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Abstract. The relative abundance ofGlobigerinoides bul-
loideswas used to infer Holocene paleo-productivity changes
on the Oman margin and at the southern tip of India. To-
day, the primary productivity at both sites reaches its maxi-
mum during the summer season, when monsoon winds re-
sult in local Eckman pumping, which brings more nutri-
ents to the surface. On a millennium time-scale, however,
the %G. bulloidesrecords indicate an opposite evolution of
paleo-productivity at these sites through the Holocene. The
Oman Margin productivity was maximal at∼9 ka (boreal
summer insolation maximum) and has decreased since then,
suggesting a direct response to insolation forcing. On the
contrary, the productivity at the southern tip of India was
minimum at∼9 ka, and strengthened towards the present.

Paleo-reconstructions of wind patterns, marine productiv-
ity and foraminifera assemblages were obtained using the
IPSL-CM4 climate model coupled to the PISCES marine
biogeochemical model and the FORAMCLIM ecophysiolog-
ical model. These reconstructions are fully coherent with the
marine core data. They confirm that the evolution of partic-
ulate export production and foraminifera assemblages at our
two sites were directly linked with the strength of the up-
welling. Model simulations at 9 ka and 6 ka BP show that
the relative evolution between the two sites since the early
Holocene can be explained by the weakening but also the
southward shift of monsoon winds over the Arabian Sea dur-
ing boreal summer.

Correspondence to:F. C. Bassinot
(bassinot@lsce.ipsl.fr)

1 Introduction

The northern tropical Indian Ocean and the surrounding
lands are the location of a strong monsoon system, which
has a profound impact on the socio-economy of one of the
most densely populated areas of the world (Saha et al., 1979;
Mooley et al., 1981; Mall et al., 2006). During the southwest
(summer) monsoon, warm, moist air prevails, and a strong
southwesterly wind jet runs diagonally across the Arabian
Sea (Fig. 1a; Lee et al., 2000; Schott and McCreary, 2001).
Reputedly, the southwest monsoon produces the strongest
sustained oceanic winds outside the Southern Ocean. Winds
during this period remain remarkably unidirectional, though
magnitudes vary somewhat with time and space. This wind
forcing contributes to the development of a clockwise upper
ocean circulation pattern, with the South Equatorial Current
and the East African Coast Current both supplying the north-
ward flowing Somali Current in the western part of the Ara-
bian Sea (Schott and McCreary, 2001). This Arabian Sea sur-
face circulation reverses somewhat to an anti-clockwise pat-
tern during the northeast (winter) monsoon, when sustained
but weaker winds blow to the southwest (Fig. 1b).

The circulation at the tip of India is affected by a fresh
water current from the Bay of Bengal (e.g., Durand et al.,
2007). The fresh water is advected in winter by the west-
ward flowing, North Equatorial Current (NEC). During the
boreal summer, in response to the monsoon wind reversal,
the flow in the NEC reverses and combines with a weakened
Equatorial Counter-Current to form the South-West Mon-
soon Current. This affects the characteristics of the mixed
layer depth by stratifying the surface ocean. The maximum
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Fig. 1. (A) Summer (JJAS) wind patterns over the Arabian Sea.(B) Winter (DJFM) wind patterns over the Arabian Sea.(C) Summer wind
pattern obtained from the Pre-industrial run of the IPSL-CM4 model.(D) Winter wind pattern obtained from the Pre-industrial run of the
IPSL-CM4 model. Wind speed scales in m s−1. The large, white dot and black dot on panel(A) indicate the location of ODP Site 723 and
Core MD77-191, respectively.

surface temperature occurs in spring between the equator and
the tip of India, prior to the monsoon onset (Rao and Sivaku-
mar, 1999). These changes result either from local adjust-
ments or from wave propagation. In March, the mixed layer
depth is also deeper on both sides of the tip of India (Rao
et al., 1989). Climate simulations indicate that salinity has a
strong impact on the northern Indian Ocean stratification and
surface warming and is likely to govern the date of onset of
the summer monsoon (Masson et al., 2005).

In these Indian regions, climate modelling and forecasting
are notoriously difficult. The Indian Monsoon is a particu-
larly complex system, affected by a large array of periodic
to semi-periodic forcings, regional to global in extent, with
timescales ranging from inter-annual variations (i.e. El Niño-
Southern Oscillation-ENSO) to long-term (104 to 105 yr) or-
bital modulation of the solar insolation (i.e. Clemens et al.,
1991; Prell and Kutzbach, 1992; Camberlin, 1997; Ashok
et al., 2004; Kumar et al., 2006; Zhang and Delworth,
2006; Ihara et al., 2007; Braconnot et al., 2008). In order
to address and unravel this complexity, meteorological and

oceanographic instrumental records are too short, and one
has to look for long, paleo-climatic records – such as those
provided by marine sedimentary cores – to better understand
the natural (pre-anthropic) variability of the Indian Monsoon
system over a few thousand years. These data can be com-
pared with model outputs for model benchmarking or, alter-
natively, to help address the complexity of paleo-data inter-
pretation by identifying the potential climatic features at play
(i.e. Overpeck et al., 1996; An et al., 2000; Liu et al., 2003;
Braconnot et al., 2007a,b).

