	8.7 110) 14-	1 57.	1 11.0	3.11	8.35	1.21	5.96 (0.89	2.27 0.	-24 1-4	11 0.1	9.7.6	95 4-46	3.54	4.51	0.99
429244 C	OUR 2	26 35	31 14	56 101	1 95		Ι	32.7	1457	22.8	334	71.6 (.19 27	16 5.	1.0 113	3 14.	5 53.	8 11-4	3.17	8-52	1.08	5.23 (0.86	1.91 0.	-24 1-3	37 0.1:	9-8-0	00 4-85	5 3.25	4.80	1.08
429244 C	OUR 2	24 3(01 10	76 94	4 89	13 190	138	30.2	1337	22.2	323	68.6 ().19 26	35 5(0.0 105	3 15.	0 60	4 11-0	3.06	8.20	1.10	5.12 (0.84	1.85 0.	25 1.3	35 0.1:	9 7.7	72 4.45	3.15	4.54	1.04
429245 C	JSU 2	28 3.	10 74	63 81	1 58	12 220	140	16.9	1535	23.3	293	72.2 ().12 22	22 4(6.8 107	7 12.	9 53	4 10-3	2.96	8-65	1.12	5.41 (0.85	2.08 0.	·25 1·5	0 0.2	3-9 0.	39 4.68	3 2.94	4-07	0.97
429294 C	SU 2	26 34	42 5	18 77	7 44	8 230	150	18.1	1067	25.5	347	73.8 ().11 35	32 52	2.2 121	1 15.	0 61.:	9 12.5	3.59	10.5	1.31	6.30 (; 66.0	2.28 0.	-26 1-6	32 0.2	1 8.1	19 4-76	3.55	4.29	1.45
429295 C	DSU 2	28 38	84 3,	49 61	1 13	15 247	175	25-5	736	34.8	520	78.2 ().16 34	11 5.	7.1 135	9 18.	6 79.1	6 16-1	4-54	11.7	1.77	8.81	1.32	3.36 0.	37 2.2	0.3	2 12.1	1 5.07	7 4.56	4.78	0.97
429296 C	SU 3	32 3(60 4	93 68	3 24	1 235	171	20.5	671	30.6	428	70.4 (0.13 27	16 5.	1.9 124	16.	4 68-	6 13-8	3.94	10.0	1.58	7.82	1.17	2.94 0.	35 2.0	0.2	6 10.3	3 4.67	7 3.73	4.24	06.0
429297 C	SU 2	20 34	44 5	17 60	3 22	1 216	148	21-8	745	27.6	382	76.4 ().21 42	22 54	4.1 123	3 15.	1 63.	2 12.5	3.59	10.4	1.33	6.52	1.03	2.57 0.	31 1.8	37 0.2	6 9.1	10 5-05	5 4.46	4.14	1.31
429265 E	OUR 2	28 3.	16 15	04 101	1 94	:7 166	134	21.6	762	20.5	272	54-5 ().10 20)9 3.	7.9 86	3.7 12.	4 51.	2 9.75	3 2.72	7.30	0-99	4.71 (0.79	1.73 0.	-24 1-2	26 0.1	8 6.7	78 3-57	7 2.64	3.30	0.70
429272 C	SU 2	28 3.	16 2	14 63	3 35	3 173	131	15.9	584	26.3	288	45.1 ().14 25	35 3,	4.8 82	2.7 10.	9 46.	0 9-51	1 2.79	7.47	1.17	6.01 (; 66.0	2.54 0.	31 1.5	32 0.2	-7 6.5	96 2-99	9 3·63	4.41	0.73
429299B C	SU 2	22 3(67	55 47	7 7	6 271	155	34.2	1349	35.8	588 1	24 ().19 6(35 8(8.4 195	3 24.	8 101	19.3	5.48	15.0	1.83	8.61	1.33	3.08 0.	-36 2.2	24 0.2	9 13-4	t 7.69	9 7.08	7.79	2.75
436223 C	SU 2	24 35	36 10	76 76	5 54	2 211	143	22.9	876	23.0	339	64-0 ().14 26	38 4.	7.7 111	1 14.	2 57.	7 11.2	3.11	8.22	1.25	9.09	0.87	2.31 0.	-26 1-5	55 0.2	1 8.2	28 4-33	3 3.76	4.20	0.82
436231 C	I 1	16 3(06	9 42	2	7 192	158	29-0	1311	33.7	424	91.5 ().17 45	<u>5</u> 9 6	9.7 162	2 20.	83.	6 15-9	4.73	11.7	1.75	8.63	1.28	3.30 0.	-38 2.2	26 0.3	0 10.5	9.03	2 4.84	6.21	1.18
High-Si typ	θ																														
429235 C	SU 2	22 15	95 11;	38 104	4 115	0 130	114	17.1	309	12.9	158	30-0 ().20 15	55 2	1.7 45	9.1 6.	47 26:	9 5-56	3 1.62	4.62	0.62	2.93 (0.50	1.22 0.	.15 0.5	96 0.1.	3.5 3.5	39 1-96	3 2·66	1.50	0.49
429236 C	SU 2	27 26	67 3:	91 46	3 12	4 161	107	28.4	840	18.2	236	42.3 (0.17 35	37 <u>3</u> .	7.2 81	1.5 10.	1 39.	7 7.58	3 2.24	6-67	0.93	4.60 (0.70	1.77 0.	-21 1-3	34 0.1	9 5.6	32 2.67	7 6.46	3.20	0.50
429237 C	SU 2	25 28	85 2	17 45	6	0 183	115	31.2	576	19.8	268	49.3 ().22 65	32 4:	2.4 92	2.3 11.	2 43.	8 8.25	3 2.50	7.19	0.97	4.86 (0.76	1.99 0.	-22 1-4	14 0.2	0 6:5	30.5	3 7.49	3.88	0.64
429243 C	SU 2	26 25	34 61	60 67	7 58	4 165	104	23.5	1319	16.3	187	35-8 ().16 3(38 23	8.4 63	3.0 7.	83 31.	2 6-0(0 1.81	5.26	0.76	3.93 (. 09-0	1.63 0.	.19 1.1	15 0.1	7 4.6	35 2.25	5 5.13	2.58	0.49
429298 C	SU 2	20 32	23	11 42	3	0 57	155	29.9	1172	31.7	415	64.3 ().21 52	27 5;	3.7 127	7 16.	2 66.	5 13.0	3.74	9.96	1.51	7.53	1.18	3.14 0.	37 2.2	<u> 9</u> 0-3	3 9.7	75 4-19	9 5.34	4.15	1.17
429258 C	SU 2	21 24	49 7	18 66	5 58	0 129	115	21-0	594	18.7	197	54.1 ().11 34	14 3.	7.9 80).9 <u>9</u> .	69 37-	9 6-82	2 1.95	6.17	0.81	4.32 (0.70	1.89 0.	-23 1-5	51 0.2	1 4.6	37 3.44	4 3.98	3.08	0.53
429264 L	DUR 2	26 2.	70 11;	35 83	3 72	0 154	114	20.4	848	18.0	230	53.0 (0.11 28	32 3.	7.3 8C	0.3 10.	9 43	7 7.9	1 2.20	5.96	0.81	3.97 (0.68	1.55 0.	-22 1-2	21 0-1	8 5.5	56 3-39	9 3.24	3.08	0.59
429267 C	SU 2	27 3(07 1.	72 65	5 44	0 173	126	14.7	617	24.8	261	40.4 ().13 2(3	1.0 73	3.8	77 41.	5 8.65	9 2.57	6.93	1.09	5.63 (0.93	2.39 0.	·30 1·6	32 0.2	6 6.S	35 2.68	3.66	2.87	0.65
429268 C	SU 2	28 3.	14 2	13 65	5 40	179	130	14.9	595	25.6	276	43.1 ().12 2(38	2.8 75	3.1 10.	4 43	9 9.15	5 2.69	7.20	1.13	5.84 (; 96-0	2.46 0.	-30 1-6	36 0-2,	·6 6·6	38 2.85	3.68	2.93	0.66
429273 C	SU 2	27 3	14 24	64 64	4 36	6 171	130	15.9	597	25.6	280	44.4 (0.13 25	й 38	4.5 81	1.6 10.	8 45.	1 9.25	5 2.70	7.28	1.14	5.82	0.96	2.49 0.	.31 1.5	90 0.2	7 6.7	77 2.95	5 4.58	4.31	0.70
429290 C	SU 3	30 32	26 29	92 54	4 16	165	126	16.9	572	27.2	266	42.8 ().19 2:	36 3.	3.4 75	3.8 10.	4 43.	4 9.02	2 2.68	7.16	1.14	5.93	1.01	2.63 0.	·33 2·0	0.2	⁷⁻⁹ 6.	15 2·8/	4 3.19	3.75	0.68
Nephelinite	('Linds,	ay Nu	inatak'	_																											
429289 C	SU 2	24 4(04	41 50	9 (6 366	176	19.7	1528	47.0	573 2	22 (0.15 75	37 19;	3 434	1 53.	6 205	35.4	9.14	26.6	2.98	13.2	1.87	4.23 0.	.46 2.6	39 0.3.	3 13.1	1 17-5	7.06	22.7	4.43

