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[1] The atmosphere-land-ocean fluxes of CO2 were derived for 64 partitioned areas of
the globe (22 over the ocean and 42 over the land) using a time-dependent inverse (TDI)
model for the period of January 1988 to December 2001. The model calculation
partially follow the TransCom-3 protocol, and is constrained by atmospheric CO2

concentration data from 87 stations and fully time-dependent atmospheric transport model
simulations. The air-to-land and air-to-sea fluxes averaged over the 1990s are estimated
at 1.15 ± 0.74 and 1.88 ± 0.53 Pg-C yr�1, respectively. These estimates, however,
remain uncertain owing to sampling biases arising from the sparse distribution of
atmospheric CO2 data, are compared with other estimates by various methods. The
sensitivity analysis indicates that the differences in fluxes and flux variability caused by
the choices of initial conditions for the TDI model are smaller compared to those due
to the selection of measurement networks. Our model results capture interannual
variations in global and regional CO2 fluxes realistically. The estimated oceanic CO2 flux
anomalies appear to be closely related to prominent climate modes such as El Niño–
Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific
Decadal Oscillation (PDO). The results from the correlation analyses show that the
oceanic CO2 flux in the tropics is strongly influenced by the ENSO dynamical cycle, and
that in the sub-polar regions by upwelling of sub-surface waters in the winter and
plankton blooms in the spring.
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1. Introduction

[2] The atmospheric CO2 concentration has been increas-
ing for the past several decades at a rate of about one half of
that expected for all the fossil fuel CO2 emissions into the
atmosphere. Although the consensus is that the missing half
is absorbed by the ocean and the terrestrial biosphere,
the estimates for their respective uptake fluxes vary over a
wide range. The time series observations for atmospheric
concentrations of CO2 and O2 indicate that the terrestrial
carbon sink for the 1990s ranged from 0.7 ± 0.8 to 1.26 ±
0.8 PgC yr�1, and the net ocean uptake from 2.4 ± 0.7 to

1.9 ± 0.6 Pg-C yr�1 [Plattner et al., 2002; Keeling and
Garcia, 2002]. Other measurements of CO2 and

13C/12C in
air and ocean water samples indicate that the net air-to-sea
CO2 flux over 1990s was in the range of 1.5 to 2 Pg-C yr�1

[e.g., Battle et al., 2000; Takahashi et al., 2002; McNeil et
al., 2003; Gloor et al., 2003]. Ocean general circulation
models also give similar estimates [Sarmiento et al., 2000].
However, large discrepancies still exist among the temporal
and spatial changes in the uptake flux, particularly at the
interannual timescale [e.g., Keeling et al., 1995; Francey et
al., 1995; Battle et al., 2000]. The other independent method
for CO2 flux estimation is the inversion of atmospheric CO2

data using atmospheric 3-dimensional transport models. In
an effort to evaluate the details of the surface CO2 flux
variability on a regional scale, near-surface level
atmospheric CO2 concentrations have been incorporated
into model simulations [e.g., Tans et al., 1990; Keeling et
al., 1995; Francey et al., 1995; Rayner et al., 1999; Bousquet
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et al., 2000; Rödenbeck et al., 2003]. The purpose of this
study is to estimate the sea-air CO2 fluxes at a spatial
resolution of sub-basin scales and to address the relation-
ships between the sea-air CO2 flux and prominent climate
modes including ENSO, the PDO and the NAO.

2. Computational Methods and Data

2.1. Inversion Technique

[3] The present study uses a time-dependent Bayesian
inverse model, which was originally developed by Rayner et
al. [1999]. Figure 1 shows 64 partitioned areas, for exam-
ple, 22 over the ocean and 42 over the land as the inverse
model framework is modified for this study. For our model
calculation, we adopt the TransCom-3 protocol for the
distribution of monthly pulses of regional sources (basis
functions), background fluxes from net ecosystem ex-
change, oceanic exchange, and two maps of annual fossil
fuel emission (representing 1990 and 1995) [Gurney et al.,
2000]. The oceanic basis functions are spatially fixed within
a region, and the effects of a seasonally varying ice-cover
are taken into account for the high latitudes. The monthly
mean ecosystem fluxes from the CASA (Carnegie Ames
Stanford Approach) biogeochemical model are normalized
for the neutral terrestrial biosphere background flux (e.g., no
net biosphere-atmosphere flux annually). The seasonal
cycle of the sea-to-air flux is assumed to be stationary over
the analysis period (referred here to as ‘‘cyclostationary’’)
and is based on the climatological mean conditions normal-
ized to 1995. The fossil fuel emission trend has been taken
fromMarland et al. [2003]. For the periods before 1992 and
after 1996, the 1990 and 1995 fossil fuel emission distri-
butions were used, respectively, and linearly interpolated for
the period between them. In the TDI model, the monthly
fluxes (S) and associated covariance (CS) are calculated as

S ¼ S0 þ GTC�1
D Gþ C�1

S0

� ��1

GTC�1
D D� GS0ð Þ ð1Þ

CS ¼ GTC�1
D Gþ C�1

S0

� ��1

; ð2Þ

where the elements of CD and CS0 consist of the variance-
covariance of atmospheric data (D) and prior sources (S0),
respectively, and G represents the atmospheric transport.
The off-diagonal elements of CS0 are set to zero in this
study, assuming that the flux regions are uncorrelated to one
another. The correction fluxes (the second term in equation
(1)) are determined from the differences between the
atmosphere data and transport model simulation of prior
sources scaled by data uncertainty. The uncertainty in
source estimation is given as a combination of the
information added by the data and our confidence on a
priori sources (equation (2)). Thus the values of CS (referred
to as predicted or a posteriori flux covariance) can be used
in comparison with CS0 (referred to as initial or a priori flux
covariance) to determine the level of constraint imposed by
the observations on the estimated fluxes (CS < CS0). The
uncertainty of regional flux estimation is defined as the
square root of diagonal elements in the flux variance-
covariance matrix, and TDI-model region aggregation is

made using Caggr =
Pn

i;j¼1Cij, where n is the number of
aggregated regions. Even though some regions do not have
atmospheric observations, their fluxes are estimated as a
combination of weighted basis function signals and
mismatches between the atmospheric data and model
simulations for the other regions (see equation (1)). This
also maintains the global balance between surface CO2

fluxes and the atmospheric CO2 burden. The spread (1s) in
CO2 flux variability is calculated from an ensemble of TDI
model runs by varying the initial conditions.

2.2. Forward Transport Model

[4] The NIES/FRCGC global transport model [Maksyutov
and Inoue, 2000] was used to simulate the monthly and
yearly tracer pulse functions. The model has 15 levels in the
sigma coordinates and 2.5� � 2.5� horizontal resolution.
The transport model was forced by the 6-hourly NCEP/
NCAR reanalysis data for the period of 1985–2002 [Kistler
et al., 2001]. Hence the resulting transports are not cyclo-
stationary, but fully time dependent (i.e., interannually
varying). The monthly mean climatological planetary
boundary layer (PBL) heights (from the Data Assimilation
Office at NASA’s Goddard Space Flight Center) were used
in the transport model. The PBL parameterization accounts
for the winter-time CO2 build up within the continental PBL
but ignores the diurnal and synoptic timescale variations in
PBL heights. While the selection of model transport model
may play a significant role in determining regional flux
distributions, a recent study shows that the flux anomalies
can be derived with a greater degree of confidence by 13
member models of TransCom (D. F. Baker et al., TransCom
3 inversion intercomparison: Impact of transport model
errors on the interannual variability of regional CO2 fluxes,
1988–2003, submitted to Global Biogeochemical Cycles,
2005) (hereinafter referred to as Baker et al., submitted
manuscript, 2005). Thus we associate greater confidence to
the regional flux anomalies discussed in this study.