In this paper, we consider the monsoon evolution through-
out the Holocene. Several studies combining proxy data and
climate model simulations have shown that changes in inso-
lation induced by the slow variation of the Earth’s orbital pa-
rameters, and mainly precession, have been the major driver
of the Holocene afro-asian monsoon evolution (COHMAP,
1988; Prell and Kutzbach, 1987; Joussaume et al., 1999; Liu
et al., 2003). The orbital configuration that prevailed during
the first half of the Holocene enhanced (reduced) seasonal-
ity in the Northern (Southern) Hemisphere. During boreal
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summer, the corresponding increase in the inter-hemispheric
and the land-ocean temperature contrasts triggered the sum-
mer thermal lows over the Tibetan plateau and in the Sahara,
which enhanced the monsoon flow from the moist tropical
ocean into land. Regional patterns are, of course, superim-
posed on this large-scale scheme. These complex, regional
changes result from the relative response of the different
monsoon sub-systems to the insolation forcing, which in-
cludes various feedback mechanisms and the important role
played by water column stratification on monsoon incep-
tion and intensity (Braconnot and Marti, 2003; Zhao et al.,
2005; Ohgaito and Abe-Ouchi, 2007; Braconnot et al., 2008;
Marzin and Braconnot, 2009a). There is a clear need to con-
duct data-model comparisons in order to better understand
and simulate the relationship between the large-scale varia-
tions in the monsoon flow and the characteristics of the water
column in different areas of the Indian Ocean.

Seasonal upwellings that develop in various parts of the
Indian Ocean provide key locations in which sedimen-
tary records can provide estimates of wind forcing changes
(i.e. Clemens et al., 1991; Anderson and Prell, 1993; Emeis
et al., 1995; Naidu and Malmgren, 1996; Clemens and Prell,
2003) that can be compared to model simulations. In this
paper, we selected two zones: the upwelling area over the
Oman Margin, and the upwelling area at the southern tip of
India. Because of the different contexts in which these sum-
mer upwellings develop, the comparison of their respective
paleo-productivity records has the potential to bring signif-
icant pieces of information about past changes in wind pat-
terns over the northern Indian Ocean.

The aims of this paper are:

1. to compare the temporal evolution over the Holocene of
monsoon-driven upwellings from the Oman margin and
the southern tip of India based on sedimentary records
of productivity changes;

2. to understand the relationship between the change in the
ocean dynamics, marine biogeochemistry, foraminifera
assemblages and monsoon, in order to refine the inter-
pretation of the different ocean proxy records and pro-
duce key target points that can be used to evaluate the
ability of climate models to reproduce monsoon fluctu-
ations.

The paleo-reconstructions and the model simulations will
be described in Sect. 2. Section 3 will look at the intimate re-
lationship between productivity changes and monsoon evo-
lution based on a thorough data-model comparison. In or-
der to unravel properly the climatic signal embedded in our
sedimentary records, the first part of Sect. 3 will be devoted
to studying the coherency between model simulations and
our sedimentary records. This will be done by analyzing
outputs of the PISCES ocean biogeochemical model (Au-
mont and Bopp, 2006; Gehlen et al., 2007) forced with the
mid-Holocene and the pre-industrial simulations obtained

with the IPSL-CM4 climate model (Braconnot et al., 2008;
Marzin and Braconnot, 2009a). Then, using the IPSL-CM4
and PISCES outputs, we will force a new eco-physiological
model reproducing the growth of eight foraminifera species
(FORAMCLIM model; Lombard et al, 2011) in order to
better address model-data coherency. In the final part of
this paper, we will combine data and model over the whole
Holocene period to explore the climatic implications of envi-
ronmental changes recorded at the two sites studied.

2 Data and model

2.1 Paleo-reconstructions from sedimentary records

2.1.1 Core locations

In the Arabian sea, monsoon-driven vertical mixing, coastal
and open ocean upwellings show an important basin-wide
spatio-temporal variability resulting in a large variety of phy-
toplankton blooms (Levy et al., 2007). On the western side
of the Arabian Sea, strong upwelling cells develop along
the Somalian and Arabian coasts during the summer mon-
soon, when the winds blow from the SW, parallel to the coast
(Fig. 1a), resulting in a massive Eckman pumping. These up-
wellings can be clearly identified through satellite imaging of
chlorophyll abundance (Fig. 2a). They weaken and stop dur-
ing the winter season (Fig. 2b), when the winds reverse di-
rection (Fig. 1b). On the opposite side of the Arabian Sea off
the Indian margin, prevailing winds blow from the west dur-
ing the summer season (Fig. 1a). The summer productivity
increase along the western coast of India (Fig. 2a) is associ-
ated to a complex interplay of lateral advection, mixed-layer
deepening and upwellings (i.e. Sharma, 1978; Shetye et al.,
1990). At the southern tip of India, however, the summer
increase in productivity is chiefly associated to the develop-
ment of a seasonal upwelling (Levy et al., 2007).