Sample	Lab.	Sc	>	ŗ	Co	ïz	Си	Zn	Rb	sr	۲ Zr	ĨZ	CS	Ва	La	Ce	Pr	S pN	Sm E	n G	d Tb	Dy	Ч	Er	Tm	Yb L	H n	lf Ta	Pb	ЧĻ		
Late-stage	tholeiiti	ic lava:	s ('Lind	Isay Nu	inatak'	۰																										
429288A	DUR	28	223	1181	84	926	I	Ι	2.8	202	16-6 9	ł7 8	.4 0.0	8 81.	0 9.4	4 22.7	3.18	13.6 3	3.67 1	17 3.	57 0.5	4 3.12	0.59	1.53	0.22	1.34 (0.20 2	-54 0.	66 1·E	57 0.6	0.0	7
429288B	DUR	25	211	1541	93	1091	I	Ι	4.8	201	15.8 9	34 8	·1 0·0	5 97.	4 9.2	4 22.1	3.07	13.4 3	3.55 1	.11 3.	46 0.5	1 2.96	0.56	1.46	0.20	1.27 (0.19 2	-46 0-	61 1·E	50 0·6	6 0.1	80
429291	OSU	26	294	726	61	272	118	114	14.4	394	21-6 20	11 28	.4 0.1	6 206	25.1	59.6	7.95	33.4 7	.01 2	13 7.	12 0.9	3 4.76	0.81	2.11	0.27	1.71 0	0.24 4	-93 1-	82 2.8	31 2.0	2 0.5	33
429291	DUR	29	303	881	67	321	Ι	Ι	15.1	424	21.8 19	1 6 29	·3 0.1	5 208	26.0	60.5	8.08	31.9 7	.42 2	.18 6.3	22 0.8	6 4.47	0.81	1.97	0.26	1.59 (0.23 4	.95 1.	94 2·E	54 2.1	1 0.5	55
Tholeiitic	avas (eq	Juivale	nt to ti	he plate	sau ba	isalt la	was of	the Bl	ossevi	ille Kys	ŧ)																					
'Group 1'																																
429246	OSU	20	296	135	44	74	216	101	2.4	263	25-6 14	6 01	.2 0.3	8 74-	7 10.7	27.4	3.98	19-0 5	5.07 1	-79 5.3	20 0.8	7 5.01	0.95	2.48	0.35	2.17 0	0.32 3	.48 0.	65 1·E	57 0·8	1 0.2	8
429247	OSU	34	Ι	145	46	91	212	113	5.5	253	33.7 16	37 15	·2 0·1	1 55.	2 12.7	32.8	4.82	22.8 6	3.31 2	-02 6-!	57 1.0	5 6-14	1.23	3.21	0.44	2.89 (0.42 4	-78 1.	04 1.4	1.0	0.0	6
429250	OSU	31	I	125	45	77	158	100	2.0	262	27-5 14	11 11	.7 0.0	1 52.	6 10-3	26.5	3.95	18.4 5	5.00 1	.74 5.	19 0.8	4 5.07	1.00	2.62	0.36	2.30 (0.33 3	.0 99	75 1-2	24 0.8	1 0.2	3
429260	OSU	33	I	270	48	66	189	115	1.8	241	31-8 17	73 15	·0 0·0	1 87.	1 13-1	32.2	4.73	21.9 5	5.88 1	-93 6.3	20 0.9	7 5.83	1.13	2.92	0.43	2.73 (0.41 4	-38 1.	01 1.6	33 1-1	2 0:3	0
429261	OSU	33	Ι	291	47	110	177	110	3.0	233	30-8 17	70 14	-4 0-0	1 79.	3 13-1	32.8	4.64	21.0 5	5.94 1	-90 5-6	95 0.9	6 5.53	1.11	2.98	0.41	2.62 (0.40 4	-38 0.	95 1.8	38 1.2	1 0.2	7
429262	OSU	31	Ι	133	47	94	155	115	2.5	244	31.7 17	72 14	·9 0·0	4 86·	1 13-1	32.6	4.60	21.5 5	5.79 1	-87 6.	16 0.9	9 5.67	1.14	3.00	0.42	2.77 0	0.41 4	-37 0.	96 1.5	90 1.2	100	11
429263	OSU	33	Ι	94	46	70	248	123	8.1	229	34.8 15	38 16	-2 0-0	5 106	14.0	34.7	4.96	23.1 6	3.14 1	-986-	51 1.0	6 6.20	1.26	3.29	0.45	2.91 (0.43 4	-75 1.4	03 1-8	35 1.2	0:0 9	34
'Group 2'																																
429233	OSU	24	372	198	47	97	156	115	5.8	293	31.1 21	11 20	0-0-0-	3 97.	4 15-5	39-9	5.54	25-8 6	3.77 2	-16 6-!	54 1.0	7 5-84	1.14	2.99	0.40	2.67 (0.37 4	-91 1-	32 1.6	33 1.1	4 0.3	8
429234	OSU	27	376	141	47	84	221	116	5.4	324	34.9 22	21 20	.9 0.1	2 73.	1 17.0	43.5	5.94	27.8 7	.12 2	-28 7.	15 1.1	2 6-26	1.22	3.18	0.44	2.85 (0.42 5	-32 10	33 1.6	55 1.3	7 0:3	6
429253	OSU	34	I	145	48	84	198	127	4.7	326	35.7 22	29 21	.7 0.0	9 70.	5 16-9	43.3	6.25	29.0 7	.43 2	30 7.	58 1.1	8 6-56	1.34	3.34	0.46	2.79 (0.41 5	.75 1.	41 1.8	35 1-4	4 0.7	1
429256	OSU	33	I	151	47	86	227	125	5.2	313	35-5 23	31 21	0.0 6.	6 80.	9 17-3	43.8	6.30	29.0 7	.33 2	-35 7	45 1.1	7 6-85	1.30	3.44	0.46	2.85 (0.42 5	-82 1	41 1.8	36 1.3	8 0.4	0
429257	OSU	32	I	150	48	06	225	126	3.7	316	36.4 23	34 21	.7 0.0	6 65.	3 17-3	43.9	6.36	29.0 7	7.49 2	-40 7	43 1-1	7 6.72	1.30	3.34	0.46	2.88	0.44 5	.74 1.	43 1.8	34 1.4	8 0.4	12
429259	OSU	32	I	230	48	106	225	124	4.4	305	34.6 22	20 20	-4 0.0	1 101	16.4	41.5	6.02	27.1 7	7.23 2	25 7.3	21 1.1	3 6-41	1.23	3.20	0.45	2.83	0.41 5	.38 1.	34 2.0	1.4	0 0 0	33
Internal st	andard (16N95)	5358	basalt i	from K	(ap Sto	osch, t	East Gr	eenlar	(pr																						
95358	OSU	39	324	188	47	81	167	98	4.8	204	30-3 11	6 61	·0 0·1	1 55.	4 8.0	2 20.7	3.10	15.0 4	1.47 1	-56 5-(0.8	6 5.20	1.08	2.82	0.41	2.68	0.39 3	.0	70 1.0	33 0.6	8	0;
n = 24	+ SD	2	14	6	2	m	4	m	0.1	4	0.4	2 0	·4 0.0	1 0.	8 0.21	0 0.5	0.04	0.3	0.11 0	03 0.	17 0.0	2 0.11	0.03	0.05	0.01	0.07	0.01 0	-07 0-	02 0.0	0.0 90	3 0.0	12
95358	DUR	40	338	206	50	06	Ι	Ι	4.8	208	30.4 11	17 9	.2 0.1	0 55.	6 8.1	6 20-8	3.16	15.1 4	t-64 1	62 5.3	24 0.9	0 5.41	1.09	2.87	0.43	2.63	0.41 3	-10 0.	77 0.6	33 0.7	2 0.2	0
<i>u</i> = 9	± SD	-	9	14	-	2	I	I	0.1	വ	0.3	1	-5 0.0	1	1 0.1.	2 0.3	0.06	0.5 (0.05 0	-03 0.0	0.0 90	2 0.06	0.02	0.04	0.02	0.02 (0.01 0	-02 0-	01 0.1	12 0.0	4 0.0	11
All anal details rock (bá and any	yses b of the a salt fr inter-	y ICF analy om k labor	-MS -MS tical i (ap S atory	at the methe tosch bias	e Uni ⁻ ods a 1, Eas	iversi and e st Gr	ity of stim eenla	f Oreç ates (and)	gon, of acc that	USA curac was	(OSU) y and run nu) or t prec umer	he Ul ision ous t	nivers for th imes	sity o le Ori inter	egon rsper	ham and sed v	, UK Durh Mith	(DUF am l unkn	R). Be abora own	ernste atorie sam	ein <i>e</i> i ss, re ples	<i>t al.</i> (spec at bc	2001 tively oth Ia) and /. GG lbora	Pea U953 torie	te <i>et</i> 358 is is to	<i>al.</i> (2 s an i chec	2001) nterr k rep	have nal st produ	e giv anda icibil	en ity

Fig. 5. Primitive-mantle-normalized trace element diagrams [normalizing values from Sun & McDonough (1989)]: (a) for representative samples of each principal compositional type in the Prinsen af Wales Bjerge; (b) comparison of Prinsen af Wales Bjerge alkalic lava with other 'enriched' magmas: melilitite, Nunatak Region, NE Greenland (Bernstein *et al.*, 2001); Jan Mayen ankaramite (Trønnes *et al.*, 1999); St. Helena HIMU OIB (Chaffey *et al.*, 1989; Thirlwall, 1997); Gough EMI OIB (Sun & McDonough, 1989).

Trekantnunatakker, and 'Lindsay Nunatak' have been given by Brown *et al.* (1996, 2000) and Ellam & Stuart (2000). The Sr–Nd–Pb isotope data are illustrated in Fig. 7, which includes fields for data from the plateau basalts, Lower Basalts, offshore SE Greenland basalts and Iceland for comparison. The data from Brown *et al.* (1996, 2000) show slightly elevated ⁸⁷Sr/⁸⁶Sr_i compared with the data in this study (Fig. 7a), which is probably due to their samples not being leached before analysis.

The tholeiitic lavas have ${}^{87}\text{Sr}/{}^{86}\text{Sr}_i$ of 0.7032–0.7048, ϵ Nd_i of +4.7 to +7.6, and ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ of 17.1–18.3, consistent with existing data on the coastal plateau basalts (Brown *et al.*, 1996; Peate & Stecher, 2002; Andreasen *et al.*, in preparation;). The young tholeiitic flow from 'Lindsay Nunatak' has high ⁸⁷Sr/⁸⁶Sr_i of 0.7063, low ϵ Nd_i of -2.0, and very unradiogenic ²⁰⁶Pb/²⁰⁴Pb of 15. The alkalic lavas, in general, have higher ⁸⁷Sr/⁸⁶Sr_i (0.7037–0.7061) and lower ϵ Nd_i (-1.6 to +6.2) than the tholeiitic lavas. They show a wide range in Pb isotope composition, with ²⁰⁶Pb/²⁰⁴Pb varying from 14.7 to 18.5, but appear to be offset to lower ²⁰⁷Pb/²⁰⁴Pb relative to the tholeiitic lavas and coastal plateau basalts. This is not an analytical effect, as alkalic and tholeiitic samples were run interspersed in the same analytical session. The extreme

Fig. 6. SiO₂ vs Dy/Yb_N for the Prinsen af Wales Bjerge Formation alkalic lavas. Small symbols are analyses from 1982 Nunatak (Hansen *et al.*, 2002).

isotopic variations, particularly in Pb isotopic compositions, seen in the alkalic lavas and some of the tholeiitic lavas are probably due to crustal assimilation with an unradiogenic Pb component (see discussion below). In terms of Hf and Nd isotopes, the Prinsen af Wales Bjerge lavas all lie below the 'mantle array' (Fig. 8a: Vervoort *et al.*, 1999), with low ε Nd_i and ε Hf_i relative to published data on Icelandic lavas and crustally uncontaminated samples related to the North Atlantic break-up (Kempton *et al.*, 2000). The 'Lindsay Nunatak' nephelinite has a similar Sr, Nd and Hf isotope composition to the least contaminated Prinsen af Wales Bjerge alkalic rocks, but it has a very different Pb isotope composition, with an extremely radiogenic ²⁰⁶Pb/²⁰⁴Pb of 23 (not shown in Fig. 7).

Six Prinsen af Wales Bjerge alkalic lavas were analysed for Os concentrations and isotope compositions. All samples have relatively high Os abundances from 0.17 to 1·17 ppb, and they have a range in $^{187}\mathrm{Os}/^{188}\mathrm{Os}_i$ from 0.120 to 0.132. It should be noted that the sample with the lowest ${}^{187}\text{Os}/{}^{188}\text{Os}_i$ (429244: ${}^{187}\text{Os}/{}^{188}\text{Os}_i$ 0.120), also has the lowest Os content and highest Re/Os of all the samples, and its low initial Os isotope ratio might just be the result of an erroneously large age-correction owing to late-stage Re addition. The observed range in initial Os isotope compositions overlaps with the known range of Icelandic lavas (187Os/188Os 0.127-0.137: Skovgaard et al., 2001; Smit et al., 2001), although extending to subchondritic values lower than any known Iceland sample (Fig. 8b). $^{187}\mathrm{Os}/^{188}\mathrm{Os}_i$ values as low as 0.122 have been measured in ~ 61 Ma lavas from Baffin Island (A. J. R. Kent, unpublished data, 2001), albeit with significantly higher ɛNd; than the Prinsen af Wales Bjerge samples (Fig. 8b).

Helium isotopes

In general, Icelandic basalts are characterized by ³He/ ⁴He values higher than those found in mid-ocean ridge basalt (MORB) (R/ R_A = 8 \pm 1: Farley & Neroda, 1998), indicating a source component derived from a region with higher time-integrated ${}^{3}\text{He}/(\text{U} + \text{Th})$ than the convecting upper mantle, and usually inferred to be the lower mantle (e.g. Condomines et al., 1983; Kurz et al., 1985; Poreda et al., 1986; Hilton et al., 1999; Breddam et al., 2000). Thus, He isotopes can potentially be used as a tracer of the contribution of Icelandic plume mantle to the Palaeogene North Atlantic magmatism. ³He/⁴He values greater than those of MORB have been found in early phase lavas in West Greenland $(R/R_A = 31)$; Graham *et al.*, 1998), NE Greenland ($R/R_A = 21$; Marty et al., 1998) and Scotland (R/R_A = 22; Stuart et al., 2000). No studies have yet been carried out on East Greenland lavas of either the initial or main magmatic episodes. Single ${}^{3}\text{He}/{}^{4}\text{He}$ values of 10.8 (Lilloise intrusion: Bernstein *et al.*, 1998*b*) and 10.5 (Prinsen af Wales Bjerge: Ellam & Stuart, 2000) have been measured in olivines from the post break-up magmatic episode, but these values are barely resolvable within error from the canonical MORB range (Farley & Neroda, 1998).