2.3. Atmospheric Data Selection

[5] The atmospheric CO2 data and their associated
uncertainties are prepared from the GlobalView data set
[Globalview-CO2, 2002]. All the data networks used in this
study and time of real-data coverage at 87 stations during
the period 1988–2001 are shown in the auxiliary materials1

(Figures S1 and Figure S2, respectively). These data repre-
sent atmospheric CO2 concentrations near the surfaces of
the oceans and land, and in the free troposphere. We have
selected 87 stations for this study, where the GlobalView
records commonly have observations more than 50% real-
data during 1988–2001. Multiple case studies using differ-
ent groups of CO2 data set and choice of source region size
have been carried out. Of these results, we have selected the
best case on the basis of observed CO2 data coverage and
the ability of the TDI model to match the CO2 data as
shown in the next section, and refer it to as the ‘‘control
run.’’ Listed in the auxiliary material Table S1 are the 87

1Auxiliary material is available at ftp://ftp.agu.org/apend/gb/
2004GB002257.
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stations used in this study and the annual CO2 concentra-
tions for the year 1999 and average data uncertainties
estimated from the GlobalView data set. The differences
between the observed and predicted concentrations by the
inversion for the same time period are also shown. The
‘‘reference’’ data of GlobalView are used to fill the gaps in
the ‘‘observed’’ records, and the average residual standard
deviation (rsdav) have been used as the measure of data
uncertainties following: CD =

p
(0.32 + rsdav2). Thus the

minimum data uncertainty is set at 0.3 ppm level. As a
sensitivity test we have used the observation networks of
varying sizes: 19 stations (Test-CR; as used by Rödenbeck
et al. [2003]), 67 stations (Test-PB; as in the work by
Bousquet et al. [2000]), 87 stations (Control Run; 76
stations of TransCom-3 plus 11 extra stations), and 100
GlobalView stations (Test-PP; 87 stations + 8 in South
China Sea + 4 West Pacific Aircraft Sites + Ocean Station P,
Canada).

2.4. Area Partition

[6] The inverse model is utilized to derive interannually
varying fluxes from a large number of regions by the
Bayesian approach, using an atmospheric CO2 data network
with a greater number of stations than in previous studies.
The rationale behind increasing the number of area parti-

tions in the inverse model is to reduce regional aggregation
error, and to obtain extra information on spatial and tem-
poral CO2 variability for CO2 data and sources. To under-
stand the effect of increasing source regions on fitting CO2

data and sources, we defined c2 as

c2 ¼1
�
T

1

N

XN

1
D� Dpredicted

� �2
=CD

h	

þ 1

M

XM

1
S0 � Sð Þ2=CS



;

where, T, N and M are number of time intervals,
observation stations and source regions, respectively,
DPredicted is a posteriori CO2 data or G.S. By increasing
the number of regions from 22 to 64, value of c2 is
reduced from 2.15 to 1.11. This suggests that the
assumption of 100% correlation within one large region
tends to obscure some of the information available in the
observations. The value of c2 is further reduced to 0.99
when the interannually varying meteorological fields are
utilized instead of the 1997 meteorological fields (drop-
ping the cyclostationary assumption). This result indicates
that the east-west and north-south gradients in CO2

observations are fitted better by the transport model
simulations using real-time meteorological fields. On the

Figure 1. The 22 ocean regions in the TDI model (42 land regions, similar to those of Patra et al.
[2005], are not shown here to avoid complexity) and the surface observation network (87 stations) used in
this study. The long-term mean fluxes (except the 1997–1998 period) are indicated by the color of each
region (see the color bar at the bottom of the figure). The negative and positive values indicate net uptake
and net release by the ocean, respectively. Names of 11 ocean regions in TransCom-3 are as follows: 1,
North Pacific (NP); 2, West Pacific (WP); 3, East Pacific (EP); 4, South Pacific (SP); 5, Northern Ocean
(NP); 6, North Atlantic (NA); 7, Tropical Atlantic (TA); 8, South Atlantic (SA); 9, Southern Ocean (SO);
10, Tropical Indian (TI); and 11, South Indian (SI). These regions are divided into north (N) and south (S)
parts in this work. Details of a priori and a posteriori flux uncertainties for the ocean regions are given in
Table 2, and a glimpse of CO2 concentrations and associated data uncertainties at each of the 87 stations
are available in Table S1 in the auxiliary material. See color version of this figure at back of this issue.
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other hand, when the number of partitioned areas is
increased, atmospheric observations would become unavail-
able for some areas to constrain the fluxes. Accordingly, too
many partitions would risk generating unrealistic flux
behaviors and driving up the error in flux estimation.

3. Results and Discussion

3.1. Global Fluxes and Land-Ocean Partitioning

[7] Net CO2 flux to the atmosphere for the global land
ecosystems, averaged over 1990–2000, is estimated about
�1.15 Pg-C yr�1 with the range of�1.05��1.40 Pg-C yr�1

and a posteriori uncertainty of 	0.74 Pg-C yr�1; and
that for the global ocean is �1.88 Pg-C yr�1 with the
range of �1.58 � �2.02 Pg-C yr�1 and a posteriori
uncertainty of 	0.53 Pg-C yr�1. Note that the 1997/
1998 El Niño period was excluded since the CO2 flux
anomalies were extreme in the whole period of our
analysis as will be discussed later. The ranges in both
fluxes have been estimated on the basis of five sensitivity
runs by varying the initial conditions for inverse simula-

tions as defined in Figures 2a and 2b. Comparing our
estimates to others (Table 1), we find that these values are
within the range of some previous estimates that are based
on various independent approaches [e.g., Plattner et al.,
2002; Takahashi et al., 2002]. On the other hand, com-
pared to our results, typically greater uptakes by lands and
lesser uptakes by the oceans have been obtained by several
inverse model studies [Bousquet et al., 2000; Rödenbeck et
al., 2003; Gurney et al., 2004; Baker et al., submitted
manuscript, 2005], and other independent estimates after
correcting for the riverine fluxes (see Table 1) [Prentice et
al., 2001; Keeling and Garcia, 2002]. The differences
between inverse model results appear to arise mainly from
the inverse model frameworks, the selection of measure-
ment networks and the periods of inversion (mainly with
or without the 1997/1998 El Niño period; see Table 1).
The atmospheric CO2 concentrations over the land areas
generally have larger variability compared to the ocean
regions because of the local weather conditions and the
presence of small-scale strong local sinks/sources. As a
result, the estimated interannual variability is larger for the

Figure 2. Six-monthly running averages of CO2 flux anomalies as estimated by TDI calculation for
total land and ocean from atmospheric CO2 data, with varying network sizes as well as different a priori
data and source uncertainties. Flux anomaly is calculated by subtracting an average seasonal cycle for the
period 1988–2001 from the monthly-mean CO2 fluxes. The cases shown in Figures 2a and 2b are
obtained by (1) control run (thick black line), (2) ocean CS0 � 2, (3) all CS0 � 2, (4) CD � 2, and (5) all
CS0 � 2 and CD � 2. The cases shown in Figures 2c and 2d are obtained by (1) control run, and different
CO2 data networks, (2) Test-CR, (3) Test-PB, and (4) Test-PP. The a posteriori flux estimate uncertainties
obtained from control TDI model run are shown as the grey shading. The tick marks indicate January of
the corresponding years. See color version of this figure at back of this issue.