In order to reconstruct paleo-productivity variations and
address past changes in summer monsoon wind patterns
and intensity over the Holocene, we selected two cores
from these areas: Ocean Drilling Program (ODP) Site 723
(19◦03 N, 57◦37 E, 808 m water depth) retrieved from the
Oman margin, and core MD77-191 (07◦30′ N, 76◦43′ E,
1254 m water depth) located at the southern tip of India (Ta-
ble 1; Fig. 1a). The bioturbation smoothing is likely minimal
at these sites, owing to the strong oxygen-minimum zone that
develops at these water depths on the margins of the Ara-
bian Sea. ODP Site 723 sedimentary record has been used
in several studies devoted to reconstructing monsoon dy-
namics at millennial to orbital timescales (i.e. Anderson and
Prell, 1993; Emeis et al., 1995; Naidu and Malgrem, 1995,
1996; Gupta et al., 2003). On orbital timescales, produc-
tivity records obtained in these studies clearly indicate that
the strongest summer winds occurred in interglacial times,
and lagged the times during which perihelion was aligned
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Fig. 2. Seasonal distribution of chlorophyll abundance (mg m−3) in the Tropical Indian Ocean (SeaWiFs data) during the summer(A) and
winter (B) seasons. PISCES simulations of chlorophyll concentration (mg m−3) for the summer(C) and winter(D) seasons.

with the summer solstice. Within the Holocene, the SW
monsoon reached a peak between∼10 and 8 ka (Naidu and
Malgrem, 1995, 1996; Gupta et al., 2003), in good accor-
dance with independent paleo-monsoon records such as the
speleothem oxygen series from the Qunf and Hoti caves, in
Oman (Fleitmann et al., 2003). A recent synthesis of eigh-
teen orbital-scale records (∼300 kyr in length) even suggests
that the phase lag relative to insolation may be large, with
the strongest winds occurring∼50◦ after ice minima at the
precession band and, therefore,∼125◦ after precession min-
ima (Clemens et al., 2010). Such a phase relationship tends
to suggest that, although northern summer insolation is a key
element, it is not the only one that forces summer monsoon
circulation intensity.

2.1.2 G. bulloidesabundance – productivity proxy

In order to reconstruct past changes in wind-driven, up-
welling intensity from our sediment records, we need first
to choose a sensitive paleo-productivity index. Upwellig ac-
tivity has a strong signature in the fluxes and composition

of planktonic foraminifera assemblages (Cullen and Prell,
1984; Curry et al., 1992; Conan and Brummer, 2000). Within
these assemblages,G. bulloides, which is a common mid-
latitude and subpolar species, is particularly abundant in eu-
trophic waters with high phytoplankton productivity (Saut-
ter and Thunell, 1989; Ortiz et al., 1995; Watkins and Mix,
1998; Zaric et al., 2005), explaining its abundance in up-
welling cells developing at various locations around the Ara-
bian Sea, such as on the Oman Margin or on the western side
of India (Prell and Curry, 1981; Naidu, 1990, 1993). In the
northern Indian Ocean,G. bulloidesrelative abundance (Prell
and Curry, 1981; Naidu and Malmgren, 1995; Gupta et al.,
2003; Anderson et al., 2010) andG. bulloidesflux (Conan
and Brummer, 2000; Naidu and Malmgren, 1996) have been
successfully used to reconstruct past changes in the intensity
of monsoon-driven upwellings.

The planktonic foraminifera counts of core MD77-191
were obtained by Mĺeneck-Vautravers during her PhD the-
sis (Mléneck-Vautravers, 1997). Since the dry-bulk densities
of core MD77-191 were not measured,G. bulloidesfluxes
could not be accurately computed at this site. Thus, in the
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Table 1. 14C-AMS dating of core MD77-191 (for Site ODP 723, see Gupta et al., 2003).

14C age Calendar Age

Depth Material 14C age Uncertainty Median Lower Upper
(m) (yr) (1σ ) Probability range Range

(yr) (yr) (yr) (yr)

0.28 G. bulloides 1.970 60 1.453 1.341 1.540
0.76 G. bulloides 2.560 70 2.148 2.042 2.286
1.27 G. bulloides 3.020 60 2.721 2.609 2.635
1.75 G. bulloides 3.660 60 3.492 3.377 3.590
2.22 G. bulloides 4.160 60 4.139 3.991 4.261
2.71 G. bulloides 4.790 60 4.980 4.831 5.078
3.73 G. bulloides 6.150 80 6.511 6.393 6.629
4.25 G. bulloides 8.230 90 8.676 8.517 8.843
4.82 G. bulloides 8.970 80 9.589 9.452 9.702
5.94 pteropods sp. 12.630 190 14270 13.764 14.676

present paper, we will only consider the relative abundance
of G. bulloides(%) as our paleo-productivity index. The
high-resolution record ofG. bulloidesabundance in ODP
Site 723 was published by Gupta et al. (2003).G. bulloides
counts on both the MD77-191 core and at ODP Site 723 were
obtained on the>150 µm fraction.

Gupta et al’s %G. bulloides record at ODP Site 723
shows lower percentages compared to similar records ob-
tained in the same area (Anderson and Prell, 1993; Naidu
and Malgrem, 1995, 1996). Anderson et al. (2010) suggested
that this might be due to (1) differences in sample wash-
ing, which altered the preservation ofG. bulloides, and/or
(2) differences in taxonomic recognition (Gupta et al., 2003,
being less inclusive in their classification of small, diffi-
cult to recognize juvenile forms). Within the present pa-
per, Gupta et al.’s (2003) data were re-scaled following the
procedure developed by Anderson et al., (2010) (rescaled
%bulloides= %bulloides× 1.33 + 12).