We report new helium isotope data on separated olivines from four Prinsen af Wales Bjerge alkalic lavas in Table 5. Analyses were carried out by crushing in vacuo so as to liberate helium trapped in inclusions within the olivine crystals. This technique gives the best estimates for the magmatic helium isotope signature, although the results probably represent minimum values (e.g. Hilton et al., 1999). Three samples show ³He/⁴He isotope ratios clearly elevated with respect to MORB (R/R_A 12.4, 16.0, 18.5) and the fourth sample has a low ${}^{3}\text{He}/{}^{4}\text{He}$ value $(R/R_A 4.9)$. The new He and Pb isotope data on the Prinsen af Wales Bjerge lavas combined with those of Ellam & Stuart (2000) fall on a broad hyperbolic trend with the low ${}^{3}\text{He}/{}^{4}\text{He}$ samples (R/R_A 1·8–9·7) having unradiogenic ²⁰⁶Pb/²⁰⁴Pb (14·7-17·6) consistent with assimilation of radiogenic ⁴He-bearing, low ²⁰⁶Pb/²⁰⁴Pb crustal material (Fig. 9). These data represent the first clear evidence for a high ³He/⁴He component present in Palaeogene lavas from the Kangerlussuaq region, which lies on the hotspot track of the Iceland plume axis (Lawver & Müller, 1994; Torsvik et al., 2001).

Olivine compositions

We carried out a reconnaissance survey of olivine compositions in the Prinsen af Wales Bjerge Formation alkalic lavas to look for possible xenocrystic lithospheric mantle olivines. The four analysed samples show a similar range of core olivine compositions (Fig. 10: $Fo_{85\cdot0-89\cdot4}$; n = 66: sample 429264 has two olivines with Fo_{78}). Crystal zoning appears to be limited, and in all cases is normal. However,

Greenla	
East	
Bierge.	0
f Wales	
Prinsen al	ر
the	
from	
lavas	
selected	
for	
data	
otobe	-
5 iSI	
l-Pl	
No	
$: S_{T}$	
$l_{e} 4$	
Tab_{i}	

nd

Sample	⁸⁷ Sr/ ⁸⁶ Sr measured	¹⁴³ Nd/ ¹⁴⁴ Nd measured	143Nd/ ¹⁴⁴ Nd initial	_{виd} init.	²⁰⁶ Pb/ ²⁰⁴ Pb measured	²⁰⁷ Pb/ ²⁰⁴ Pb measured	²⁰⁸ Pb/ ²⁰⁴ Pb measured	²⁰⁶ Pb/ ²⁰⁴ Pb initial	²⁰⁷ Pb/ ²⁰⁴ Pb initial	²⁰⁸ Pb/ ²⁰⁴ Pb initial
Alkalic lavas (P 429244	rinsen af Wales 0.70405	Bjerge Formation 0.512825) <i>—low-Si type</i> 0.51278	4.1	18-442	15.265	38-737	18.28	15.26	38-51
429265	0.70369	0.512817	0.51278	4.0	18-527	15.305	38-513	18.39	15.30	38-30
429272	0.70386	0.512843	0.51280	4-4	18-479	15-330	38-505	18.37	15-32	38.37
429241	0.70406	0.512722	0.51268	2.1	18.358	15.294	38.153	18.17	15.29	37.95
429296	0.70412	0.512752	0.51271	2.7	17.686	15.169	37.486	17.57	15.16	37.32
Alkalic lavas (P	rinsen af Wales	Bjerge Formation	n)—high-Si type							
429235	0.70500	0.512743	0.51270	2.5	17-022	15-002	37-579	16.93	15-00	37.48
429264	0.70500	0-512702	0.51266	1.8	16-599	14-959	36-934	16-51	14-95	36.78
429258	0.70430	0.512557	0.51252	- 1.0	16-970	15-001	36-923	16.91	15.00	36-81
429243	0.70608	0.512530	0.51249	-1.6	16-771	14-928	37-451	16.73	14-93	37.38
Nephelinite ('Lı	indsay Nunatak')									
429289	0.70373	0.512845	0.51281	4.6	23.228	15-623	47-098	22.78	15-60	46.32
Late-stage thole	eiitic lavas ('Lino	lsay Nunatak')								
429288A	0.70627	0.512526	0.51247	-2.0	14-971	14.662	35-171	14.92	14.66	35.10
429291	0.70477	0.512645	0.51260	0.5	16-207	14.906	36.258	16.11	14.90	36.14
Tholeiitic lavas	(equivalent to p	nlateau basalt lavi	as of the Blossev	ille Kyst)—'group	, 1'					
429247	0.70318	0.513018	0.51296	7.6	18-135	15.386	37-961	18-03	15.38	37-85
429261	0.70480	0.512871	0.51281	4.7	17.071	15.195	37.728	17.00	15.19	37-63
Tholeiitic lavas	(equivalent to p	nlateau basalt lavi	as of the Blossev	ille Kyst)—'group	, 2'					
429253	0.70334	0.512985	0.51293	7-0	18·263	15.426	38-317	18.15	15.42	38.19
429259	0.70332	0.513004	0.51295	7.3	18.230	15.392	38.140	18.15	15.39	38.03

The structure definition of the structure measurement of the second of the interference on "Sr. and (2) at half matter than an any effectiveness of standard background mass using in an over-correction for the "Rb interference on "Sr. and (2) at half mass units, limiting the effectiveness of standard background mass unevent. Thus, Sr isotope ratios were measured using an on-peak zero method mass units limiting the effectiveness of standard background mass unevent. Thus, Sr isotope ratios were measured using an on-peak zero method mass units limiting the effectiveness of standard background mass unevent. Thus, Sr isotope ratios were measured to more an "Sr." "Sr¹^mSr² data were corrected for mass fractionation using "Sr¹^mSr = 0.11034, Further details of the Sr analytical technique bace been given by Waight *et al.* (2002a). The samples were run in one analytical technique of "Sr¹^mSr = 0.71035 for SRM987. Not isotopes were measured on undextended on mass the corrected for mass fractionation using "Sr¹^mSr = 0.71035 for SRM987. Not isotopes were measured on undextended on more were structures from the Sr cation ion-exchange collamic transmission during which the Ames Nd metal study and the Ames Nd metal state and the Ames Nd metal state and the analysed following the general technique of the samples were all rations were an interferences. Thus, Sr isotope ratios were measured on ion-exchange collamic transmission and the analysed following the great at the analysed following the general technique and (1997). Isotope ratios were measured of residual gave "Sr¹^mSr = 0.71037. Isotope ratios were analysed following the general technique of the samples were all ratio are presented relative to a more any structure state and the analysed following the general technique of the samples were all ratio are presented relative to a more analysed for the Sr ¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹^mSr¹ Sr-Nd-Pb isotope analyses were carried out on an Axiom multi-collector (MC)-ICP-MS at the Danish Lithosphere Centre. Sr isotopes were determined on powders

Sample	¹⁷⁶ Hf/ ¹⁷⁷ Hf measured	ɛ _{нғ} meas.	ε _{нf} init.	Re (ppt)	Os (ppt)	¹⁸⁷ Os/ ¹⁸⁸ Os measured	¹⁸⁷ Os/ ¹⁸⁸ Os initial	γ _{os} init.	³ He/ ⁴ He R/R _A ± 1σ	[He] × 10 ⁻⁹ cm ³ STP/g
Alkalic la	vas (Prinsen af Wale	es Bjerge H	ormation)	—low-Si ty	/pe					
429244	0.282935 ± 5	5.76	6.84	239	169	0.1261	0.1201	-6.6	12.2 \pm 0.2	8.73 ± 0.15
429265	0.282923 ± 5	5.34	6.41	191	503	0.1261	0.1245	-3·2	18.1 \pm 0.2	7.25 ± 0.12
429272	0.282941 ± 5	5.98	6.98	_	_	_	_	_	15.6 \pm 0.2	5.87 \pm 0.10
429241	0.282873 ± 5	3.57	4.65	51	1168	0.1258	0.1257	-2.3	_	_
429296	$0{\cdot}282842~\pm~5$	2.48	3.55	_	_	_	_	_	_	_
Alkalic la	vas (Prinsen af Wale	es Bjerge H	ormation)	—high-Si i	type					
429235	$0{\cdot}282842~\pm~7$	2.48	3.51	n.a.	710	0.1237	0.1237	-3.8	_	_
429264	0.282771 ± 5	-0.04	0.96	37	943	0.1302	0.1300	1.1	4.8 ± 0.1	13·2 \pm 0·2
429258	$0{\cdot}282708~\pm~7$	-2.26	-1.28	_	_	_	_	_	_	_
429243	$0{\cdot}282670~\pm~4$	-3.61	-2.59	14	331	0.1315	0.1314	2.1	_	_
Nephelin	ite ('Lindsay Nunata	nk')								
429289	0.282955 ± 7	6.47	7.54	_	_	_	_	_	_	_
Late-stag	e tholeiitic lavas ('L	indsay Nu	natak')							
429288A	$0{\cdot}282683~\pm~7$	-3.15	-2.34	_	_	_	_	_	_	_
429291	$0{\cdot}282755~\pm~6$	-0.06	0.35	_	_	—	—	_	_	_

Table 5: Hf–Os–He isotope data for selected lavas from the Prinsen af Wales Bjerge, East Greenland

Initial Hf and Os isotope ratios calculated at 53 Ma. Hafnium isotopes: Hf isotope compositions were determined by MC-ICP-MS (VG Plasma 54) at the École Normale Supérieure de Lyon using the method described by Blichert-Toft et al. (1997). Because of the Mg-rich nature of these samples, Hf was separated following the protocol outlined by Blichert-Toft (2001), which is a slightly modified version of the procedure originally described by Blichert-Toft et al. (1997). The JMC475 Hf standard gave 176 Hf/ 177 Hf = 0.282160 \pm 10 (2 SD) and was analysed alternately with the samples: in-run errors are better standard gave " 179 Hf/" 179 Hf = 0.282160 \pm 10 (2 SD) and was analysed alternately with the samples: In-run errors are better than \pm 10 for all samples. Data are normalized for mass fractionation using 179 Hf/ 177 Hf = 0.7325. ϵ_{Hf} values are calculated using (176 Hf/ 177 Hf)_{CHUR(0)} = 0.282772, (176 Lu/ 177 Hf)_{CHUR(0)} = 0.0332, and $\lambda_{Lu} = 1.93 \times 10^{-11} a^{-1}$. Osmium isotopes: Os concentrations and isotope compositions were analysed at the Danish Centre for Isotope Geology, Geological Institute, University of Copenhagen. Re concentrations were determined by MC-ICP-MS (NuPlasma) at the University of Bern, using an isotope dilution method (Schoenberg et al., 2000). Re and Os data were determined on the same sample digestion. Samples were spiked with Re and Os tracer solutions and digested in inverse aqua regia in Carius tubes for >72 h at 200°C, followed by microdistillation using the technique outlined by Nägler & Frei (1997). Os isotopic compositions were measured by negative thermal ionization mass spectrometry (N-TIMS) using the Faraday collectors [mass spectrometry details have been given by Hanghøj *et al.* (2001)]. Blanks: Re 50 pg, Os <2 pg. Re was not analysed for sample 429235, and so the calculated initial Os isotope ratios are maximum values. γ_{Os} values are calculated using ¹⁸⁷Re/¹⁸⁸Os_{mantle} = 0.428, ¹⁸⁷Os/¹⁸⁸Os_{mantle} = 0.1290, and $\lambda_{Re} = 1.666 \times 10^{-11} a^{-1}$ (Meisel *et al.*, 1996; Smoliar *et al.*, 1996). *Helium isotopes*: helium was liberated from olivine phenocrysts by on-line crushing [see Scarsi (2000) for description of the apparatus]. Crushing times were limited to ~2 min to avoid potential release of matrix-sited helium components (Hilton et al., 1999). Helium isotope analyses were carried out using a MAP 215 noble gas mass spectrometer at the Scripps Institution of Oceanography. Helium from Murdering Mudpots, Yellowstone Park (16.45 R_{A}) was used as the normalizing standard.

two samples contain rare olivines with more magnesian compositions: 429235 (Fo_{91.0} and Fo_{91.6}) and 429244 (Fo_{93.2}). The question is whether these Mg-rich olivines crystallized from melts or represent mantle olivine xenocrysts. Mantle olivines have low CaO and Cr₂O₃ contents relative to magmatic olivines (e.g. Gurenko *et al.*, 1996; Larsen & Pedersen, 2000). Analyses of local lithospheric mantle olivines are available from xenoliths in ~40 Ma dykes from Wiedemann Fjord (Fig. 1: Bernstein *et al.*, 1998*a*). The Prinsen af Wales Bjerge and xenolith data are plotted in Fig. 10 together with a reference suite of magmatic olivines (West Greenland picrites: Larsen & Pedersen, 2000). Only one analysed olivine (the one with the highest Fo content) has suitably low Cr_2O_3 to make it a possible xenocrystic lithospheric mantle olivine, although its CaO content, while low, is still higher than that of most mantle olivines.