GB4013 PATRA ET AL.: OCEAN CO2 FLUXES AND CLIMATE VARIABILITY

4 of 13

GB4013



land uptake �1.92 Pg-C yr�1 (1s) (ranging from +3.06 to
�2.63 Pg-C yr�1) and relatively small for ocean uptake
�1.08 Pg-C yr�1 (ranging from �0.68 to �4.19 Pg-C
yr�1) during the period 1990–2000 (in control run case
only).

3.2. Ocean Region Fluxes

[8] The 1988–2001 mean fluxes computed for each of
the 22 ocean regions are summarized in Table 2. They are
compared with the climatological mean sea-air fluxes esti-
mated by T. Takahashi and coworkers for non-El Niño
conditions [Takahashi et al., 2003] (hereinafter referred to
as TT03, also available at www.ldeo.columbia.edu/CO2) on
the basis of the observed sea-air pCO2 difference over the
global oceans. The TT03 climatology of oceanic flux

distribution (normalized to a reference year of 1995) is an
updated version of the background ocean flux [Takahashi et
al., 2002] using about 1.5 million pCO2 measurements, and
NCEP 41-year mean wind speeds at 10 m above sea surface.
Thus TT03 can be treated as an independent estimate from
the prior ocean flux. Our results show that the Northern
Ocean (NO), North Atlantic (NA), southern North Pacific
(NP(S)), South Indian (SI) and northern Southern Ocean
(SO(N)) are net sinks of CO2 during all years, whereas the
Eastern Pacific (EP) is a net source for the atmosphere. In
general, our results are consistent with TT03 (see Figure 1
for the abbreviations).
[9] However, significant differences are observed in the

following areas (Table 2). In the northern North Pacific
(NP(N)), our model yields a weak source of 0.03 Pg-C yr�1,

Table 1. Comparison of Different Estimates of Global Land and Ocean to Atmosphere CO2 Fluxes in the Period 1990–2000a

Averaging Period

This Work Other Estimates

Land Ocean References Land Ocean

Estimate Without 1997/1998 Period
1990–1996, 1999–2000 1.15 (±0.7) 1.88 (±0.5) TT03 1.46–2.12

Estimates Using Atmospheric O2/N2
b

1990–2000 0.45 2.22 KG02 1.26 ± 0.8 1.86 ± 0.6
1990–1999 0.41 2.21 GKP02 0.70 ± 0.8 2.40 ± 0.7
1990–1999 IPCC 1.40 ± 0.7 1.70 ± 0.5

Estimates Using Inverse Modeling of Atmospheric CO2

1990–1999 CR03 1.60 ± 0.3 1.70 ± 0.2
1992–1997 0.57 2.21 PB00 1.40 ± 0.8 1.80 ± 0.6
1992–1996 0.63 2.25 KRG04 1.46 ± 0.6 1.34 ± 0.6
1991–2000 0.31 2.35 DFB05 2.09 ± 0.5 1.06 ± 0.5

aUnits are Pg-C yr�1. References: TT03, Takahashi et al. [2002] (updated value, corresponds to year 1995); KG02, Keeling and Garcia [2002]; GKP02,
Plattner et al. [2002]; IPCC, Prentice et al. [2001]; CR03, Rödenbeck et al. [2003]; PB00, Bousquet et al. [2000]; KRG04, Gurney et al. [2004]; DFB05,
Baker et al. (submitted manuscript, 2005).

bThese estimates account for land-ocean carbon transport through the rivers. For comparison with inverse model results, 0.6 Pg-C yr�1 [Aumont et al.,
2001] may be added to and subtracted from the land and ocean fluxes, respectively.

Table 2. Comparison of CO2 Fluxes From 22 Ocean Regions, Averaged Over the Period 1988–2001, With the TT03 Fluxesa

Region Name

Prior Predicted TT03

Flux Uncertainty Flux Uncertainty WM99 W92

NP(S) �0.13 1.16 �0.32 0.55 �0.22 �0.24
NP(N) �0.36 1.16 0.03 0.63 �0.26 �0.33
WP(S) 0.06 0.71 �0.02 0.42 0.02 0.01
WP(N) 0.08 0.71 �0.07 0.48 0.07 0.05
EP(S) 0.29 0.79 0.16 0.65 0.41 0.37
EP(N) 0.17 0.79 0.17 0.37 0.16 0.12
SP(S) �0.17 1.72 �0.66 1.04 �0.17 �0.19
SP(N) �0.05 1.72 0.10 0.69 �0.08 �0.08
NO(S) �0.24 0.37 �0.27 0.31 �0.20 �0.25
NO(N) �0.18 0.37 �0.10 0.31 �0.08 �0.10
NA(S) �0.03 0.56 �0.07 0.45 �0.06 �0.06
NA(N) �0.25 0.56 �0.21 0.46 �0.21 �0.26
TA(S) 0.10 0.56 0.09 0.48 0.13 0.11
TA(N) 0.02 0.56 0.05 0.49 0.03 0.02
SA(S) �0.18 0.68 0.00 0.61 �0.16 �0.19
SA(N) 0.06 0.68 0.07 0.60 0.04 0.03
SO(S) �0.14 2.12 0.32 0.49 �0.03 �0.03
SO(N) �0.73 2.12 �0.67 1.21 �0.51 �0.69
TI(S) 0.03 1.05 �0.22 0.78 0.03 0.01
TI(N) 0.08 1.05 0.05 0.91 0.13 0.14
SI(S) �0.36 0.76 �0.29 0.44 �0.31 �0.40
SI(N) �0.19 0.76 �0.13 0.71 �0.16 �0.15

aUnits are Pg-C yr�1. Two sets of Takahashi et al. [2002] (TT03) fluxes were obtained using 41-year mean NCEP wind speeds and two formulations for
the wind speed dependence on the air-sea CO2 gas transfer coefficient, W92 [Wanninkhof, 1992] and WM99 [Wanninkhof and McGillis, 1999].
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whereas TT03 gives a strong sink of �0.26 Pg-C yr�1. In
the tropical eastern Pacific (EP(S)), our model gives a
source flux of 0.16 Pg-C yr�1, which is about 30% of the
TT03 value of 0.41 Pg-C yr�1. Our study also gives a strong
source of 0.32 Pg-C yr�1 for the high-latitude Southern
Ocean (SO(S)), whereas TT03 gives a weak sink of �0.03
Pg-C yr�1. Tropical Indian Ocean (TI(S)) is a strong sink of
�0.22 Pg-C yr�1 by our study, whereas it is a very weak
source of 0.03 Pg-C yr�1 by TT03. These areas, where
significant discrepancies are observed between TT03 and
our atmospheric CO2 inverse study, have no observations
or are lacking in representative observations as shown
in Figure 1. Hence our flux values are not strongly
constrained. Furthermore, according to our study, the south-
ern South Pacific (SP(S)) is a very strong CO2 sink of
�0.66 Pg-C yr�1, whereas TT03 gives a moderate sink of
�0.17 Pg-C yr�1.