2.1.3 Age model,14C dating

On core MD77-191, the age model was developed based
on nine accelerated mass spectrometry (AMS)14C dates
obtained on monospecificG. bulloidessamples, and a14C
date obtained on pteropods (Mléneck Vautravers, 1997; Ta-
ble 1). ODP Site 723 record spans the time interval 0.7–
10.7 ka and is chronographically constrained by eleven14C
dates obtained onG. bulloidesor planktonic foraminifera
mixes (Gupta et al., 2003). The14C ages were converted to
calendar ages using the CALIB Rev 5.1 beta software (Stu-
iver and Braziunas, 1993), the marine calibration curve (Stu-
iver et al., 1998) and correcting for a surface marine reser-
voir of ∼400 years for core MD777-191, and∼600 years
for ODP Site 723. In each core, the age model was de-
veloped by linear interpolation between14C dated control

points (Fig. 3). The sedimentation rates at Site 723A vary be-
tween 76 and 19 cm kyr−1 (mean∼34 cm kyr−1) during the
Holocene. MD77-191 shows sedimentation rates that vary
between 91 and 23 cm kyr−1 in the Holocene (mean sedi-
mentation rate∼61 cm kyr−1). Owing to the high sedimen-
tation rates at the two sites, bioturbation effects should not
introduce significant biases on the paleoceanographic recon-
structions (Duplessy et al., 1986; Bard, 2001).

2.2 Model and experiments

2.2.1 Simulations with the IPSL climate model

The IPSL-CM4 model couples (1) the grid point from the
LMDZ atmospheric general circulation model (Hourdin et
al., 2006) developed at the Laboratoire de Mét́eorologie Dy-
namique (LMD, France) to (2) the oceanic general circula-
tion model (Madec et al., 1998) developed at the Labora-
toire d’Oćeanographie et du Climat (LOCEAN, ex LODYC,
France). A sea-ice model (Fichefet and Morales Maqueda,
1997), which computes ice thermodynamics and dynamics,
is included in the ocean model. On the continent, the land
surface scheme ORCHIDEE (Krinner et al., 2005) is cou-
pled to the atmospheric model. Only the thermodynamic
component of ORCHIDEE is active in the simulations pre-
sented here. The closure of the water budget with the ocean is
achieved thanks to a river routing scheme implemented in the
land surface model. The ocean and atmospheric models ex-
change surface temperature, sea-ice cover, momentum, heat
and fresh water fluxes, once a day, using the OASIS coupler
(Terray et al., 1995) developed at CERFACS (France). None
of these fluxes have been corrected.

The atmospheric grid is regular, with a resolution of 3.75◦

in longitude, 2.5◦ in latitude, and 19 vertical levels. The
ocean model grid has approximately a 2◦-resolution (0.5◦
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Fig. 3. Depth-age plots for core MD77-191 (left panel; see Table 2) and ODP site 723A (right panel; data from Gupta et al., 2003).

near the equator) with 182 points in longitude, 149 points
in latitude and 31 levels in the ocean (Marti et al., 2010).

The reference (CTRL) is a 1000 yr long simulation of the
pre-industrial climate with trace gases concentration in the
atmosphere prescribed to those of 1860; Marzin and Bra-
connot, 2009a). We consider, in the following, a mean sea-
sonal cycle computed from 200 yr of the simulation. Fig-
ure 1 shows that this simulation captures the large-scale fea-
tures of the summer (Fig. 1c) and winter (Fig. 1d) monsoon
flow (to be compared with meteorological data from Fig. 1a
and b). Previous analyses (not shown) indicated that the char-
acteristics of the pre-industrial simulation resemble those of
modern simulations with the same version of the model, so
that it makes sense to compare our pre-industrial runs with
ERA interim reanalyses. In winter (DJFM) the surface flow
pattern is properly reproduced. The 850 hPa wind intensity
is slightly overestimated along Somalia. The larger biases
are found in summer (JJAS). These biases may affect part of
the model-data comparison and, therefore, need to be con-
sidered. In particular, the monsoon flow does not penetrate
far enough into the Arabian Sea. Thus, wind directions and
intensity are not well reproduced along the western Indian
coast. The wind intensity along Somalia and the Oman mar-
gin is also underestimated, which affects the northward ex-
tent and the strength of the simulated upwelling.

Simulations of the Indian monsoon at 9 ka (early
Holocene) and 6 ka (mid-Holocene) are described in Marzin
and Braconnot (2009a). In these simulations the date of
the vernal equinox is fixed to March 21 at noon, follow-
ing PMIPII protocol (Braconnot et al., 2007a). Trace gases
are prescribed to the pre-industrial values, so that only the
changes in the orbital parameters are accounted for. They
have been computed following Berger (1978). The initial
state for the atmosphere corresponds to a 1 January represen-
tative of present day climate. The model was integrated from
an ocean at rest with temperature and salinity prescribed to
the Levitus’s (1982) climatology. The model is then run
long enough (300 years for early Holocene to 700 years for

mid-Holocene), so that the surface and middle ocean are
equilibrated with the forcing. Previous results with these
simulations described the evolution of Indian precipitation
(Marzin and Braconnot, 2009a), the impact of the SST re-
sponse on Indian and east-Asian precipitations (Marzin and
Braconnot, 2009b) and the surface stratification of the Indian
Ocean between the tip of India and the equator (Braconnot et
al., 2008).