DISCUSSION

Stratigraphic relationship of the tholeiitic lavas to the coastal plateau basalts

The ⁴⁰Ar–³⁹Ar age for the 'Lindsay Nunatak' alkalic lava is younger than the plateau basalts (56–54 Ma: Storey *et*

al., 1996; Heister *et al.*, 2001; Hansen *et al.*, 2002). However, alkalic lavas are found interbedded with tholeiitic lavas at Midway Nunatak (Fig. 2) and Tjeldebjerge (Fig. 1: Anwar 1955), although lavas from these sections have yet to be dated. If these tholeiitic lavas can be correlated with the coastal plateau basalt stratigraphy, this would place a maximum age on the initiation of alkalic magmatism. The 55 Ma age for the vent sample

already suggests that some alkalic magmatism was contemporaneous with the plateau basalts. Hansen *et al.* (2002) showed from compositional criteria and photogrammetric studies that most of the tholeiitic lavas in the Urbjerget region are equivalent to the lowermost plateau basalts (Milne Land Formation: Larsen *et al.*, 1989; Pedersen *et al.*, 1997). The tholeiitic lavas in the northern Prinsen af Wales Bjerge should lie stratigraphically above those at Urbjerget, given the general northward dip of the plateau basalts in this area, and are thus most likely to represent either the upper part of the Milne Land Formation or the overlying Geikie Plateau Formation.

It might be possible to use distinctive compositional features to correlate the lavas with a particular plateau basalt formation. For example, using samples from a 6 km composite section through the coastal plateau basalts at Sortebræ (Fig. 1), Tegner *et al.* (1998*b*) demonstrated a contrasting behaviour in REE systematics between the lower and upper parts. In the lower part (Milne Land and Geikie Plateau Formations), there is a negative correlation of Dy/Yb_N with La/Sm_N, whereas in the upper part (Rømer Fjord and Skrænterne Formations), these ratios show a positive correlation (Fig. 11a). Furthermore, within the lower part, there are systematic variations with stratigraphic height, with La/Sm_N increasing and Dy/Yb_N decreasing up through the Milne Land and Geikie Plateau Formations.

The main Group 1 tholeiites have higher La/Sm_N and lower Dy/Yb_N than the stratigraphically lower Urbjerget tholeiites that are clearly equivalent to the lower Milne Land Formation (Fig. 11a: Hansen *et al.*, 2002). This stratigraphic compositional transition in the inland area from the Urbjerget tholeiites to the Group 1 tholeiites appears to be equivalent to the temporal variations within

Fig. 7. Radiogenic isotope variations. (a) $\epsilon Sr_{(t)}$ vs ϵNd_i ; (b) ²⁰⁶Pb/ $^{44}Pb_{meas}$. vs $^{207}Pb/^{204}Pb_{meas}$; (c) $^{206}Pb/^{204}Pb_{meas}$. vs $^{208}Pb/^{204}Pb_{meas}$. The symbol legends apply to all three figures. Data sources: Prinsen af Wales Bjerge region alkalic and tholeiitic lavas (this study; Brown et al., 1996, 2000; Ellam & Stuart, 2000); plateau basalts (Brown et al., 1996: Peate & Stecher, 2002; Andreasen et al., in preparation) Lower Basalts (Holm, 1988; Fram & Lesher, 1997; Hansen & Nielsen, 1999); offshore SE Greenland (Fitton et al., 1998; Saunders et al., 1999); Iceland (Sun & Jahn, 1975; Hémond et al., 1993; Hards et al., 1995; Hanan & Schilling, 1997; Hardarson et al., 1997; Stecher et al., 1999; Chauvel & Hémond, 2000); NE Greenland Nunatak lavas (Bernstein et al., 2000, 2001); Jan Mayen (Trønnes et al., 1999); Vestbrona nephelinites (56 Ma, offshore Norway-Prestvik et al., 1999); Archaean basement Pb isotopes (Leeman et al., 1976; Taylor et al., 1992; Kalsbeek et al., 1993). Archaean granulite gneiss has ϵSr_{60} ~-24 and ϵNd_{60} ~-35 and Archaean amphibolite gneiss has $\varepsilon Sr_{60} \sim 170$ and $\varepsilon Nd_{60} \sim -42$ [endmember compositions from Saunders et al. (1999)]. Sample 429289 is not plotted on the Pb isotope diagrams because of its extreme ²⁰⁶Pb/ 204 Pb value of ~23. The lines in (b) are regression lines through the Prinsen af Wales Bjerge lava data and the literature Iceland basalt data respectively, and the asterisk marks the point of intersection, which is a reasonable estimate for the composition of an uncontaminated Prinsen af Wales Bjerge alkalic magma.

Fig. 8. (a) ENd(t) vs EHf(t). Global MORB-OIB field (light shaded area) and 'mantle array' from Vervoort et al. (1999) and J. Blichert-Toft (unpublished data, 2002). The asterisk marks the inferred composition of the uncontaminated Prinsen af Wales Bjerge alkalic lava, and it lies on an extension of the steep Icelandic data trend. 'Kea' and 'Koolau' refer to the high-ENd and low-ENd components of the Hawaii plume, respectively. Data sources: Blichert-Toft et al. (1999); Kempton et al. (2000); Hanan et al. (2000). (b) yOs(t) vs ENd(t). Data sources: Baffin Island (A. J. R. Kent, unpublished data, 2001), West Greenland (Schaefer et al., 2000), Iceland (Skovgaard et al., 2001), East Greenland lithospheric mantle (Wiedemann xenoliths: Hanghøj et al., 2001), Siberian meymechites (Horan et al., 1995), Hawaii (Bennett et al., 1996), Samoa and Cook-Austral (Hauri & Hart, 1993). Curve 1 represents mixing between a primitive Prinsen af Wales Bjerge magma and continental crust, and curve 2 represents mixing between an 'enriched' plume component, as represented by the Palaeogene Baffin Island and West Greenland data, and lithospheric mantle. End-member parameters: Prinsen af Wales Bjerge magma: Os 1 ppb, $\gamma Os_i - 5$, Nd 50 ppm, ϵNd_i +4; 'enriched plume': same as for Prinsen af Wales magma but with $\gamma Os_i + 5$; continental crust: Os 10 ppt, γOs_i 1448, Nd 10 ppm, ϵ Nd_i -42; lithospheric mantle: Os 3.5 ppb, γ Os_i -13, Nd 1 ppm, ENdi -15 (McDonough & Sun, 1995; Saunders et al., 1999; Schaefer et al., 2000).

Fig. 9. 3 He/ 4 He (R/R_A) in olivines vs 206 Pb/ 204 Pb in host lava. Data sources: Prinsen af Wales Bjerge ~53 Ma (this study; Ellam & Stuart, 2000); West Greenland ~61 Ma (Graham *et al.*, 1998); NE Greenland ~58 Ma (Thirlwall *et al.*, 1994; Marty *et al.*, 1998); Isle of Skye, Scotland, ~61 Ma (Stuart *et al.*, 2000); Iceland ~15–0 Ma (Hilton *et al.*, 1999; Breddam *et al.*, 2000). Average crust in East Greenland and Scotland has 206 Pb/ 204 Pb ~ 14-5 and R/R_A ~ 0.02 (Stuart *et al.*, 2000), whereas crust in NE Greenland has more radiogenic 206 Pb/ 204 Pb ~ 18-6 (Thirlwall *et al.*, 1994).

the lower part of the plateau basalts, suggesting that the Group 1 tholeiites are equivalent to the upper Milne Land or Geikie Plateau Formations. The relatively low La/Sm_N of the Group 1 tholeiites rules out any correlation with the Rømer Fjord Formation lavas. There is an overlap in REE compositions with some lavas from the Skrænterne Formation, but in terms of major elements the Group 1 tholeiites tend to have higher SiO₂ at a given TiO₂/FeO(t) value than Skrænterne Formation lavas (Fig. 11b: Hansen et al., 2002). The volumetrically minor Group 2 flows have higher La/Sm_N than most Milne Land Formation lavas and higher Dy/Yb_N than the Geikie Plateau Formation lavas. Although they have similar La/Sm_N and Dy/Yb_N to the Rømer Fjord Formation lavas, they can be distinguished from these lavas by their higher SiO_2 at a given $TiO_2/FeO(t)$ and higher Zr/Y. It is possible that the Group 2 flows represent a minor compositional variant with the Milne Land or Geikie Plateau Formation that is not seen in the Sortebræ profile.

Thus, it appears that alkalic magmatism in the Prinsen af Wales Bjerge region initiated during the eruption of the early–middle part of the plateau basalts (upper Milne Land or Geikie Plateau Formations). This is consistent with the 55 Ma age obtained from the vent 1 sample. This activity lasted until after the plateau basalt eruptions had ceased (53 Ma age from 'Lindsay Nunatak'), a total duration of at least 2 Myr. Additional evidence for alkalic magmatism contemporaneous with the upper two

Fig. 10. Mg-number (% forsterite) vs (a) CaO and (b) Cr_2O_3 , to illustrate the compositional range and affinity of olivines from the Prinsen af Wales Bjerge Formation lavas. Filled symbols represent rim compositions, with tie-lines to the adjacent core composition shown in (a). For comparison, olivines from West Greenland picrites (~61 Ma: Larsen & Pedersen, 2000) and from lithospheric mantle xenoliths (Wiedemann Fjord, East Greenland: Bernstein *et al.*, 1998*a*) are also plotted. Olivine Mg-number is atomic Mg/(Mg + Fe). Olivines were analysed at the Geological Institute, University of Copenhagen, using a JEOL733 electron microprobe (operating conditions: 15 kV accelerating voltage, 15 nA beam current, wavelength-dispersive analysis).

formations of the tholeiitic plateau basalts comes from nephelinitic tuffs found interbedded within the Rømer Fjord Formation lavas (Larsen *et al.*, 1989), and a phonolitic tuff within the Skrænterne Formation lavas that is inferred to have been erupted from the Gardiner complex at 54 Ma (Fig. 1: Heister *et al.*, 2001). Furthermore, whereas the full stratigraphic sequence of the plateau basalts is preserved in the inland area near Gronau West (Fig. 1: Heister *et al.*, 2001), only lavas of the lower formations appear to have reached the Prinsen af Wales Bjerge region to the east.