3.3. Sensitivity Tests for Interannual Variability (IAV)

[10] In order to evaluate the impact of different com-
positions of the CO2 network, the size of the network is
changed from 19 stations up to 100 stations (Test-PP),
and dependence of estimated fluxes on the a priori flux
and atmospheric data uncertainties is examined. Figure 2
shows the estimated flux anomalies for the aggregated
global land and ocean regions. Though the net fluxes
from individual regions vary, the estimated anomalies are
quite stable against the selection of inputs to the inverse
model (Figures 2a and 2b). When the CO2 data uncer-
tainties are doubled in the 87-station control run, the
interannual flux variability is reduced significantly. This
suggests that the inverse model results depend primarily
on the CO2 observations and less on the model initiali-
zation itself. To confirm this further, we have tried to
mimic the results of previous investigators using our
model but selecting similar stations which were used in
their studies (Test-PB using 67 stations and Test-CR
using 19 stations; see Figures 2c and 2d). The land
fluxes are broadly reproduced by Test-CR, Test-PB, and
the control run, except that the control run yields a larger
emission from the land during 1997–1998 period. The
carbon source anomalies from the global land for the
1997 and 1998 are estimated at 3.48 and 2.65 Pg-C yr�1,
respectively (control run). Detailed discussion on interan-
nual and regional CO2 flux variability can be found
elsewhere [Patra et al., 2005].
[11] The variability in ocean fluxes that is obtained

using smaller size observation networks (i.e. Test-CR (19
stations) and Test-PB (67 stations)) is considerably
smaller than those derived using the 87-station network.
On the other hand, Test-PP (100 stations) produces
a similar flux variability as that in the control run
(Figure 2d). Because the additional stations have smaller
number of CO2 observations compared to the observation
network used in the control run, they do not seem to
significantly affect the inverse model results. In addition,
the uncertainties assigned to CO2 data over the South
China Sea (eight stations) are relatively large (�1.0 ppm)
compared with those for western Pacific Ocean aircraft
observations (�0.5 ppm). These results indicate that the

model flux is sensitive to the selection of the atmospheric
CO2 data.

3.4. IAV: Comparison With Other Estimations

[12] The variability in global sea-air CO2 fluxes obtained
from five atmospheric CO2 inverse model studies and
one ocean GCM study are compared with the results of
this study for the period of 1988–2001 (Figure 3). The
estimated flux anomalies obtained by various groups using
different modeling approaches differ greatly from each
other. As already discussed in section 3.3 and shown in
the auxiliary materials, the disagreement between the model
results are attributable primarily to the selection of obser-
vational networks. Of these model studies, the results of two
studies show positive CO2 flux anomalies during the intense
1997/1998 El Niño period, whereas three, including our
results, show negative anomalies and two show almost no
effect. Our results are broadly consistent with those of
Keeling et al. [2001], especially in the period after 1990,
and with more recent results by Baker et al. (submitted
manuscript, 2005). Therefore we will discuss mainly the
results of these three models below.
[13] During the strong 1997/1998 El Niño period, these

results indicate a significant increase in the global ocean
uptake, i.e., negative anomalies. Our TDI model suggests an
increase in CO2 uptake by �1.3 Pg-C yr�1 compared to
previous 3 years. Since one of the most pronounced effects
of an El Niño event is a reduction of the sea-to-air CO2 flux
due to the suppression of upwelling high-pCO2 waters in
the eastern equatorial Pacific, it accounts for a negative flux
anomaly or an increase in the ocean CO2 uptake. However,
the magnitude of anomalies obtained by this study is as
large as �2.7 Pg-C yr�1 and that exceeds the mean
equatorial Pacific flux of �1 Pg-C yr�1 estimated for the
non-El Niño periods on the basis of the sea-air pCO2

difference observations [Feely et al., 1999; Takahashi et
al., 2002]. Hence, if our results are taken literally, an
intensification of oceanic sink areas outside the equatorial
Pacific is implied during the 1997/1998 El Niño period.
[14] An increase in the oceanic uptake of atmospheric

CO2 during the 1991/1992 El Niño event was proposed by
Francey et al. [1995] on the basis of the d13C changes in the
atmospheric CO2. Our results as well as those of Keeling et
al. [2001] and Baker et al. (submitted manuscript, 2005)
also show an increase in ocean uptake (or negative anoma-
lies) for the 1991/1992 El Niño event as well as the weak
1994/1995 event. However, all these studies exhibit positive
anomalies during the weak 1992/1993 El Niño. The results
obtained using an ocean GCM tend to produce a negative
ocean flux anomalies during the 1991/1992, 1992/1993 and
1997/1998 El Niño periods [Le Quéré et al., 2003], but their
anomalies are much smaller than those predicted by the
inverse models.

3.5. IAV: Comparison With Ocean Observations

[15] We compare our results with the time series obser-
vations made in three oceanic areas. In Figure 4a, the flux
changes in the equatorial Pacific region are shown. Our
results are in good agreement with the direct estimations
based on surface water pCO2 measurements by Feely et al.
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[1999]. For the period 1993–1996, the inverse model
values fail to show strong positive anomalies observed by
Feely et al. [1999]. The causes for the underestimation are
not clear, but presumably are due to the lack of atmospheric
observations in the eastern equatorial Pacific. Since the
ocean basis functions have spatially uniform flux distribu-
tion, atmospheric observations at different locations receive
biased response from the changes in regional flux intensity.
[16] On the basis of the time series observations of

multiple parameters at the BATS station near Bermuda
Island (32�N, 64.3�W; station 12 in Figure 1), basin-scale
CO2 fluxes have been estimated by Gruber et al. [2002] for
the North Atlantic (Figure 4b). The TDI model results are in
good agreement with the observations until 1994, but
following that opposite behavior is observed. The latter
time period coincides with the time when CO2 measure-
ments at several locations were started in 1992/1993. This
suggests that two Bermuda stations play a major role in
constraining the fluxes from North Atlantic region. Flux
patterns within an inverse model region depend on the area
of source-signal footprint of the point measurements. Thus
as the number of observations increases within an inverse
model region, correlations between the TDI flux anomaly
and the results obtained from station measurements may be
reduced depending on the spatial heterogeneity in the CO2

flux distribution.
[17] As shown in Figure 4c, the amplitudes and phases of

flux anomalies estimated on the basis of the surface water

chemistry measurements at ALOHA Station (22.75�N,
158�W) [Dore et al., 2003] are in fairly good match
alternatively with our results for the southern and northern
North Pacific (NP) areas. Since the atmospheric CO2

observations at this location are likely to be influenced by
both the northern and southern North Pacific air masses,
such behavior is explicable. During the positive PDO phase
the wind stress is westerly over the central Pacific and
northerly along the eastern Pacific [Mantua et al., 1997],
thus the CO2 flux anomaly of NP(S) for the period 1996–
1998 matches well with the ALOHA observations. For the
negative PDO phase in 1999–2001 the flux anomaly of
NP(N) captures most of the CO2 variability observed at
ALOHA station. On the basis of the 1988–2002 time series
observations of CO2,

13C and salinity, Keeling et al. [2004]
concluded that the observed change of this area from a CO2

sink to a weak source is due mainly to an increased
transport of higher salinity waters from the north, perhaps
associated with a regime shift in PDO around 1997. Their
findings are consistent with our results.