2.2.2 Biogeochemical model: PISCES

PISCES (Pelagic Interaction Scheme for Carbon and Ecosys-
tem Studies) simulates the cycling of carbon, oxygen, and
of the major nutrients determining phytoplankton growth
(PO3−

4 , NO−

3 , NH+

4 , Si, Fe). Phytoplankton growth is lim-
ited by the availability of nutrients, temperature, and light.
The model has two phytoplankton size classes (small and
large), representing nanophytoplankton and diatoms, as well
as two zooplankton size classes (small and large), represent-
ing microzooplankton and mesozooplankton. For all species
the C:N:P ratios are assumed constant (122:16:1), while the
internal ratios of Fe:C, Chl:C, and Si:C of phytoplankton are
predicted by the model. There are three non-living compo-
nents of organic carbon in the model: semi-labile dissolved
organic carbon (DOC), with a lifetime of several weeks to
years, as well as large and small detrital particles, which
are fuelled by mortality, aggregation, faecal pellet production
and grazing. Small detrital particles sink through the water
column with a constant sinking speed of 3 m day−1, while for
large particles the sinking speed increases with depth from a
value of 50 m day−1 at the depth of the mixed layer, increas-
ing to a maximum sinking speed of 425 m day−1 at 5000 m
depth. These rates are consistent with those measured by
Honjo (1996) and Clemens (1998) in Arabian Sea sediment
traps. For a more detailed description of the PISCES model,
see Aumont and Bopp (2006) and Gehlen et al. (2007).

PISCES was run in its offline configuration, i.e. monthly
output of the climate simulations (currents, temperature,
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salinity, winds, radiations, ...) were used to compute bio-
logical processes, as well as advection /diffusion of the pas-
sive tracers within PISCES. Accordingly, PISCES simula-
tions are run on a global grid, with 31 levels on the vertical
(10 of which are located in the first 100 m) and 2◦

× 2◦ cos lat
for the horizontal resolution. For this work, two biogeochem-
ical simulations were carried out for 500 yr, using clima-
tologies constructed from IPSL-CM4 runs for 6 ka and Pre-
industrial. The analysis was done on the last year of each of
the simulation.

The modelled surface chlorophyll concentrations for pre-
industrial times (Fig. 2c and d) are compared to the SeaWiFS
climatology data of Levy et al. (2007), for Summer (JJAS)
and Winter (DJFM) seasons (Fig. 2a and b). The general
pattern that consists of two phytoplankton blooms (summer
and winter blooms) driven by the summer southwest mon-
soon and the winter northeast monsoon respectively is repro-
duced by the biogeochemical model. The magnitude of these
blooms is, however, underestimated. During the summer
season in the upwelling area over the Oman Margin, for in-
stance, the Seawifs data indicate that chlorophyll abundance
is>1 mg m−3 (Fig. 2a), whereas estimated chlorophyll abun-
dance remains around 0.3–0.4mg m−3 in the PISCES simula-
tion (Fig. 2c). The main reason for this discrepancy is linked
to the coarse resolution of both the atmosphere (LMDZ) and
ocean (OPA) general circulation models that force the bio-
geochemical model, and that precludes a good representa-
tion of coastal upwelling zones. Indeed, a similar version
of the PISCES model, coupled to OPA at 0.5◦ resolution and
forced by reanalysis products has been compared to the same
data set over the 1990–1999 period and it reproduced nicely
the distribution, the seasonality and the magnitude of surface
chlorophyll changes (Końe et al., 2009).

2.2.3 The FORAMCLIM ecophysiological model

The FORAMCLIM model (Lombard et al., 2011) is an
eco-physiological model reproducing the growth of eight
foraminifera species (includingG. bulloides). It is based on
the assumption that a species occurrence in an ecosystem is
linked to its ability to grow, depending on the environmen-
tal conditions. The model reproduces the physiological rates
involved in the growth of planktonic foraminifers and is prin-
cipally based on biological processes (e.g. respiration, sym-
biont photosynthesis, nutrition, growth) observed under con-
trolled laboratory experiments. The calibration of the model
has been presented in Lombard et al. (2011) and uses both
observed growth under laboratory conditions in function of
temperature and light intensity, and observed abundance in
field conditions for which hydrological characteristics have
been measured. FORACLIM model needs temperature, food
(Chl-a) and light as inputs and estimate as outputs the growth
rates of the eight species that are converted to potential abun-
dances in the water column.

Table 2. Comparison of modelled and observedG. bulloidesabun-
dance (%) in foraminifer assemblages at the locations of ODP
Site 723 and core MD77-191, at 6 ka BP and for the modern control
run (considered equivalent to uppermost Holocene observations).
The observedG. bulloidesabundances at core MD77-191 and ODP
Site 723 are mean values (5-point window) derived from the bulk
data obtained by Mléneck-Vautravers (1997) and Gupta et al. (2003;
rescaled based on Anderson et al., 2010), respectively.

Oman Margin South of India
(ODP Site 723) (MD77-191)

Modeled Observed Modeled Observed

Pre-industrial 17.3 % 26.4 % 19.3 % 45.3 %
control run

Mid-Holocene 19.8 % 32.3 % 16.3 % 34.1 %
(6 ka)

At the two sites of interest, we forced the FORACLIM
model with monthly mean outputs from the IPSL-CM4 (tem-
perature, light) and PISCES (food) simulations performed
under pre-industrial (CTRL) and Mid-Holocene (6 ka) condi-
tions. Abundance estimates of each species were cumulated
over months and depths in order to derive a signal, which
could be compared to the actual sedimentary records (Ta-
ble 2). As can be seen from the comparison of the control-
run simulation and the core top data, the modelledG. bul-
loidesproportion (17.3 % for the Oman Margin, and 19.3 %
for the southern tip of India) are clearly underestimated, cor-
responding to about half of the observedG. bulloidespropor-
tion in the sediment (26.4 % at ODP Site 723, Oman Margin
and 45.3 % in core MD77-191, south of India). These low,
modelledG. bulloidesabundances likely reflect the underes-
timation of marine productivity and biomass by PISCES as
discussed above.