The role of crustal assimilation

Magmas traversing the continental crust have the potential to modify their compositions by assimilating crustal material. The effects of crustal contamination on lava compositions in East and SE Greenland are most readily apparent in Pb isotope compositions because the local basement has a distinctive, very unradiogenic ²⁰⁶Pb/²⁰⁴Pb isotope composition (Leeman *et al.*, 1976; Taylor *et al.*, 1992; Kalsbeek *et al.*, 1993). Many of the Lower Basalts

Fig. 11. (a) La/Sm_N vs Dy/Yb_N, (b) TiO₂/FeO(t) vs SiO₂. Comparison of Prinsen af Wales Bjerge region tholeiites with the various formations recognized within the coastal plateau basalts: it should be noted that the formations are defined primarily by field characteristics and stratigraphy, rather than on compositional grounds. Data sources: plateau basalts (Larsen *et al.*, 1989; Tegner *et al.*, 1998b); Urbjerget lavas (Hansen *et al.*, 2002). The shaded field in (a) encloses analyses from the lower part of the plateau basalts (Milne Land and Geikie Plateau Formations, plus the inland Urbjerget tholeiites). The line in (b) marks the maximum SiO₂ content for a given TiO₂/FeO value seen in the upper part of the plateau basalts (Rømer Fjord and Skrænterne Formations).

(Holm, 1988; Fram & Lesher, 1997; Hansen & Nielsen, 1999) and the offshore lavas drilled by the Ocean Drilling Program off SE Greenland (Fitton *et al.*, 1998, 2000; Saunders *et al.*, 1999) show clear evidence for significant contamination by such crustal material (Fig. 7). In detail, two compositionally distinct crustal contaminants affecting lavas in both regions can be recognized, distinguished primarily by differences in Sr isotopes (amphibolitic gneiss with relatively high ⁸⁷Sr/⁸⁶Sr, and granulitic gneiss with relatively low ⁸⁷Sr/⁸⁶Sr) but both with relatively unradiogenic ²⁰⁶Pb/²⁰⁴Pb and low ε Nd_i. From the Pb isotope variations (Fig. 7), it is clear that the extent of crustal assimilation is, in general, lower in the plateau basalts than in the earlier Lower Basalts, and this limited crustal influence is also seen in the main group of tholeiitic lavas from the Prinsen af Wales Bjerge profiles. In contrast, the younger 'Lindsay Nunatak' tholeiites appear to be highly contaminated, as is evident from their unradiogenic 206 Pb/ 204 Pb of 14·9–16·2.

The Sr-Nd-Pb isotope data indicate a strong crustal influence in the Prinsen af Wales Bjerge alkalic lavas and also that the crustal assimilant is broadly similar in composition to that involved in the plateau basalts, Lower Basalts, and the early phase lavas drilled offshore further south. The relatively high ⁸⁷Sr/⁸⁶Sr of the inferred contaminant suggests dominance of amphibolitic rather than granulitic crustal material. The effects of crustal assimilation are also clear from the major and trace element data: the Si-enriched group have lower ENd_i and ²⁰⁶Pb/ ²⁰⁴Pb than the main group, and tend to have high Ba/ La, K/Nb and U/Pb ratios, and lower Ce/Pb and Dy/ Yb_N ratios, indicative of a higher proportion of assimilated Si-rich crust. The highest ¹⁸⁷Os/¹⁸⁸Os values (0.130-(0.132) are found in the samples with the lowest εNd_i and ²⁰⁶Pb/²⁰⁴Pb. This is consistent with addition of ancient crustal material with time-integrated elevated Re/Os and low Sm/Nd and U/Pb ratios, as is illustrated by one example of a plausible mixing curve (curve 1 in Fig. 8b). The question, though, is whether the main group are themselves slightly contaminated. Mixing arrays on Pb–Pb isotope diagrams are linear, and it is interesting that extrapolation of the alkalic lava trend on the ²⁰⁷Pb/ ²⁰⁴Pb vs ²⁰⁶Pb/²⁰⁴Pb (Fig. 7b) to higher ²⁰⁶Pb/²⁰⁴Pb (i.e. potentially less-contaminated compositions) intersects the trend of uncontaminated plateau basalt lavas and Icelandic basalts at ²⁰⁶Pb/²⁰⁴Pb values of 19·2–19·8. This is a plausible source composition for the Prinsen af Wales Bierge lavas, and also explains their low ²⁰⁷Pb/²⁰⁴Pb relative to the plateau basalt samples. If we assume that this intersection point represents the Pb isotope composition of the uncontaminated magma, estimates for the amounts of contamination required to explain the lava data can be made using plausible compositions for the assimilated crustal material. These amounts depend on the choice of elemental and isotopic compositions assumed for the crustal end-member. If we take reasonable values as used in other studies of East Greenland magmatism (e.g. Blichert-Toft et al., 1992; Hansen & Nielsen, 1999; Saunders et al., 1999), then the main group of alkalic lavas can be explained by $\sim 4\%$ assimilation whereas the most contaminated samples require ~ 15 -20% assimilation. The differences in SiO_2 between the main group and the high-Si group are also consistent with such amounts of assimilation.

Thus, rather surprisingly, there is clear evidence for greater extents of crustal assimilation in the alkalic lavas, despite their elevated trace element contents, than in the associated underlying tholeiitic lavas. This marked crustal influence in the Prinsen af Wales Bjerge alkalic lavas, together with the absence of mantle xenoliths, is suggestive of small magma batches that stalled in the crust en route to the surface. The high levels of contamination compared with the relatively uncontaminated tholeiitic plateau basalts provide further evidence that the Prinsen af Wales Bjerge alkalic lavas, and the younger tholeiites on 'Lindsay Nunatak', are locally erupted through newly established magma conduits, whereas the voluminous plateau basalt lavas probably flowed into the region fed from long-lived plumbing systems nearer the coast or from the east (Pedersen et al., 1997). Possible eruption vent sites for the Prinsen af Wales Bjerge alkalic lavas have been identified in the '1982 Nunatak', 'Tjeldebjerge', Trillingerne, and Spring Journey Nunataks regions (Fig. 1: Wager, 1947; Brown et al., 2000; Hansen et al., 2002). The scatter of the data on the various isotope plots (Figs 7 and 8) rules out a single contamination trend, consistent with frequent small magma batches traversing the crust and stalling at different levels at different times.

Mantle source for 'uncontaminated' Prinsen af Wales Bjerge alkalic lavas

As discussed above, none of the Prinsen af Wales Bjerge Formation samples represent pristine uncontaminated mantle-derived magmas. From the three least contaminated samples (429244, 429265, 429272) and the contamination model calculations, an 'uncontaminated' magma is inferred to have the following distinctive isotopic characteristics: ⁸⁷Sr/⁸⁶Sr_i ~ 0.7035, ϵ Nd_i ~ +5 to +6, ϵ Hf_i ~ +8 to +9, ²⁰⁶Pb/²⁰⁴Pb_i ~ 19·2–19·8, ¹⁸⁷Os/ ¹⁸⁸Os_i ~ 0.120–0.126, and ³He/⁴He >18 R/R_A. These Sr–Nd–Pb isotope characteristics are broadly similar to the 'high ²⁰⁶Pb plume component' that contributed to the 56–54 Ma tholeiitic dykes on the Faeroes (Holm *et al.*, 2001), and the ^{c206}Pb-rich, p component' that Hanan & Schilling (1997) inferred to be representative of the main Icelandic plume mantle.

The primitive-mantle-normalized diagram (Fig. 5a) shows relatively smooth trace element patterns, except for slight negative anomalies at K and P, with normalized abundances reaching maxima at Nb and Ta. The strongly fractionated HREE patterns (Dy/Yb_N $2 \cdot 1-2 \cdot 7$) indicate melting in the presence of residual garnet. These magmas share many trace element characteristics with HIMU ocean island basalt (OIB) magmas (Fig. 5b: e.g. Sun & McDonough, 1989; Weaver, 1991; Hofmann, 1997), namely low La/Nb ($0 \cdot 7-0 \cdot 8$), K/Nb (<180), Th/Nb ($<0 \cdot 08$) and Ba/La (5-8), but without the extreme 206 Pb/ 204 Pb (>20) values found in typical HIMU OIB such as St. Helena. Thirlwall (1997) refers to other OIB magmas with similar characteristics as being derived from 'young

HIMU' mantle; i.e. mantle modified to give similar trace element features to the extreme HIMU source, but sufficiently recently so as not to have allowed in-growth of radiogenic ²⁰⁶Pb. The positive primitive-mantle-normalized anomaly of Nb relative to La, Th, Ba and K in the HIMU OIB source is usually attributed to a contribution from recycled subduction-processed residual ocean slab material.

The 'Lindsay Nunatak' nephelinite is compositionally distinct from the Prinsen af Wales Bjerge Formation lavas (i.e. contrasting primitive-mantle-normalized trace element patterns in Fig. 5, and markedly different Pb isotope compositions). These differences are indicative of a different petrogenetic origin. It has trace element features consistent with small-degree melting in the presence of minor residual phases that hold back elements such as K, Sr, Pb and P. The Pb isotope data and U-Th-Pb abundances for this sample are consistent with being derived from a source broadly similar to that of the Palaeogene tholeiitic and alkalic lavas but that had elevated U/Pb and Th/Pb ratios for the last $\sim 400-800$ Myr. Thus it is plausible that this nephelinite, as well as the contemporaneous Gardiner intrusion, represents melts of local lithospheric mantle that was metasomatized during the Caledonian orogeny.

Recycled components in Iceland plumerelated magmatism

Recycled components are increasingly invoked to explain much of the isotopic variations seen within OIB globally (e.g. Weaver, 1991; Hofmann, 1997). It has been proposed that the compositional variations in Icelandic and Hawaiian lavas can be explained by melting of different components that make up a complete section of recycled subducted slab (e.g. Lassiter & Hauri, 1998; Chauvel & Hémond, 2000). The low-ENd component (alkalic basalts, Iceland; 'Koolau' component, Hawaii) is interpreted as the upper part of recycled oceanic crust (basalt \pm pelagic sediment), whereas the high-ENd component (depleted picritic lavas, Iceland; 'Kea' component, Hawaii) is interpreted as the gabbroic part of the recycled slab. The role for DMM (depleted MORB mantle) as a magma source at both places appears to be minimal (e.g. Lassiter & Hauri, 1998; Chauvel & Hémond, 2000), and the high ³He/⁴He signal is inferred to be primarily from the plume mantle hosting the recycled slabs (e.g. Eiler *et al.*, 1998; Hilton et al., 1999).

In this paper, we are concerned primarily with the nature of the 'enriched' low-ENd component(s). It is not clear if more than one 'enriched' component is required to explain the compositional variety of trace element enriched, low-ENd magmas found throughout the North Atlantic region, and also how the Prinsen af Wales Bjerge

alkalic lavas compare compositionally with these other magmatic suites. Examples include alkalic Iceland lavas (e.g. Hards *et al.*, 1995; Chauvel & Hémond, 2000; Prestvik *et al.*, 2001), Jan Mayen lavas (Schilling *et al.*, 1999; Trønnes *et al.*, 1999), Vestbrona nephelinites, offshore Norway (56 Ma: Prestvik *et al.*, 1999) and Palaeogene melilitites, NE Greenland (Bernstein *et al.*, 2000). Trønnes *et al.* (1999) have argued, for example, that the compositional features of Jan Mayen alkaline lavas can be explained by contributions from Nb-rich melts derived from a recycled oceanic crust component.