3.6. Sea-Air CO2 Flux Anomalies and Climate
Variability

[18] Large-scale recursive patterns of climate anomalies
such as ENSO and the NAO account for a large part of
climate variability on interannual to sub-decadal timescales
[Hurrell, 1995; Trenberth et al., 1998]. Climate mode shifts
are associated with changes in temperature distributions and

Figure 3. Global ocean flux anomalies (deseasonalized) estimated by different groups using inverse
models, ocean models, and carbon isotope deconvolution techniques. The description of OGCM, CSIRO,
and SCRIPPS models can be found in details elsewhere [Le Quéré et al., 2003, and references therein].
The results from Rödenbeck et al. [2003] are due to an observation network of 19 stations, which is
selected to show the flux variability for the 1990s. The shaded curve indicates interannual variability in
ENSO index (Nino 1+2), defined as the sea-surface temperature change over (0–10�S, 90�W–80�W)
region in the Pacific Ocean (source: www.cpc.ncep.noaa.gov/data/indices). See color version of this
figure at back of this issue.
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large-scale circulations of the ocean and the atmosphere,
and they, in turn, would affect sea-air CO2 fluxes through
changes in physical and biological processes in upper
oceans. Many of the prominent climate modes are regional

and have particular domains of influence. In what follows,
we shall examine the relationship between regional sea-air
CO2 flux anomalies and climate variations using a correla-
tion analysis. In particular, we focus on anomalous climatic
conditions represented by ENSO, the NAO and PDO. The
choice of these climate modes is by no means exhaustive,
but their domains of influence collectively cover a large part
of the global ocean. The variability of sea-air CO2 flux for
six oceanic regions in the period 1988–2001 are shown in
Figure 5 and compared with the three major climate indices.
[19] In our analysis, we emphasize the fact that those

climate modes have particular peak seasons. For the ENSO
cycle, El Niño matures during an early part of the boreal
winter, and hence the ENSO-related variations in sea-
surface temperatures and winds are pronounced during the
months of December, January and February. Similarly, the
NAO variability, associated with anomalous surface west-
erly winds over the North Atlantic, is concentrated in boreal
winter, for example, December through March. Also, the
PDO represents the leading mode of sea-surface tempera-
ture variability over the North Pacific particularly for the
period of November to March. In recognizing the periods,
in which climate conditions are most affected, anomalies of
CO2 flux and climate indices averaged over the period
of three different peak periods are used for the analysis
(Table 3): December to February (DJF) for ENSO, Decem-
ber to March (D to M) for the NAO, and November to March
(N to M) for the PDO. These average values are collectively
referred to as ‘‘winter’’ values. We then examine correlations
between the winter mean climate indices and monthly CO2

flux anomalies averaged over the winter months.
[20] As noted above, large-scale climate modes may have

delayed effects on sea-air CO2 fluxes owing to slow
responses of marine ecosystems and other environments.
In order to take into account these effects, we also examine
lagged relationships between the ‘‘winter’’ climate indices
and monthly averaged CO2 flux anomalies using a simple
lagged cross-correlation analysis, which is referred hereafter
to as lagged correlations. In Table 3, the lag time is
expressed in the number of months that CO2 flux anomalies
lag behind the winter climate indices, starting from January
(+1) to December (+12).
[21] For all correlations calculated in this study, we em-

ploy the same significance test with the null hypothesis that
there is no correlation between a climate index and CO2 flux
anomaly. Since there is no prior knowledge about the sign of
correlations, we use the two-sided t-test. This is in contrast to
an alternative null hypothesis that a correlation between a
climate index and CO2 flux anomaly is non-negative or -
positive, which leads to a one-sided t-test. An autocorrela-
tion analysis reveals a sharp drop in the autocorrelation
functions of all climate indices used in this study with 1
year of lag. On the basis of this result we use the same
sample size of 14 to estimate the critical values of jrj = 0.52
and 0.65 for the 95% and 99% significance levels, respec-
tively. The null hypothesis is then rejected with 95 or 99%
confidence if correlation coefficient (r) exceeds these values.
3.6.1. El Niño–Southern Oscillation
[22] ENSO is a climate mode that manifests ocean-atmo-

sphere coupled processes in the tropical Pacific. During its

Figure 4. Variations in TDI flux anomalies from (a)
Tropical Pacific, (b) North Atlantic, and (c) the North
Pacific regions are shown in comparison with previous
estimations based on oceanic and atmospheric observations.
An average seasonal cycle is subtracted from the monthly
mean TDI fluxes to calculate the flux anomalies for each
inverse model region. The 12-month running means are
shown in Figure 4b, while 24-month running means are
taken for the rest to reduce the noise (high frequency
variability). The arrows in Figure 4a indicate the onset of El
Niño events; while the one started in 1992 was prolonged
and that during 1997/1998 was more pronounced. The
actual emission rates at ALOHA (supplied by John Dore)
are converted to area integrated flux anomalies for the
whole NP region (area �50 � 1012 m2) (Figure 4c). See
color version of this figure at back of this issue.
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warm phase, El Niño, the surface water over the eastern half
of the tropical Pacific becomes anomalously warm with
weakened trade winds. The opposite conditions prevail
during the cold phase, La Niña. Although the center of
ENSO action is located in the tropical Pacific, its climatic
influence extends to a large area outside of the tropical
Pacific through both oceanic and atmospheric dynamical
connections [Trenberth et al., 1998]. Some indices for

ENSO are based on sea-surface temperatures (SSTs), while
others are based on atmospheric sea level pressure (SLP). In
this analysis, we use the Nino1+2 index, which is defined as
SST anomalies averaged over the region of 0�–10�S and
80�W–90�W. This area is located off the coast of Peru,
where CO2 fluxes are sensitively affected by the intensity of
upwelling and hence by El Nino events. Thus this index is a
sensitive indicator for the ENSO events.

Figure 5. Flux anomalies (green line: south part, blue line: north part, red line: aggregated to
TransCom-3 region size) are shown for selected ocean regions, where physical changes are observed by
the known decadal climate variability, and the flux uncertainty reductions are greater than 20% (except
two NO regions, which have low prior uncertainties) by inversion. The flux anomalies are calculated by
subtracting the long-term mean seasonal cycle from monthly mean fluxes for each region. The related
climate oscillation indices are shown in the top part of each panel. Three-monthly running means are
taken for all the data. Note that CO2 flux data are treated differently for calculating the correlation
coefficients (see text). The following data sources are used for the climate indices: www.cpc.ncep.noaa.
gov for ENSO, www.cru.uea.ac.uk for NAO, and tao.atmos.washington.edu for PDO. See color version
of this figure at back of this issue.
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[23] Column 2 in Table 3 shows correlation coefficients
for the DJF mean CO2 fluxes versus DJF mean Nino1+2
index. Significant levels of correlation are found between
the CO2 flux and the Nino1+2 index for WP(S) (r = �0.63)
and EP(N) (r = �0.74), whereas all other areas in the Pacific
do not show significant levels of correlation. The negative
correlations observed in these two equatorial areas indicate
that the colder SST correlates with positive CO2 flux
anomalies. This is consistent with the observations that
the eastern equatorial Pacific is a strong CO2 source during
the cold phase (La Niña events). When time lag is taken into
account, correlations between the winter Nino1+2 indices
and monthly CO2 fluxes are greatly improved (see column 3
in Table 3, where the lag time in months is indicated in the
parentheses). Significant correlations (with jrj > 0.58) are
found in nearly all parts of the North and South Pacific with
the exception of the northwestern tropical Pacific area,
WP(N). The signs of the correlation coefficients are nega-
tive in all areas but two equatorial areas, EP(S) and SP(N).
This finding supports the notion that warmer SSTs during El
Niño lead to reductions in upwelling of CO2-rich deep
waters, thereby reducing the magnitude of sea-to-air CO2

fluxes.
[24] Some puzzling features are found for the computed

CO2 flux values. As shown in Table 3 and Figure 5 (green

curve in the middle left panel), CO2 flux anomalies are
estimated positive (i.e., increased sea-to-air flux) for the
eastern tropical South Pacific, EP(S), area during the 1997/
1998 El Niño event. On the contrary, observations show that
the sea-to-air CO2 flux is suppressed during the strong El
Niño event by the influx of warm low-CO2 surface waters
from the west. But atmospheric CO2 observations are totally
lacking in the EP(S) area (see Figure 1). Thus we consider
that a dipole feature between the EP(N) and EP(S) areas
during the 1997/1998 El Niño period is attributable to the
lack of observational constraints and likely to be an artifact.
Since these areas are a major oceanic CO2 source and are
affected strongly by the El Niño–La Niña events, atmo-
spheric CO2 observations are urgently needed.
[25] A significant positive lagged correlation is found for