3 Link between past productivity and the Indian
monsoon evolution

3.1 Upwelling and wind evolution revealed by Site 723
and core MD 77-191 proxy records

Both the ODP Site 723A and MD77-191 records were re-
sampled at the same, constant time-interval of 0.3 kyr. Then,
in order to extract long-term evolution over the Holocene, a
5-point window moving average was applied to both records.
Raw and smoothed data from ODP Site 723 and core MD77-
191 are presented in Fig. 4a and b, respectively. The low
latitude (30◦ N) summer insolation has been calculated for
the last 12 kyr using the Analyserie Software (Paillard et
al., 1996) and is displayed in Fig. 4c for comparison. It
should be noted that, since the main topic of this paper it
the comparison of the long-term (Holocene) evolution of the
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Fig. 4. (A) G. bulloidespercentages versus age in ODP Site 723
(Oman Margin; Gupta et al., 2003).(B) G. bulloidespercentages
versus age in core MD77-191 (southern tip of India; Mladeck-
Vautravers, 1997).(C) Boreal summer insolation at 30◦ N over
the last 12 kyr. Dashed-line curves represent %G. bulloidesdata
re-sampled at a constant, 0.3 kyr interval. The thick-line curves rep-
resent smoothed records (5-point moving average).

two upwelling areas, no special attention has been devoted to
carefully constrain the phase relationship (lead/lag) between
maxima (minima) in upwelling intensity and maxima (min-
ima) of insolation forcing. Thus, the summer insolation at
30◦ N is just a convenient curve used to illustrate the long-
term evolution of orbital function, and we draw no conclu-
sion from the relative phasing between this curve and the up-
welling intensity variations.

3.1.1 Oman margin (site ODP 723A)

The smoothed, temporal evolution ofG. bulloidesabundance
shows that, on a long-term basis (orbital scale) the Oman
margin productivity was at its maximum near the begin-
ning of the Holocene (∼9 ka). Then, over the course of the
Holocene, a clear tendency of decreasingG. bulloidesabun-
dance is observed, with the lowest inferred activity between
about 2 and 1.5 ka BP. The subsequent increase in produc-
tivity since ∼1.5 ka BP has been attributed to (1) change in
the date of aphelion, and/or (2) the effects of agricultural
and other human land uses on the monsoon (Anderson et al.,
2010).

The reduction of summer monsoon upwelling activity
along the course of the Holocene deduced from theG. bul-
loides record is coherent with theδ15N record of core
NIOP 905, collected off the coast of Somalia from a water
depth of∼1580 m (Ivanochko et al., 2005). This long-term
reduction in ODP Site 723 upwelling intensity appears to
follow the progressive decrease of the Northern Hemisphere
summer insolation, which results from the Holocene evolu-
tion of the Earth’s orbital parameters (Fig. 4c).

3.1.2 Southern tip of India (core MD77-191)

Opposite to what we have just observed for the Oman Mar-
gin site, theG. bulloidesrelative abundance at the southern
tip of India reaches its lowest level at the beginning of the
Holocene (∼9 ka BP; Fig. 4b). This suggests that productiv-
ity was lower than today when low latitude boreal summer
insolation was at its maximum (Fig. 4c). From∼9 ka BP
to the present, theG. bulloidesrelative abundance increases
continuously in core MD77-191, suggesting that productivity
has gradually increased throughout the Holocene. The max-
imum in G. bulloidesabundance is reached at the top part of
the record, at around 2.1 ka BP.

3.1.3 Implication of the twoG. bulloidesrecords

Today, the annual productivity at the location of ODP
Site 723 and core MD77-191 is chiefly controlled by the
development of summer monsoon upwellings. But what
about the long-term (Holocene) evolution indicated by the
sedimentary records? The opposite evolution shown by
ODP Site 723 and MD77-191G. bulloidesrecords could
either suggest that (1) the productivity at one of these sites
did not remain chiefly associated to summer monsoon up-
welling activity along the course of the Holocene, or, alterna-
tively, (2) that the productivity did remain chiefly upwelling-
controlled at these two sites and, therefore, summer wind
intensity showed an opposite evolution on the Oman mar-
gin and at the Southern tip of India in response to change
in insolation forcing. In order to help interpret our paleo-
productivity records and to test which of these assumptions is
correct, we used model simulations to look at the relationship
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6 ka - CTRL

9 ka - CTRL

A B

C D

Fig. 5. Early and mid-Holocene wind simulations from the IPSL-CM4 model at the 850 hPa level. In all figures we plotted the differences
with the pre-industrial run (control run) for the wind directions (vectors) and intensity (color scale, in m s−1). (A) Summer simulation,
6 ka BP.(B) Winter simulation, 6 ka BP.(C) Summer simulation, 9 ka BP.(D) Winter simulation, 9 ka BP.

between wind forcing and marine productivity across the
Holocene.