The highly alkaline ultrabasic lavas found in the Nunatak Region of NE Greenland are the most compositionally extreme of all the Palaeogene alkaline rocks in East Greenland (Bernstein et al., 2000), and they are similar in composition to the meymechites associated with the Siberian flood basalts (Horan et al., 1995). Bernstein et al. (2000, 2001) suggested that these rocks represent low-degree melting at high pressures (>5 GPa) of subducted oceanic lithosphere material within the Iceland plume and also that variable mixing of such a component with a depleted MORB-like melt can explain the main compositional features of the plateau basalts. The primitive-mantle-normalized trace element pattern of such a melilitite is broadly similar to that of the main group of Prinsen af Wales Bjerge alkalic lavas, although the melilitite has higher incompatible trace element abundances and higher La/Yb and Dy/Yb (Fig. 5b). The Nunatak Region lavas have lower SiO₂ and Al₂O₃, and higher Fe_2O_3 and TiO_2 (Fig. 4), which, together with their higher Dy/Yb, suggests low-degree melting at higher pressures than for the Prinsen af Wales Bjerge alkalic lavas, perhaps beneath a thicker lithospheric cap. Isotope data are needed to test the possible similarity of mantle sources between the Nunatak Region melilitites and the Prinsen af Wales Bjerge alkalic lavas, although the few Sr and Nd isotope data of Bernstein et al. (2001) are broadly consistent with such a model. Furthermore, the ${}^{206}Pb/{}^{204}Pb$ value (>19·2) inferred for an uncontaminated Prinsen af Wales Bjerge magma is sufficiently radiogenic to represent the 'enriched' component that is required to explain the isotopic variations within the plateau basalts (Peate & Stecher, 2002).

Compositional similarities between alkalic magmas from Jan Mayen, Iceland and Vestbrona (e.g. Fig. 12) led Trønnes *et al.* (1999) to suggest a common 'enriched', low-ɛNd mantle component with low ³He/⁴He (Schilling *et al.*, 1999) that was present within the ancestral Iceland plume and that is now widely dispersed throughout the North Atlantic upper mantle. However, the Prinsen af Wales Bjerge alkalic lavas and the Nunatak Region lavas are markedly different in composition from this component, both having lower Ba/La and higher Zr/ Nb (Fig. 12). This implies that the ancestral Iceland

Fig. 12. (a) La/Yb vs Ba/La, (b) Zr/Y vs Nb/Y (Fitton et al., 1997), to compare the Prinsen af Wales Bjerge alkalic lavas with Nunatak Region lavas (Bernstein et al., 2000, 2001), Jan Mayen (Trønnes et al., 1999), Vestbrona nephelinites (56 Ma, offshore Norway: Prestvik et al., 1999) and Icelandic basalts (Hémond et al., 1993; Hards et al., 1995; Hardarson et al., 1997; Stecher et al., 1999; Chauvel & Hémond, 2000; Skovgaard et al., 2001; and references therein).

plume contained more than one 'enriched', low-ɛNd component, as suggested by Hanan & Schilling (1997).

At the time of the Prinsen af Wales Bjerge alkalic magmatism, the Iceland plume stem is inferred to have been beneath thick Greenland cratonic lithosphere, within 200–300 km of the Prinsen af Wales Bjerge region (Lawver & Müller, 1994; Torsvik *et al.*, 2001). Melting beneath the inland regions was largely restricted to the enriched recycled slab components (see also Bernstein *et al.*, 2000, 2001) because the thick lithospheric cap prevented the plume mantle from upwelling to depths shallow enough for melting to occur above its dry solidus (~115 km: Ito *et al.*, 1999). At deeper levels, perhaps up to 180–210 km (Ito *et al.*, 1999), incipient 'wet' melting caused by dehydration and defluidization of the upwelling plume mantle will have produced fluids that were probably highly mobile and capable of transporting significant amounts of helium plus other rare gases and volatiles (e.g. Schilling *et al.*, 1999; Breddam *et al.*, 2000). Thus, one model to explain the high ³He/⁴He ratios measured in the Prinsen af Wales Bjerge Formation lavas is addition of Iceland plume-derived helium from such deep He-rich fluids to melts of the enriched recycled slab components.

Hf and Os isotope constraints on the nature of the recycled component(s)

Isotope data on the least contaminated Prinsen af Wales Bjerge alkalic lavas can provide some constraints on the nature of the recycled low-ENd component. For example, ancient pelagic sediments have unradiogenic Nd and Hf isotope compositions that plot above the 'mantle array' in Fig. 8a (i.e. they have more radiogenic EHf than normal OIB for a given ε Nd value). The shallow slope of the Hawaiian data trend and relatively high EHf of the low-ENd 'Koolau' component indicate the presence of old recycled pelagic sediment in this mantle source (Blichert-Toft et al., 1999). This contrasts with the steep slope of the Icelandic data trend, relative to the 'mantle array'. The inferred composition of the uncontaminated Prinsen af Wales Bjerge magma lies on an extension of this data trend below the 'mantle array', limiting the role of pelagic sedimentary material in this component. Nd and Hf isotope data on HIMU OIB lavas plot in a similar position to the Prinsen af Wales Bjerge lavas, below the 'mantle array', and Salters & White (1998) demonstrated that this is consistent with derivation primarily from an old recycled oceanic crust component. Blichert-Toft & Albarède (1997) explained such characteristics by remelting ancient residues produced by garnet-absent melting.

The compatibility of Os and moderate incompatibility of Re during melting produces high Re/Os and, with time, high ¹⁸⁷Os/¹⁸⁸Os in mafic melts, whereas the peridotitic mantle residue will have low Re/Os, eventually leading to low ¹⁸⁷Os/¹⁸⁸Os. Thus, ancient recycled mafic components in OIB can be identified from their elevated ¹⁸⁷Os/¹⁸⁸Os values as seen, for example in HIMU OIB lavas (¹⁸⁷Os/¹⁸⁸Os ~0·155: Hauri & Hart, 1993; Shirey & Walker, 1998). However, the Prinsen af Wales Bjerge alkalic lavas have sub-chondritic Os isotope compositions (¹⁸⁷Os/¹⁸⁸Os_i 0·120–0·126; γ Os_i –7 to –2), indicating a peridotitic rather than pyroxenitic source. There are several possibilities to consider:

(1) melting of a DMM source, which has suitably low ¹⁸⁷Os/¹⁸⁸Os ratios of 0·123–0·128 (defined by abyssal peridotites and the least radiogenic MORB samples: Shirey & Walker, 1998). However, this can be ruled out as it has significantly higher ϵ Nd than the Prinsen af Wales Bjerge lavas ($\sim +10$ vs $\sim +4$).

(2) Another possible source is sub-continental lithospheric mantle. This is often characterized by sub-chondritic Os isotope values reflecting ancient melt-related Re depletion (average ${}^{187}\text{Os}/{}^{188}\text{Os} = 0.113$: Shirey & Walker, 1998), and data on the Wiedemann Fjord xenoliths show that such depleted lithospheric mantle occurs beneath East Greenland ($^{187}Os/^{188}Os_m$ 0·101–0·126: Hanghøj et al., 2001). The very low ¹⁸⁷Os/¹⁸⁸Os_i (0·112– 0.121: Carlson et al., 1996) of some mafic potassic magmas in central Brazil demonstrates that alkalic magmas can result from low-degree melting of lithospheric mantle, rather than the underlying asthenospheric or plume mantle. However, it is difficult to reconcile the elevated ³He/⁴He ratios of the Prinsen af Wales Bjerge alkaline lavas with an origin purely from melting of continental lithospheric mantle, as such mantle is generally characterized by ³He/⁴He ratios similar to, or lower than, MORB (e.g. Dunai & Baur, 1995).

(3) Assimilation of lithospheric mantle material by an 'enriched' plume-derived melt, as suggested for high-MgO meymechites from Siberia (Horan et al., 1995), would rapidly decrease the Os isotope composition of the melt with little effect on other radiogenic isotope systems (Sr-Nd-Pb-Hf) owing to the marked contrast between the Os and Sr-Nd-Pb-Hf contents in the two end-members. The 'enriched' plume component seen in early phase magmatism in West Greenland and Baffin Island (Schaefer et al., 2000; A. J. R. Kent, unpublished data, 2001) provides a suitable end-member to test this mixing model for the Prinsen af Wales Bjerge alkalic lavas. It has similar $\epsilon Nd_i (\sim +5)$ to the 'uncontaminated' Prinsen af Wales Bjerge magma, but with higher γOs_i $(\sim +5 \text{ vs } -5)$. The Prinsen af Wales Bjerge data can be modelled by addition of 15-25% of a lithospheric mantle component (curve 2 in Fig. 8b). Although such a model cannot be excluded, several lines of evidence suggest that this might not be the origin of the observed sub-chondritic Os isotope compositions. First, there is no clear evidence for any xenocrystic lithospheric mantle olivines in the samples, and, second, analyses of Holocene alkalic basalts from Iceland (Smit et al., 2001) show that material with relatively low εNd_i (~+5) and subchondritic γOs_i (~ -2) is indeed present within the upwelling Iceland plume.

One way of reconciling the Os isotope data with a slab recycling model is if the Os is primarily contributed by the mantle section of the recycled oceanic lithosphere, in contrast to the incompatible elements that are derived principally from either the basaltic portion of the recycled crust (e.g. Lassiter & Hauri, 1998; Chauvel & Hémond, 2000) or metasomatic veins within the mantle section (e.g. Niu *et al.*, 2002). Chauvel & Hémond (2000) similarly argued that a contribution from melting of the harz-burgitic part of old recycled oceanic lithosphere was

necessary to account for the high Mg and Ni contents of Icelandic basalts.

CONCLUSIONS

(1) Stratigraphic, compositional and ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ age data suggest that alkalic magmatism in the inland Prinsen af Wales Bjerge was contemporaneous with the eruption of the upper parts of the voluminous tholeiitic plateau basalt flood volcanism (56–54 Ma) in East Greenland. This alkalic activity, however, persisted after the plateau basalt eruptions had ceased, as indicated by field relations and a new ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ age of 53 Ma.

(2) The Prinsen af Wales Bjerge alkaline lavas show a marked crustal influence, more so than the underlying tholeiitic lavas. This suggests the establishment of new local magmatic plumbing systems inland, distinct from the long-lived ones nearer the coast that fed the voluminous tholeiitic plateau basalt eruptions.

(3) The mantle source for the Prinsen af Wales Bjerge alkalic lavas was characterized by elevated ${}^{3}\text{He}/{}^{4}\text{He}$ (>18 R/R_A), sub-chondritic Os isotope composition (${}^{187}\text{Os}/{}^{188}\text{Os}_{i}$ 0·120–0·126), radiogenic ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ (19·2–19·8), low ϵ Nd_i (~ +5 to +6) and ϵ Hf_i (~ +8 to +9) that plot below the 'Nd–Hf mantle array', and trace element characteristics broadly similar to HIMU OIB, with low K/Nb, Ba/La and La/Nb.

(4) Although the East Greenland lithospheric mantle is characterized by sub-chondritic Os isotope values, it is not straightforward to account for the overall compositional features of the Prinsen af Wales Bjerge alkalic magmas by the participation of such mantle.

(5) A source primarily of recycled material within the upwelling Iceland plume mantle is preferred, although some minor assimilation of lithospheric mantle material cannot be ruled out. One plausible model to explain the compositional features of the Prinsen af Wales Bjerge alkalic magmas is preferential melting of recycled material within the plume upwelling beneath the thick lithospheric cap, with ³He contributed from volatile-rich fluids from the plume. Although the exact nature of this recycled component is not yet resolved, Hf isotopes rule out any significant role for recycled pelagic sediment and the inferred low ¹⁸⁷Os/¹⁸⁸Os limits the participation of recycled basaltic material and argues instead for a contribution from the mantle section of the recycled slab.

ACKNOWLEDGEMENTS

We thank Tod Waight for analytical assistance, Robert Frei for help with the Os analyses and for access to the Geological Institute, University of Copenhagen, chemistry laboratories, Philippe Telouk for help with the Plasma 54 at Lyon, Ole Stecher for processing the ICP-MS trace element data, Phil Neuhoff for assistance in sampling the lava profiles in 1995, and Troels Nielsen for organizing the field logistics in 1995 and 2000 and for numerous discussions. Comments on an earlier version by Lotte Melchoir Larsen and Stefan Bernstein, and journal reviews by Ian Parkinson, Rob Ellam and Godfrey Fitton are appreciated. Thanks also go to the SWIFT cruise participants on the R.V. Marion Dufresne for providing a stimulating environment in the middle of the Indian Ocean, where the first manuscript draft was largely written. This study was funded by the Danish National Research Foundation. J.B.T. acknowledges financial support from the Institut National des Sciences de l'Univers. Geochronological facilities at Oregon State University are supported by the National Science Foundation (USA).