the temperate South Pacific, SP(N) (r = 0.73 with +9 month
lag time; see Figure 6a). Our CO2 flux estimate for this area
is constrained by observations at stations 25 and 58 in
Figure 1. Both stations are located within the extratropical
horseshoe-shaped region, in which positive SST anomalies
are observed during the cold phase of ENSO, when sea-to-
air fluxes are large owing to enhanced upwelling near South
America. This accounts for the positive correlation obtained
for this area. The observed positive lagged correlation for
SP(N) may be attributable to a successive occurrence of the
1997/1998 El Niño followed closely by the 1999/2000 La
Niña event.
[26] The tropical western North Pacific region, WP(N),

shows no significant correlation either with or without lag
(columns 2 and 3, Table 3). On the other hand, its southern
counterpart, WP(S), has a strong negative correlation coef-
ficient (r = �0.74 with +1 month lag time). Since both of
these regions are constrained in the western and eastern
ends by the shipboard measurements (stations 47–58 in
Figure 1) of atmospheric CO2 and the high altitude aircraft
observations (stations 79–86 in Figure 1), this north-south
contrast appears to be real. Oceanographic observations
indicate that sea surface temperature and pCO2 in the
equatorial warm pool areas (5�N–5�S, west of the date
line) are not sensitive to El Niño conditions [Takahashi et
al., 2003]. Therefore the difference in correlation coeffi-
cients between the northern and southern areas may be
attributed to the oceanographic conditions outside the equa-
torial belt. In the western tropical Pacific, the ocean water
circulation pathways in the Northern Hemisphere are dif-
ferent from those in the Southern Hemisphere. The WP(N)
area (0�–15�N) receives waters from the North Equatorial
Current and Equatorial Countercurrent as well as the South
Equatorial Current, whereas the WP(S) area (0�–15�S)
receive mostly the South Equatorial Current water. These
features are reflected in the observed north-south asymmet-
rical distribution of chlorophyll in tropical and temperate
surface waters of the Pacific [Gregg and Conkright, 2002].
On the basis of temperature analysis in upper 400 m of the
North Pacific, Schneider et al. [1999] concluded that there
is no significant coupling between the northern midlatitude
Pacific and the equatorial region via advection along the
thermocline. Such oceanographic features may account for
the North-South asymmetry of the correlation coefficients in
the tropical western Pacific. However, no simple explana-

Table 3. Correlation Coefficients Between CO2 Flux Anomalies

and Climate Indices for 22 Ocean Regions Based on the Results

From the Control Runa

Region
Name

Nino1+2 NAO PDO

DJF Lagged D to M Lagged N to M Lagged

NP(N) �0.30 �0.58(+3) �0.00 . . . �0.54 �0.66(+5)
NP(S) 0.06 �0.58(+5) 0.10 . . . 0.30 . . .
WP(N) 0.16 . . . �0.16 �0.55(+9) 0.16 . . .
WP(S) �0.63 �0.74(+1) 0.25 . . . �0.28 �0.60(+1)
EP(N) �0.74 �0.74(+4) 0.39 . . . �0.50 �0.52(+2)
EP(S) 0.44 0.77(+2) �0.15 . . . �0.16 �0.71(+7)
SP(N) 0.28 0.73(+9) �0.15 . . . �0.07 0.52(+6)
SP(S) �0.30 �0.67(+5) 0.18 0.71(+4) 0.23 �0.64(+5)
NO(N) 0.18 . . . 0.71 0.53(+3) �0.01 . . .
NO(S) 0.11 0.79(+8) 0.73 0.65(+1) �0.13 . . .
NA(N) �0.39 �0.55(+3) 0.14 �0.72(+7) �0.03 . . .
NA(S) �0.45 �0.52(+2) 0.13 0.59(+11) �0.17 . . .
TA(N) �0.27 . . . 0.32 . . . 0.01 �0.53(+10)
TA(S) �0.03 . . . �0.14 0.56(+11) �0.27 . . .
SA(N) �0.52 �0.62(+1) 0.05 . . . �0.30 �0.53(+1)
SA(S) �0.34 . . . 0.27 . . . �0.04 . . .
SO(N) �0.00 . . . �0.59 �0.55(+1) �0.09 �0.62(+12)
SO(S) 0.06 . . . 0.11 �0.61(+11) 0.03 . . .
TI(N) �0.06 �0.55(+4) 0.55 0.58(+2) 0.09 0.52(+6)
TI(S) 0.39 . . . 0.68 0.62(+1) 0.36 . . .
SI(N) 0.29 . . . 0.27 �0.52(+10) 0.19 0.57(+8)
SI(S) �0.37 . . . �0.18 �0.54(+10) �0.58 �0.65(+1)

aThe regions are organized for those in the Pacific, the Atlantic, and
others from the top. As is described in the text, the sample size is 14 in all
cases, representing the boreal winters of 1988 to 2001 for the winter
averaged CO2 flux anomalies. Columns 2, 4, and 6 show winter
correlations, while columns 3, 5, and 7 are lagged for correlations (for
definitions, see section 3.6). For winter correlations, those exceeding the
critical value of [0.52] for the 95% significance level are in boldface. For
lagged correlations, only those with the maximum or minimum correlations
exceeding the >95% significance level are shown with lag time in
parentheses. Three dots indicate that there is no significant lagged
correlation for a particular region.
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tion can be offered to account for the north-south asymme-
try in the correlation coefficients in this region.
[27] The areas with significant correlations are not limited

within the Pacific basin. We find a significant correlation
with time lag for the subarctic and temperate North Atlantic,
NO(S), NA(N) and NA(S), as well as in the temperate South
Atlantic, SA(N) (r = �0.62 with +1 month time lag). A total
of 5 areas out of 14 in the Atlantic, Indian and Southern
oceans have significant correlations with various lag times.
Of these five areas, only the subarctic Atlantic, NO(S), has
positive correlation and the remaining four areas in the
Atlantic and tropical Indian Ocean, TI(N), show negative
correlations. A general picture that emerges from this
analysis is that the CO2 fluxes over the global oceans tend
to decrease during the warm phase of ENSO.
[28] The above analysis based on the Nino1+2 index

provides only a partial picture of the relationship between
CO2 flux anomalies and ENSO, and other ENSO indices
may capture different aspects of CO2 flux-ENSO relation-
ships. In order to examine this possibility, we have
repeated the same correlation analysis using the Nino3.4
index that gives a stronger focus on the central tropical
Pacific. The results are largely consistent with those
based on the Nino1+2 index. Similarly, being aware of
sampling biases due to the extremeness of 1997/1998
El Niño, we have repeated the above analysis on the
basis of the non-parametric Spearman’s rank correlation
method. Despite some differences, the overall picture
remains unchanged.
3.6.2. North Atlantic Oscillation
[29] The NAO index represents variability in surface

westerly winds over the North Atlantic, which affect tem-
perature distributions and other climatic conditions over the
Euro-Atlantic sector and a large part of the Eurasian
continent. Our analysis is based on the NAO index defined