3.2 Link between productivity and larger-scale summer
monsoon wind

We first consider the 6 ka time-slice for which the simulations
performed with the IPSL-CM4 and PISCES models make it
possible to analyze the consistency between the changes in
the monsoon flow, wind and ocean productivity.

In response to the strengthening of seasonality in the
Northern Hemisphere, both the winter and the summer mon-
soons were enhanced during the mid-Holocene compared to
the present (Fig. 5a and b). As a result, northeasterly winds
were stronger along the Oman margin during boreal winter
and southwesterly winds were stronger during summer. The
larger changes were found in summer when wind speed dif-
ferences with the pre-industrial simulation exceeded 3 m s−1

at the coast (Fig. 5a). The monsoon flow intensification is

associated to an anomalous anticlockwise wind pattern re-
sulting in an intensification of the wind in winter at the tip
of India and to a clockwise pattern in summer leading to a
reduction of the wind. Even though the changes occurring
during the summer season are the largest, it is important to
check which season is dominant in the change of ocean ex-
port production andG. bulloidesabundance in the marine
sediments.

Figure 6 shows a map of the differences in particulate ex-
port production at 100 m (Fig. 6a) between 6 ka and 0 ka
in the Arabian Sea, as well as a comparison of 6 ka and
pre-industrial reconstructions of annual (monthly) evolution
of export production obtained by PISCES at site ODP 723
(Fig. 6b) and core MD77-191 (Fig. 6c) locations. These re-
sults indicate that using the bio-geochemical PISCES model
and the ocean physics simulated by the IPSL-CM4 model
at 6 ka BP and for the pre-industrial, we qualitatively repro-
duce the variations reconstructed from theG. bulloidespro-
ductivity proxy at the ODP 723 and MD77-191 sites, that
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A

B C

Fig. 6. PISCES outputs.(A) Map showing the differences in export production at 100 m (mgC m−2 yr−1) between the mid-Holocene (6 ka)
and the pre-industrial control-run simulations.(B) Seasonal variations of export production simulated at 6 ka BP and in the control run, at
the ODP Site 723.(C) Seasonal variations of export production simulated at 6 ka BP and in the control run, at the site of core MD77-191.
Yellow squares indicate the location of ODP Site 723 and core MD77-191 in panel(A).

is: more export production at 6 ka BP on the Arabian coast,
and less export at the Southern tip of India compared to the
pre-industrial simulation. South of India, this difference (less
export at 6 ka) seems directly related to the characteristics of
the summer bloom, and thus to the intensity of the monsoon
upwelling. In the western Arabian Sea, even if the simulated
changes agree in average (see map on Fig. 6a), the message
is complicated by the seasonality of the bloom. This region
is characterized by two blooms: a summer bloom related to
the monsoon and upwelling, and a winter bloom linked to
the deepening of the mixed layer (see Levy et al., 2007).
The characteristics of these two blooms are modified during
the Holocene, as opposed to the Pre-Industrial. The sum-
mer bloom is driven by the characteristics of the monsoon
upwelling: its intensity increases significantly. The winter
bloom is also largely impacted: its timing is modified and an
earlier start also contributes to the difference in the average
annual export.

Mean outputs from IPSL-CM4 (temperature, light) and
PISCES (food) simulations were used to emulate the
FORAMCLIM ecophysiological model (6 ka and pre-
industrial, control-run). As already mentioned above, the
resultingG. bulloidesproportion in the pre-industrial run is
around half of the observed one in recent sediments, which
is not surprising considering the coarse resolution of both
the atmosphere (LMDZ) and the ocean (OPA) general circu-
lation models that force PISCES, the biogeochemical model,
precluding a good representation of coastal upwelling zones.

Yet, the evolution of theG. bulloidesproportion are repro-
duced in a correct way by the FORAMCLIM model (Ta-
ble 2), with an increase ofG. bulloidesat the southern tip
of India between 6 ka (16.3 %) and pre-industrial conditions
(19.3 %) (compared to the observed increase between∼35 %
and∼45 %), whereas the simulated proportion decrease in
the Oman margin from 19.8 to 17.3 % (compared to the ob-
served decrease from∼32 % to∼25 %).

3.3 Differences between the early and the mid Holocene

As seen above, the complete set of model simulations ob-
tained at 6 ka (IPSL-CM4, PISCES and FORAMCLIM) are
consistent withG. bulloidesrecords from ODP Site 723 and
MD77-191. These simulations (1) confirm that productiv-
ity at these two sites has always been chiefly associated to
monsoon-driven, summer upwelling activity, and (2) they
reproduce the opposite, long-term evolution of productivity
recorded in theG. bulloidesrecords at the two sites (i.e. more
export production at 6 ka BP on the Arabian coast, and less
export at the Southern tip of India compared to the pre-
industrial simulation).