REFERENCES

- Anwar, Y. M. (1955). Geological investigations in East Greenland: part V, The petrography of the Prinsen af Wales Bjerge lavas. *Meddelelser om Grønland* 135, 1–31.
- Bennett, V. C., Esat, T. M. & Norman, M. D. (1996). Two mantleplume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. *Nature* **381**, 221–224.
- Bernstein, S., Kelemen, P. B. & Brooks, C. B. (1998a). Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high-degree melting. *Earth and Planetary Science Letters* 154, 221–235.
- Bernstein, S., Kelemen, P. B., Tegner, C., Kurz, M. D., Blusztajn, J. & Brooks, C. K. (1998b). Post-breakup basaltic magmatism along the East Greenland Tertiary rifted margin. *Earth and Planetary Science Letters* 160, 845–862.
- Bernstein, S., Leslie, A. G., Higgins, A. K. & Brooks, C. K. (2000). Tertiary alkaline volcanics in the Nunatak Region, Northeast Greenland: new observations and comparison with Siberian maymechites. *Lithos* 53, 1–20.
- Bernstein, S., Brooks, C. K. & Stecher, O. (2001). Enriched component of the proto-Icelandic mantle plume revealed in alkaline Tertiary lavas from East Greenland. *Geology* 29, 859–862.
- Blichert-Toft, J. (2001). On the Lu–Hf isotope geochemistry of silicate rocks. *Geostandards Newsletter* 25, 41–56.
- Blichert-Toft, J. & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. *Earth and Planetary Science Letters* 148, 243–258.
- Blichert-Toft, J., Lesher, C. E. & Rosing, M. T. (1992). Selectively contaminated magmas of the Tertiary East Greenland macrodike complex. *Contributions to Mineralogy and Petrology* **110**, 154–172.
- Blichert-Toft, J., Chauvel, C. & Albarède, F. (1997). Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS. *Contributions to Mineralogy* and Petrology 127, 248–260.
- Blichert-Toft, J., Frey, F. A. & Albarède, F. (1999). Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. *Science* 285, 879–882.
- Breddam, K., Kurz, M. D. & Storey, M. (2000). Mapping out the conduit of the Iceland mantle plume with helium isotopes. *Earth* and Planetary Science Letters **176**, 45–55.

- Brooks, C. K. & Rucklidge, J. C. (1974). Strongly undersaturated Tertiary volcanic rocks from the Kangerdlugsuuaq area, East Greenland. *Lithos* 7, 239–248.
- Brooks, C. K., Fawcett, J. J. & Gittins, J. (1976). Caledonian magmatic activity in south-eastern Greenland. *Nature* 260, 694–696.
- Brown, P. E., Evans, I. B. & Becker, S. M. (1996). The Prince of Wales Formation—post-flood basalt alkali volcanism in the Tertiary of East Greenland. *Contributions to Mineralogy and Petrology* 123, 424–434.
- Brown, P. E., Evans, I. B. & Becker, S. M. (2000). Alkaline basaltic magmatism in the Tertiary of central East Greenland—the Trekantnunatakker. *Transactions of the Royal Society of Edinburgh: Earth Sciences* 90, 165–172.
- Carlson, R. W., Esperança, S. & Svisero, D. (1996). Chemical and Os isotopic study of Cretaceous potassic rocks from southern Brazil. *Contributions to Mineralogy and Petrology* **125**, 393–405.
- Chaffey, D. J., Cliff, R. A. & Wilson, B. M. (1989). Characterisation of the St Helena magma source. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 257–276.
- Chauvel, C. & Hémond, C. (2000). Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. *Geochemistry, Geophysics, Geosystems* 1, paper number 1999GC000002.
- Condomines, M., Grönvold, K., Hooker, P. J., Muehlenbachs, K., O'Nions, R. K., Oskarsson, N. & Oxburgh, E. R. (1983). Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. *Earth and Planetary Science Letters* 66, 125–136.
- Dunai, T. J. & Baur, H. (1995). Helium, neon, and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. *Geochimica et Cosmochimica Acta* 59, 2767–2783.
- Eiler, J. M., Farley, K. A. & Stolper, E. M. (1998). Correlated helium and lead isotope variations in Hawaiian lavas. *Geochimica et Cosmochimica Acta* 62, 1977–1984.
- Ellam, R. M. & Stuart, F. M. (2000). The sub-lithospheric source of North Atlantic basalts: evidence for, and significance of, a common end-member. *Journal of Petrology* **41**, 919–932.
- Farley, K. A. & Neroda, E. (1998). Noble gases in the Earth's mantle. Annual Review of Earth and Planetary Sciences 26, 189–218.
- Fawcett, J. J., Gittins, J., Rucklidge, J. C. & Brooks, C. K. (1982). Petrology of Tertiary lavas from the western Kangerdlugssuaq area, East Greenland. *Mineralogical Magazine* 45, 211–218.
- Fitton, J. G., Saunders, A. D., Norry, M. J., Hardarson, B. S. & Taylor, R. N. (1997). Thermal and chemical structure of the Iceland plume. *Earth and Planetary Science Letters* **153**, 197–208.
- Fitton, J. G., Hardarson, B. S., Ellam, R. M. & Rogers, G. (1998). Sr-, Nd-, and Pb-isotopic composition of volcanic rocks from the southeast Greenland margin at 63°N: temporal variation in crustal contamination during continental breakup. In: Saunders, A. D., Larsen, H. C. & Wise, S. W. (eds) *Proceedings of the Ocean Drilling Program, Scientific Results, 152.* College Station, TX: Ocean Drilling Program, pp. 351–357.
- Fitton, J. G., Larsen, L. M., Saunders, A. D., Hardarson, B. S. & Kempton, P. D. (2000). Palaeogene continental to oceanic magmatism on the SE Greenland continental margin at 63°N: a review of the results of Ocean Drilling Program Legs 152 and 163. *Journal of Petrology* 38, 231–275.
- Fram, M. S. & Lesher, C. E. (1997). Generation and polybaric differentiation of East Greenland early Tertiary flood basalts. *Journal* of Petrology 38, 231–275.
- Graham, D. W., Larsen, L. M., Hanan, B. B., Storey, M., Pedersen, A. K. & Lupton, J. E. (1998). Helium isotope composition of the

early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. *Earth and Planetary Science Letters* **160**, 241–255.

- Gurenko, A. A., Hansteen, T. H. & Schmincke, H.-U. (1996). Evolution of parental magmas of Miocene shield basalts of Gran Canaria (Canary Islands): constraints from crystal, melt and fluid inclusions in minerals. *Contributions to Mineralogy and Petrology* **124**, 422–435.
- Hanan, B. B. & Schilling, J.-G. (1997). The dynamic evolution of the Iceland mantle plume: the Pb isotope perspective. *Earth and Planetary Science Letters* 151, 43–60.
- Hanan, B. B., Blichert-Toft, J., Kingsley, R. & Schilling, J.-G. (2000). Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? *Geochemistry, Geophysics, Geosystems* 1, paper number 1999GC000009.
- Hanghøj, K., Kelemen, P., Bernstein, S., Blusztajn, J. & Frei, R. (2001). Osmium isotopes in the Wiedemann Fjord mantle xenoliths: a unique record of cratonic mantle formation by melt depletion in the Archaean. *Geochemistry, Geophysics, Geosystems* 2, paper number 2000GC000085.
- Hansen, H. & Nielsen, T. F. D. (1999). Crustal contamination in Palaeogene East Greenland flood basalts: plumbing system evolution during continental rifting. *Chemical Geology* 157, 89–118.
- Hansen, H., Pedersen, A. K., Duncan, R. A., Bird, D. K., Brooks, C. K., Fawcett, J. J., Gittins, J., Gorton, M. & O'Day, P. (2002). Volcanic stratigraphy of the southern Prinsen af Wales Bjerge region, East Greenland. In: Jolley, D. W. & Bell, B. R. (eds) *The North Atlantic Igneous Province: Stratigraphy, Tectonics, Volcanic and Magmatic Processes. Geological Society, London, Special Publications* 197 (in press).
- Hardarson, B. S., Fitton, J. G., Ellam, R. M. & Pringle, M. S. (1997). Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. *Earth and Planetary Science Letters* 153, 181–196.
- Hards, V. L., Kempton, P. D. & Thompson, R. N. (1995). The heterogeneous Iceland plume: new insights from the alkaline basalts of the Snaefell volcanic centre. *Journal of the Geological Society, London* 152, 1003–1009.
- Hauri, E. H. & Hart, S. R. (1993). Re–Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. *Earth and Planetary Science Letters* 114, 353–371.
- Heister, L. E., O'Day, P. A., Brooks, C. K., Neuhoff, P. S. & Bird, D. K. (2001). Pyroclastic deposits within the East Greenland Tertiary flood basalts. *Journal of the Geological Society, London* 158, 269–284.
- Hémond, C., Arndt, N. T., Lichtenstein, U. & Hofmann, A. W. (1993). The heterogeneous Iceland mantle plume: Nd–Sr–O isotopes and trace element constraints. *Journal of Geophysical Research* 98, 15833– 15850.
- Hilton, D. R., Grönvold, K., Macpherson, C. G. & Castillo, P. R. (1999). Extreme ³He/⁴He ratios in northwest Iceland: constraining the common component in mantle plumes. *Earth and Planetary Science Letters* 173, 53–60.
- Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. *Nature* 385, 219–229.
- Hogg, A. J. (1985). The petrology and geochemistry of the Prinsen af Wales Bjerge, East Greenland. M.Sc. thesis, University of Toronto, pp. 1–99.
- Hogg, A. J., Fawcett, J. J., Gittins, J. & Gorton, M. P. (1989). Cyclical variation in composition in continental tholeiites of East Greenland. *Canadian Journal of Earth Science* 26, 534–543.
- Holm, P. M. (1988). Nd, Sr and Pb isotope geochemistry of the Lower Lavas, E. Greenland Tertiary igneous province. In: Morton, A. C. & Parson, L. M. (eds) *Early Tertiary Volcanism and the Opening of the NE Atlantic. Geological Society, London, Special Publications* 49, 181–195.