as the difference in normalized December–March mean
SLP between Lisbon and Stykkisholmur, Iceland [Hurrell,
1995]. The positive phase of the NAO is associated with
enhanced surface westerlies over the North Atlantic, a
deeper than average Icelandic low, and a weaker than
average Azores high. The NAO has its activities centered
in the Atlantic and is uncorrelated with ENSO on interan-
nual timescales. For example, the correlation between the
Nino1+2 and NAO indices over the study period is 0.06.
Hence the inclusion of the NAO index to our correlation
analysis would provide additional information on the rela-
tionships between regional CO2 flux anomalies and climate
variability. As seen in Table 3 (column 4), the winter mean
CO2 flux anomalies show negligible correlation with the
winter mean NAO index in the Pacific basin. In comparison,
the CO2 flux anomalies of the Northern Ocean areas, NO(N)
and NO(S), are correlated with the NAO index significantly
with r = 0.71 or better for the winter mean values. In fact,
the NAO accounts for about one half the interannual
variance of the estimated winter-averaged CO2 flux anoma-
lies of this region (r2 � 0.5). The positive polarity of the
NAO is associated with stronger storm activities and verti-
cal mixing in the North Atlantic sub-polar gyre region,
NO(S). They bring CO2-rich deeper waters to the surface,
thereby enhancing the mid-winter sea-to-air CO2 flux and
increasing the CO2 uptake flux in spring. Figure 6b shows
the variations of correlation coefficients with different lag
times for the North Atlantic. For NO(S), it shows positive
correlations (r = 0.51 to 0.65) consistently over the period of
January through March, which coincides with the months of
strong North Atlantic storm activities. This is followed by a
sharp reversal in April. A similar pattern is seen for NO(N)
and NA(N) though in different magnitudes. These sign
reversals appear to indicate the influence of spring blooms
in the sub-polar region. The above results are consistent

Figure 6. Lagged cross-correlations of the winter mean climate indices with monthly CO2 flux
anomalies: (a) for the Nino1+2 index over the extratropical Pacific region and (b) for the NAO index over
the North Atlantic region. Individual sub-regions are described in the legend. Lag starts from January and
ends in December. The 95% and 99% significance levels are indicated by broken and solid lines,
respectively. See color version of this figure at back of this issue.
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with the observations that CO2 flux anomalies in sub-polar
regions are largely controlled by two factors, winter up-
welling of sub-surface waters and plankton blooms in spring
[Takahashi et al., 2002].
[30] Another feature notable in Table 3 is significant

seasonal correlations for the Southern Ocean, SO(N), and
the tropical Indian Ocean, TI(S) and TI(N). Studies based
on climate model simulations suggest that part of the recent
NAO trend toward its positive polarity is attributed to warm
conditions in the tropical Indian Ocean [Hoerling et al.,
2001; Hurrell et al., 2004]. Their results may imply a
climate connection between the North Atlantic and the
Indian Ocean. However, the timescale of their analyses is
longer compared to monthly or interannual timescales
considered in this study. Thus the question of the sources
of significant seasonal and monthly lagged correlations for
the Indian Ocean remains open.
3.6.3. Pacific Decadal Oscillation
[31] The PDO is defined as the leading principal com-

ponent of North Pacific monthly SST anomalies (poleward
of 20�N) [Mantua et al., 1997]. It represents basin-scale
decadal climate variability that highlights a SST dipole
pattern between the central North Pacific and the northern
coastal region off the North American continent. A
regression analysis of sea level pressure on the PDO
index shows that it is strongly related to anomalous
atmospheric circulation associated with the variation in
the Aleutian low. The PDO appears to covary with ENSO
on interannual timescales: the correlation coefficient of the
Nino1+2 and PDO indices is 0.45 (90% significant level).
Thus, for our short analysis period of 14 years, we regard
the PDO as representing interannual variability in SST, in
particular the part associated with the above SST dipole,
which is closely related to ENSO through the Aleutian
low variability.
[32] The mean winter PDO index for the northern North

Pacific area, NP(N), shows a significant negative correlation
with r = �0.54 (Column 6 Table 3). The positive phase of
the PDO is associated with negative SST anomalies and
more vigorous winter mixing over the central North Pacific.
In addition, during the positive phase of the PDO, wind
directions off Canada tend to be northward thus suppressing
the upwelling of high CO2 waters from depth [Mantua et
al., 1997]. The negative seasonal correlation seems to
indicate, on seasonal timescales, the importance of coastal
upwelling among all processes. A significant negative
lagged correlation in May (r = �0.66 with +5 months lag;
column 7) in this area further suggests the importance of the
delayed effects from enhanced productivity, whereas other
significant lagged correlations in the Pacific sector seem
attributable to co-variability with the ENSO cycle judging
from a comparison with the correlations with ENSO, for
example, SP(S).
[33] The southern South Indian Ocean, SI(S), shows

significant negative correlation (r = �0.58) between the
CO2 flux anomalies and the boreal winter mean index
(column 6). We also found some significant lagged corre-
lations (column 7) in the Indian sector, TI(N), SI(N) and
SI(S). Although the CO2 flux anomalies in the Indian Ocean
areas exhibit significant lagged correlation values for

Nino1+2, NAO and PDO, their climatological implications
are not clear.

4. Conclusions

[34] The net sea-air CO2 fluxes from 22 ocean regions
(and 42 land regions) have been estimated for the period
1988–2001 using a time-dependent inverse model and
atmospheric CO2 concentrations observed at 87 stations
around the globe. The case studies suggest that the derived
CO2 flux anomalies are robust against the changes in the
initial conditions (flux and data uncertainties) used in the
inverse model calculation.
[35] The long-term mean CO2 uptake over the globe is

estimated to be in the range of 1.05–1.40 Pg-C yr�1 for the
land and 1.58–2.02 Pg-C yr�1 for the ocean during 1990–
2000. These estimates are consistent with the results based
on the changes observed in the concentrations of atmo-
spheric CO2 and oxygen. Our results are also consistent
broadly with the time-space distribution of CO2 fluxes that
have been estimated on the basis of ocean time series
measurements. On the other hand, we found that the sea-
air CO2 flux values obtained by various investigators using
the inversion of atmospheric CO2 concentration data differ
significantly from one another. Such differences may be
attributed to the selection of observational data and region
partitioning in inverse models.
[36] The estimated CO2 flux anomalies are distinct from

region to region. A correlation analysis was conducted to
examine the relationships of CO2 flux anomalies with three
major climate modes, ENSO, the PDO, the NAO. Since
these climate modes manifest themselves prominently dur-
ing certain peak seasons, mean climate indices for the boreal
‘‘winter’’ months have been used to compute correlation
with the ‘‘winter’’ mean sea-air CO2 flux anomalies. In
addition, lagged correlations have been examined using the
monthly mean CO2 flux anomaly. Our regional sea-air CO2

flux values are correlated with climate indices at >95%
significant levels in many parts of the global oceans. The
sea-air CO2 flux anomalies correlate significantly with
the Nino1+2 index over the entire Pacific as well as over
the subarctic and temperate North Atlantic Ocean. The flux
anomalies over the north and tropical Atlantic correlate
significantly with the NAO index. The Indian and Southern
Ocean CO2 flux anomalies also correlate significantly with
the NAO index. The flux anomalies over the Pacific and
some areas of the Indian and Southern Oceans appear to
correlate with the PDO index. Possible oceanographic
significance of these correlations has been discussed.
[37] We recognize that the CO2 fluxes in some areas such

as the eastern tropical Pacific Ocean are poorly constrained
owing to the lack of atmospheric CO2 measurements. For
example, the sea-to-air CO2 flux values obtained in this
study for the southeastern tropical Pacific, EP(S), increase
during the 1997/1998 El Nino. This is contrary to the
oceanographic observations and is likely attributed to the
absence of the atmospheric observations. Accordingly,
some of the correlations found in this study may be artifacts,
although many of them appear to be robust. We believe that
our implementation of a 64-region inverse model has helped
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to improve our understanding of the effects of climate
variations on sea-air CO2 fluxes at regional to global spatial
scales.
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C. Rödenbeck (2003), A first estimate of present and preindustrial air-
sea CO2 flux patterns based on ocean interior carbon measurements and
models, Geophys. Res. Lett., 30(1), 1010, doi:10.1029/2002GL015594.