For this paper, no PISCES simulation was available at
9 ka, but simulations of surface winds obtained with the
IPSL-CM4 model were available at 9 ka, 6 ka and could be
compared to the pre-industrial control run (Fig. 5). These
9 and 6 ka simulations show that the inverse evolution of the
Oman margin and southern India productivity recorded in the
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%G. bulloidesdata from sites ODP 723 and MD77-191 is
fully consistent with the modelled, local evolution of sum-
mer wind forcing at these two locations. Over the Oman
margin, summer monsoon winds were clearly enhanced at
9 ka compared to the pre-industrial reference (6 ka showing
intermediate values; Fig. 5a and c). Over the southern tip of
India the wind evolution is opposite. The western winds that
prevail during the summer monsoon were lowest at 9 ka com-
pared to today. As already discussed by Marzin and Bracon-
not (2009a), this is related to the fact that the entire dynamic
structure of the Indian monsoon flow is shifted northward
and penetrates further inland at 9 ka BP in the IPSL-CM4 re-
construction. These authors concluded that the monsoon sys-
tem is amplified over India in response to a large meridional
temperature gradient and an intensified contrast in land-sea
temperature, these changes being ultimately forced by the
insolation changes. The northernmost position reached by
the monsoon rain belt at the peak boreal summer insolation,
9 kyr ago, is independently supported by theδ18O record of
the Qunf Cave’s speleothem (southern Oman; Fleitmann et
al., 2003). On this record, theδ18O values become gradually
lighter over the past 10 kyr, a trend that has been interpreted
as resulting from the progressive southward migration of the
ITCZ as boreal summer insolation reduces over the course of
the Holocene.

Figure 7 compares the evolution of %G. bulloidesrecords
from cores ODP 723 and MD77-191 with the upwelling ve-
locities modeled at these sites at 9 ka, 6 ka and 0 ka. Twenty
decades of vertical velocities are individually plotted to show
the decadal variability of the upwelling for each period. In
the Oman Sea (core ODP 723), the changes of the upwelling
velocities from 9 ka to 0 ka are significant, with a smaller
change between 9 ka and 6 ka than between 6 ka and 0 ka.
The decrease of the biological activity depicted byG. bul-
loidesrelative abundance is fully coherent with the reduction
of the upwelling estimated by the IPSL-CM4 model through-
out the Holocene. At the southern tip of India (core MD77-
91), the upwelling change between 6 ka and 0 ka is signifi-
cant. The change between 9 ka and 6 ka is slightly smaller,
with a large decadal variability, which reduces the signifi-
cance. At this location also, the %G. bulloidessedimen-
tary record and the modeled upwelling intensity are coher-
ent, with a decrease of the upwelling associated to a decrease
of the biological activity along the course of the Holocene.

Thus, for both cores, model and data fit well, which sup-
ports the interpretation ofG. bulloides’ relative abundance as
a proxy of the upwelling intensity and, therefore, wind forc-
ing. Model and data are coherent and indicate a reduction of
wind intensity since 9 ka over the Oman margin, associated
to the decrease of boreal summer insolation. At the Southern
tip of India, summer winds increase since 9 ka due to the pro-
gressive shift to the south of the regional circulation pattern.
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Fig. 7. (A) Map of summer vertical velocity (cm day−1) recon-
structed with the IPSL-CM4 model in the control-run simulation.
Data/model comparison of upwelling intensity evolution across the
Holocene at the locations of Site ODP 723(B) and core MD77-
191 (C). G. bulloidesdata have been re-scaled (0.3 kyr interpola-
tion) and smoothed (5-point moving average). Uncertainties are
standard deviations estimated over the 5-point windows. Model
outputs are mean, vertical velocities estimated at grid-points near
the locations of core MD77-191 and ODP Site 723. Black crosses
indicate the location of ODP Site 723 and core MD77-191 in the
map of panel(A).
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4 Conclusions

Two summer monsoon upwellings, one over the Oman Mar-
gin and the other south of India, show opposite long-term
evolution over the Holocene. While the former shows a co-
herent response to boreal summer insolation and decreases in
intensity since∼9 ka, the latter shows an opposite response
and increases in intensity towards the recent.

Paleo-reconstructions of wind patterns, marine productiv-
ity and foraminifera assemblages were obtained using the
IPSL-CM4 climate model coupled to the PISCES marine
biogeochemical model and the FORAMCLIM ecophysiolog-
ical model. These reconstructions are fully coherent with the
marine core data. They confirm that the evolution of par-
ticulate export production and foraminifera assemblages at
our two sites have been directly linked with the strength of
the upwelling. The opposite, long-term evolution observed
from G. bulloides(productivity) records at the Oman and
South Indian sites is correctly reproduced through modeli-
sation. IPSL-CM4 model runs at 9 and 6 ka show that, while
the Oman Margin summer wind intensity follows the change
in summer insolation, the increase in wind intensity since
9 ka at the southern tip of India results from the southward
shift of monsoon winds over the Arabian Sea.

The simulated changes are, however, smaller than ob-
served, due (1) to the low resolution of the climate model
that does not allow proper representation of the strength of
the regional upwellings and (2) to the systematic underesti-
mation of the northward extent of the boreal summer mon-
soon flow in the northern Arabian Sea in the control simu-
lation. The good agreement on the relative evolution of the
two upwellings during the Holocene also provides the im-
portant confirmation that the changes recorded in the ocean
sediments are dominated by large-scale changes in the atmo-
sphere and ocean circulation and not by local processes at
the scale of the upwellings. Our results also show that the
combination of climate simulations with simulations of the
ocean biochemistry coupled to a foraminifer, ecophysiologi-
cal model offers new perspectives in model data comparisons
and in the understanding of past changes. They help to refine
the criteria to test the response of climate models to the in-
solation forcing and show how the confrontation of model
results with proxy records help us to better understand the
spatio-temporal evolution of Indian monsoon flow across the
Holocene.
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