- Holm, P. M., Hald, N. & Waagstein, R. (2001). Geochemical and Pb–Sr–Nd isotopic evidence for separate hot depleted and Iceland plume mantle sources for the Paleogene basalts of the Faroe Islands. *Chemical Geology* **178**, 95–125.
- Horan, M. F., Walker, R. J., Fedorenko, V. A. & Czamanske, G. K. (1995). Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. *Geochimica et Cosmochimica Acta* 59, 5159–5168.
- Ito, G., Shen, Y., Hirth, G. & Wolfe, C. J. (1999). Mantle flow, melting, and dehydration of the Iceland mantle plume. *Earth and Planetary Science Letters* 165, 81–96.
- Kalsbeek, F., Austrheim, H., Bridgwater, D., Hansen, B. T., Pedersen, S. & Taylor, P. N. (1993). Geochronology of Archaean and Proterozoic events in the Ammassalik area, south-east Greenland, and comparisons with the Lewisian of Scotland and the Nagssugtoqidian of West Greenland. *Precambrian Research* **62**, 239–270.
- Kempton, P. D., Fitton, J. G., Saunders, A. D., Nowell, G. M., Taylor, R. N., Hardarson, B. S. & Pearson, G. (2000). The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. *Earth and Planetary Science Letters* 177, 255–271.
- Kurz, M. D., Meyer, P. S. & Sigurdsson, H. (1985). Helium isotope systematics within the neovolcanic zones of Iceland. *Earth and Planetary Science Letters* 74, 291–305.
- Kystol, J. & Larsen, L. M. (1999). Analytical procedures in the rock geochemical laboratory of the Geological Survey of Denmark and Greenland. *Geology of Greenland Survey Bulletin* 184, 59–62.
- Larsen, L. M. & Pedersen, A. K. (2000). Processes in high-Mg, high-T magmas: evidence from olivine, chromite and glass in Palaeogene picrites from West Greenland. *Journal of Petrology* **41**, 1071–1098.
- Larsen, L. M., Watt, W. S. & Watt, M. (1989). Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland. *Bulletin Grønlands Geologiske Undersogelse* 157, 1–164.
- Lassiter, J. C. & Hauri, E. H. (1998). Osmium isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. *Earth and Planetary Science Letters* 164, 483–496.
- Lawver, L. A. & Müller, R. D. (1994). Iceland hotspot track. *Geology* 22, 311–314.
- Le Bas, M. J. (2000). IUGS classification of the high-Mg and picritic volcanic rocks. *Journal of Petrology* **41**, 1467–1470.
- Leeman, W. P., Dasch, E. J. & Kays, M. A. (1976). ²⁰⁷Pb/²⁰⁴Pb whole-rock age of gneisses from the Kangerdlugssuaq area, eastern Greenland. *Nature* **263**, 469–471.
- Luais, B., Telouk, P. & Albarède, F. (1997). Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. *Geochimica et Cosmochimica Acta* 61, 4847–4854.
- MacDonald, G. A. & Katsura, T. (1964). Chemical composition of Hawaiian lavas. *Journal of Petrology* 5, 83–133.
- Marty, B., Upton, B. G. J. & Ellam, R. M. (1998). Helium isotopes in early Tertiary basalts, northeast Greenland: evidence for 58 Ma plume activity in the North Atlantic–Iceland volcanic province. *Geology* 26, 407–410.
- McDonough, W. F. & Sun, S.-S. (1995). The composition of the Earth. *Chemical Geology* **120**, 223–253.
- Meisel, T., Walker, R. J. & Morgan, J. W. (1996). The osmium isotopic composition of the Earth's primitive upper mantle. *Nature* 383, 517–520.
- Nägler, T. F. & Frei, R. (1997). 'Plug-in' Os distillation. Schweizerische Mineralogische und Petrographische Mitteilungen 77, 123–127.
- Nielsen, T. F. D. (1987). Tertiary alkaline magmatism in East Greenland: a review. In: Fitton, J. G. & Upton, B. J. G. (eds) Alkaline Igneous Rocks. Geological Society, London, Special Publications 30, 489–515.
- Nielsen, T. F. D. (1994). Alkaline dyke swarms of the Gardiner Complex and the origin of ultramafic alkaline complexes. *Geochemistry International* **31**, 37–56.

- Nielsen, T. F. D., Soper, N. J., Brooks, C. K., Faller, A. M., Higgins, A. C. & Matthews, D. W. (1981). The pre-basaltic sediments and the lower lavas at Kangerdlugssuaq, East Greenland: their stratigraphy, lithology, palaeomagnetism and petrology. *Meddelelser* om Gronland Geoscience 6, 1–25.
- Niu, Y., Regelous, M., Wendt, I. J., Batiza, R. & O'Hara, M. J. (2002). Geochemistry of near-EPR seamounts: importance of source vs process and the origin of enriched mantle components. *Earth* and Planetary Science Letters **199**, 327–345.
- Noble, R. H., Macintyre, R. M. & Brown, P. E. (1988). Age constraints on Atlantic evolution: timing of magmatic activity along the E Greenland continental margin. In: Morton, A. C. & Parson, L. M. (eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. Geological Society, London, Special Publications 49, 201–214.
- Peate, D. W. & Stecher, O. (2002). Pb isotope evidence for contributions from different Iceland mantle components to Palaeogene East Greenland flood basalts. *Lithos*, in press.
- Peate, D. W., Kokfelt, T. F., Hawkesworth, C. J., van Calsteren, P. W., Hergt, J. M. & Pearce, J. A. (2001). U-series isotope data on Lau Basin glasses: the role of subduction-related fluids during melt generation in back-arc basin basalts. *Journal of Petrology* 42, 1449–1470.
- Pedersen, A. K., Watt, M., Watt, W. S. & Larsen, L. M. (1997). Structure and stratigraphy of the Early Tertiary basalts of the Blosseville Kyst, East Greenland. *Journal of the Geological Society*, *London* **154**, 565–570.
- Poreda, R. J., Schilling, J. G. & Craig, H. (1986). Helium and hydrogen isotopes in ocean ridge basalts north and south of Iceland. *Earth and Planetary Science Letters* 78, 1–17.
- Prestvik, T., Torske, T., Sundvoll, B. & Karlsson, H. (1999). Petrology of early Tertiary nephelinites off mid-Norway: additional evidence for an enriched endmember of the ancestral Iceland plume. *Lithos* 46, 317–330.
- Prestvik, T., Goldberg, S., Karlsson, H. & Gronvöld, K. (2001). Anomalous strontium and lead isotope signatures in the off-rift Öræfajökull central volcano in south-east Iceland: evidence for enriched endmember(s) of the Iceland mantle plume? *Earth and Planetary Science Letters* **190**, 211–220.
- Salters, V. J. M. & White, W. M. (1998). Hf isotope constraints on mantle evolution. *Chemical Geology* 145, 447–460.
- Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J. & Kent, R. W. (1997). The North Atlantic igneous province. In: Mahoney, J. J. & Coffin, M. F. (eds) Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, American Geophysical Union 100, 45–94.
- Saunders, A. D., Kempton, P. D., Fitton, J. G. & Larsen, L. M. (1999). Sr, Nd, and Pb isotopes and trace element geochemistry of basalts from the southeast Greenland margin. In: Larsen, H. C., Duncan, R. A., Allan, J. F. & Brooks, C. K. (eds) *Proceedings of the Ocean Drilling Program, Scientific Results, 163.* College Station, TX: Ocean Drilling Program, pp. 77–93.
- Scarsi, P. (2000). Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the ³He/⁴He measured ratio. *Geochimica et Cosmochimica Acta* 64, 3751–3762.
- Schaefer, B. F., Parkinson, I. J. & Hawkesworth, C. J. (2000). Deep mantle plume osmium isotope signature from West Greenland Tertiary picrites. *Earth and Planetary Science Letters* 175, 105–118.
- Schilling, J.-G., Kingsley, R., Fontignie, D., Poreda, R. & Xue, S. (1999). Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He–Pb–Nd–Sr isotope tracer study of basalts from the Kolbeinsey, Mohns and Knipovich Ridges. *Journal of Geophysical Research* **104**, 10543–10569.

- Schoenberg, R., Nägler, T. F. & Kramers, J. D. (2000). Precise Os isotope ratio and Re–Os isotope dilution measurements down to the picogram level using multicollector inductively coupled plasma mass spectrometry. *International Journal of Mass Spectrometry* 197, 85–94.
- Shirey, S. B. & Walker, R. J. (1998). The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. *Annual Review* of Earth and Planetary Sciences 26, 423–500.
- Skovgaard, A. C., Storey, M., Baker, J. A., Blusztajn, J. & Hart, S. R. (2001). Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. *Earth and Planetary Science Letters* **194**, 259–275.
- Smit, Y., Parkinson, I. J., Peate, D. W., Cohen, A. S. & Hawkesworth, C. J. (2001). Os isotope and source characteristics of the Iceland plume. *Journal of Conference Abstracts* 6(1), 452.
- Smoliar, M. I., Walker, R. J. & Morgan, J. W. (1996). Re–Os ages of Group IIA, IIIA, IVA, and IVB iron meteorites. *Science* 271, 1099–1102.
- Stecher, O., Carlson, R. W. & Gunnarsson, B. (1999). Torfajökull: a radiogenic end-member of the Iceland Pb-isotopic array. *Earth and Planetary Science Letters* 165, 117–127.
- Storey, M., Duncan, R. A., Larsen, H. C., Pedersen, A. K., Waagstein, R., Larsen, L. M., Tegner, C. & Lesher, C. E. (1996). Impact and rapid flow of the Iceland plume beneath Greenland at 61 Ma. EOS Transactions, American Geophysical Union 77, 839.
- Storey, M., Duncan, R. A., Pedersen, A. K., Larsen, L. M. & Larsen, H. C. (1998). ⁴⁰Ar/³⁹Ar geochronology of the West Greenland Tertiary volcanic province. *Earth and Planetary Science Letters* 160, 569–586.
- Stuart, F. M., Ellam, R. M., Harrop, P. J., Fitton, J. G. & Bell, B. R. (2000). Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. *Earth and Planetary Science Letters* **177**, 273–285.
- Sun, S.-S. & Jahn, B. (1975). Lead and strontium isotopes in postglacial basalts from Iceland. *Nature* 255, 527–530.
- Sun, S.-S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345.
- Taylor, P. N., Kalsbeek, F. & Bridgwater, D. (1992). Discrepancies between neodymium, lead and strontium model ages from the Precambrian of southern East Greenland: evidence for a Proterozoic granulite-facies event affecting Archaean gneisses. *Chemical Geology (Isotope Geoscience Section)* 94, 281–291.
- Tegner, C. & Duncan, R. A. (1999). ⁴⁰Ar–³⁹Ar chronology for the oceanic history of the southeast Greenland rifted margin. In: Larsen, H. C., Duncan, R. A., Allan, J. F. & Brooks, C. K. (eds) *Proceedings of the Ocean Drilling Program, Scientific Results, 163.* College Station, TX: Ocean Drilling Program, pp. 53–62.
- Tegner, C., Duncan, R. A., Bernstein, S., Brooks, C. K., Bird, D. K. & Storey, M. (1998a). ⁴⁰Ar/³⁹Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: relation to flood basalts and the Iceland hotspot track. *Earth and Planetary Science Letters* **156**, 75–88.
- Tegner, C., Lesher, C. E., Larsen, L. M. & Watt, W. S. (1998b). Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume. *Nature* 395, 591–594.
- Thirlwall, M. F. (1997). Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle. *Chemical Geology* 139, 51–74.
- Thirlwall, M. F. (2000). Inter-laboratory and other errors in Pb isotope analyses investigated using a ²⁰⁷Pb–²⁰⁴Pb double spike. *Chemical Geology* 163, 299–322.

- Thirlwall, M. F., Upton, B. G. J. & Jenkins, C. (1994). Interaction between continental lithosphere and the Iceland plume: Sr–Nd–Pb isotope geochemistry of Tertiary basalts, NE Greenland. *Journal of Petrology* 35, 839–879.
- Torsvik, T. H., Mosar, J. & Eide, E. A. (2001). Cretaceous–Tertiary gcodynamics: a North Atlantic exercise. *Geophysical Journal International* 146, 850–866.
- Trønnes, R. G., Planke, S., Sundvoll, B. A. & Imsland, P. (1999). Recent volcanic rocks from Jan Mayen: low-degree melt fractions of enriched northeast Atlantic mantle. *Journal of Geophysical Research* 104, 7153–7168.
- Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarède, F. (1999). Relationships between Lu–Hf and Sm–Nd systems in the global sedimentary system. *Earth and Planetary Science Letters* 168, 79–99.
- Wager, L. R. (1947). Geological investigations in East Greenland: part IV, The stratigraphy and tectonics of Knud Rasmussen Land and the Kangerdlugssuaq region. *Meddelelser om Grønland* 134, 2–64.
- Waight, T. E., Baker, J. A. & Peate, D. W. (2002a). Sr isotope measurements by double-focusing MC-ICPMS: techniques, observations and pitfalls. *International Journal of Mass Spectrometry*, in press.
- Waight, T. E., Baker, J. A. & Willigers, B. (2002b). Rb isotope dilution analyses by MC-ICP-MS using Zr to correct for mass fractionation: towards improved Rb–Sr geochronology. *Chemical Geology* 186, 99–116.
- Weaver, B. (1991). The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. *Earth and Planetary Science Letters* **104**, 381–397.