Gregg, W. W., and M. E. Conkright (2002), Decadal changes in global
ocean chlorophyll, Geophys. Res. Lett., 29(15), 1730, doi:10.1029/
2002GL014689.

Gruber, N., C. D. Keeling, and N. R. Bates (2002), Interannual variability in
the North Atlantic Ocean carbon sink, Science, 298, 2374–2378.

Gurney, K. R., R. M. Law, P. J. Rayner, and A. S. Denning (2000), Trans-
Com-3 experimental protocol, Pap. 707, Dep. of Atmos. Sci., Colo. State
Univ., Fort Collins.

Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, B. Pak, and the
TransCom-3 L2 modelers (2004), Transcom-3 Inversion Intercompari-
son: Control results for the estimation of seasonal carbon sources and
sinks, Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/
2003GB002111.

Hoerling, M. P., J. W. Hurrell, and T. Xu (2001), Tropical origins for recent
North Atlantic climate change, Science, 292, 90–92.

Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation
regional temperatures and precipitation, Science, 269, 676–679.

Hurrell, J. W., M. P. Hoerling, A. S. Phillips, and T. Xu (2004), Twentieth
century North Atlantic climate change: Part 1. Assessing determinism,
Clim. Dyn., 23, 371–389.

Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht (1995),
Interannual extremes in the rate of rise of atmospheric carbon dioxide
since 1980, Nature, 375, 666–670.

Keeling, C. D., et al. (2001), Exchanges of atmospheric CO2 and
d13CO2 with the terrestrial biosphere and oceans from 1978 to 2001:
I. Global aspects, Ref. Ser. 01-06, Scripps Inst. of Oceanogr., La Jolla,
Calif.

Keeling, C. D., H. Brix, and N. Gruber (2004), Seasonal and long-term
dynamics of the upper ocean carbon cycle at Station ALOHA near Ha-

waii, Global Biogeochem. Cycles, 18, GB4006, doi:10.1029/
2004GB002227.

Keeling, R. F., and H. E. Garcia (2002), The change in oceanic O2 inven-
tory associated with recent global warming, Proc. Natl. Acad. Sci., 99,
7848–7853.

Kistler, R., et al. (2001), The NCEP-NCAR 50-Year Reanalysis: Monthly
means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 82, 247–
268.
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Figure 1. The 22 ocean regions in the TDI model (42 land regions, similar to those of Patra et al.
[2005], are not shown here to avoid complexity) and the surface observation network (87 stations) used in
this study. The long-term mean fluxes (except the 1997–1998 period) are indicated by the color of each
region (see the color bar at the bottom of the figure). The negative and positive values indicate net uptake
and net release by the ocean, respectively. Names of 11 ocean regions in TransCom-3 are as follows: 1,
North Pacific (NP); 2, West Pacific (WP); 3, East Pacific (EP); 4, South Pacific (SP); 5, Northern Ocean
(NP); 6, North Atlantic (NA); 7, Tropical Atlantic (TA); 8, South Atlantic (SA); 9, Southern Ocean (SO);
10, Tropical Indian (TI); and 11, South Indian (SI). These regions are divided into north (N) and south (S)
parts in this work. Details of a priori and a posteriori flux uncertainties for the ocean regions are given in
Table 2, and a glimpse of CO2 concentrations and associated data uncertainties at each of the 87 stations
are available in Table S1 in the auxiliary material.
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Figure 2. CO2 flux anomalies as estimated by TDI calculation for total land and ocean from
atmospheric CO2 data, with varying network sizes as well as different a priori data and source
uncertainties. Flux anomaly is calculated by subtracting an average seasonal cycle for the period 1988–
2001 from the monthly-mean CO2 fluxes. The cases shown in Figures 2a and 2b are obtained by
(1) control run (thick black line), (2) ocean CS0 � 2, (3) all CS0 � 2, (4) CD0 � 2, and (5) all CS0 � 2 and
CD0 � 2. The cases shown in Figures 2c and 2d are obtained by (1) control run, and different CO2 data
networks, (2) Test-CR, (3) Test-PB, and (4) Test-PP. The a posteriori flux estimate uncertainties obtained
from control TDI model run are shown as the grey shading. The tick marks indicate January of the
corresponding years.
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Figure 3. Global ocean flux anomalies (deseasonalized) estimated by different groups using inverse
models, ocean models, and carbon isotope deconvolution techniques. The description of OGCM, CSIRO,
and SCRIPPS models can be found in details elsewhere [Le Quéré et al., 2003, and references therein].
The results from Rödenbeck et al. [2003] are due to an observation network of 19 stations, which is
selected to show the flux variability for the 1990s. The shaded curve indicates interannual variability in
ENSO index (Nino 1+2), defined as the sea-surface temperature change over (0–10�S, 90�W–80�W)
region in the Pacific Ocean (source: www.cpc.ncep.noaa.gov/data/indices).
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Figure 4. Variations in TDI flux anomalies from (a) Tropical Pacific, (b) North Atlantic, and (c) the
North Pacific regions are shown in comparison with previous estimations based on oceanic and
atmospheric observations. An average seasonal cycle is subtracted from the monthly mean TDI fluxes to
calculate the flux anomalies for each inverse model region. The 12-month running means are shown in
Figure 4b, while 24-month running means are taken for the rest to reduce the noise (high frequency
variability). The arrows in Figure 4a indicate the onset of El Niño events; while the one started in 1992
was prolonged and that during 1997/1998 was more pronounced. The actual emission rates at ALOHA
(supplied by John Dore) are converted to area integrated flux anomalies for the whole NP region (area
�50 � 1012 m2) (Figure 4c).
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Figure 5. Flux anomalies (green line: south part, blue line: north part, red line: aggregated to
TransCom-3 region size) are shown for selected ocean regions, where physical changes are observed by
the known decadal climate variability, and the flux uncertainty reductions are greater than 20% (except
two NO regions, which have low prior uncertainties) by inversion. The flux anomalies are calculated by
subtracting the long-term mean seasonal cycle from monthly mean fluxes for each region. The related
climate oscillation indices are shown in the top part of each panel. Three-monthly running means are
taken for all the data. Note that CO2 flux data are treated differently for calculating the correlation
coefficients (see text). The following data sources are used for the climate indices: www.cpc.ncep.noaa.
gov for ENSO, www.cru.uea.ac.uk for NAO, and tao.atmos.washington.edu for PDO.
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Figure 6. Lagged cross-correlations of the winter mean climate indices with monthly CO2 flux
anomalies: (a) for the Nino1+2 index over the extratropical Pacific region and (b) for the NAO index over
the North Atlantic region. Individual sub-regions are described in the legend. Lag starts from January and
ends in December. The 95% and 99% significance levels are indicated by broken and solid lines,
respectively.

GB4013 PATRA ET AL.: OCEAN CO2 FLUXES AND CLIMATE VARIABILITY GB4013

11 of 13


