Auxiliary Material for Paper 2009PA001879 Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years Gema Martínez-Méndez Universitat Autònoma de Barcelona, Institut de Ciencia i Tecnologia Ambientals, Bellaterra, Spain. Now at Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany Rainer Zahn Universitat Autònoma de Barcelona, Institut de Ciencia i Tecnologia Ambientals, Bellaterra, Spain Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. Departament de Geologia, Universitat Autònoma de Barcelona, Bellaterra, Spain Ian R. Hall School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK Frank J. C. Peeters Faculty of Earth and Life Sciences, Section Marine Biogeology, VU University Amsterdam, Amsterdam, Netherlands Leopoldo D. Pena Lamont-Doherty Earth Observatory, Palisades, New York, USA Isabel Cacho GRC Geociències Marines, Departament d'Estratigrafia, Paleontologia i Geociències Marines, Universitat de Barcelona, Barcelona, Spain. César Negre Institut de Ciencia i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Bellaterra, Spain. Martínez-Méndez, G., R. Zahn, I. R. Hall, F. J.C. Peeters, L. D. Pena, I. Cacho, and C. Negre (2010), Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years, Paleoceanography, 25, PA4227, doi:10.1029/2009PA001879. This auxiliary material contains two word files. 1. Text S1 (2009pa001879-txts01.doc): Age model for MD02-2594 and Splicing of MD96-2080 and MD02-2594 into singular records, Agulhas Bank Splice (ABS) This supplement provides information about the age model of core MD02-2594 and about the splicing procedure between MD02-2594 and MD96-2080 to obtain a single record named Agulhas Bank Splice (ABS). It contains two figures and two tables:

Figure S1. Age-depth function from MD02-2594 14C AMS dates. Conventional ages are shown in grey, calibrated ages in black.

Table S1. Globorotalia inflata 14C AMS ages and calibrated calendar year ages for core MD02-2594.

Table S2. Tie points for establishing the age model of MD02-2594.

Fig. S2. Data profiles for MD96-2080 and MD02-2594. MD02-2594 records are shown in pink. a) Benthic d180 (F. wuellerstorfi) (% VPDB), MD96-2080 in brown, CBR in blue; b) Benthic d13C (F. wuellerstorfi), MD96-2080 (cyan) (% VPDB); c) Planktonic d180 (G. bulloides), MD96-2080 in red (% VPDB); d) Planktonic d13C (G. bulloides), MD96-2080 in green (% VPDB); e) MD96-2080 (violet) and MD02-2594 G. bulloides Mg/Ca-derived SST (°C); f) MD96-2080 (navy) and MD02-2594 (micras). Top bar displays Marine Isotope Stages. Vertical shading highlights interglacials.

2. Text S2 (2009pa001879-txts02.doc): d180 records of sediment cores used in the SST comparisons between different core sites in the Indian Ocean (Fig. 5 of main text)

This supplement shows a figure with d180 records of the sediment cores used for comparison of SST in Figure 5 of the main text for inspection of age modelling.

Figure S3. d180 records of sediment cores whose SST records are shown in Figure 5 of main text. a) MIS 1-3, b) MIS 5e-6. Foraminiferal species used for isotope analysis are indicated with the core names. Core sites are ABS, this study; CBR, Atlantic sector of Agulhas Corridor [Peeters et al., 2004]; MD96-2077, Indian sector of Agulhas corridor [Bard and Rickaby, 2009]; WIND28K, western tropical Indian Ocean [Kiefer et al., 2006]; MD98-2165, south Indonesian archipelago, MD79-257, Mozambique Channel [Levi et al., 2007]; MD98-2162, Indonesian Through Flow [Visser et al., 2003]. d180 profiles are shown on their published age scales.

Text S1: Age model for MD02-2594 and Splicing of MD96-2080 and MD02-2594 into singular records, Agulhas Bank Splice (ABS)

This section provides the radiocarbon data (Table S1), age-depth function (Figure S1) and correlation tie points between MD02-2594 and MD97-2120 (Table S2) that were used to construct the age model for MD02-2594.

For details about the radiocarbon dates and age-depth function of MD96-2080 we refer the reader to *Martínez-Méndez et al.* [2008].

Fig. S1. Age-depth function from MD02-2594 ¹⁴C AMS dates. Conventional ages are shown in grey, calibrated ages in black.

Publication Code NOSAMS	Sample Identifier MD02-2594 (cm) <i>G. inflata</i>	Fraction Modern (Fm ± 1σ)	Conventional Radiocarbon Age (years BP ± 1σ)	Sample weight (mg)	$\delta^{13}C_{PDB}$ (%• ± 0.1)	Calibrated ¹⁴ C (calendar years ± σ)	Calibration Tool
OS-65271	MD02-2594 50-51	0.6598 ± 0.0026	$3,340 \pm 30$	5.54	0.82	$2,815 \pm 57$	[Fairbanks et al., 2007]
OS-65110	MD02-2594 110-111	0.4316 ± 0.0022	$6,750\pm40$	3.81	0.75	$7,014 \pm 97$	[Fairbanks et al., 2007]
OS-64823	MD02-2594 155-156	0.3243 ± 0.0015	$9,050\pm35$	3.97	0.69	$9,460\pm49$	[Fairbanks et al., 2007]
OS-64964	MD02-2594 165-166	0.3073 ± 0.0029	$9,480\pm75$	3.32	0.64	$9,966 \pm 185$	[Fairbanks et al., 2007]
OS-65269	MD02-2594 210-211	0.2442 ± 0.0019	$11, 300 \pm 65$	4.80	0.62	$12,626 \pm 75$	[Fairbanks et al., 2007]
OS-65111	MD02-2594 245-246	0.1711 ± 0.0018	$14,200\pm85$	4.09	0.39	$15,813 \pm 157$	[Fairbanks et al., 2007]
OS-64824	MD02-2594 255-256	0.1541 ± 0.001	$15,000 \pm 50$	4.11	0.62	16935 ± 154	[Fairbanks et al., 2007]
OS-65113	MD02-2594 295-296	0.1324 ± 0.0001	$16,250\pm60$	4.22	0.64	$18,833 \pm 93$	[Fairbanks et al., 2007]
OS-65274	MD02-2594 345-346	0.0393 ± 0.0007	$26,000 \pm 140$	5.40	0.68	$30,559 \pm 203$	[Fairbanks et al., 2007]
OS-64965	MD02-2594 405-406	0.0162 ± 0.0004	$33,100 \pm 190$	3.65	0.70	$37,881 \pm 249$	[Fairbanks et al., 2007]
OS-65112	MD02-2594 465-466	0.0062 ± 0.0003	$40,800\pm 370$	4.16	0.71	$44,887 \pm 382$	[Fairbanks et al., 2007]
Notes: 1) Fraction Modern (F) normalized to $\overline{\mathbf{\delta}}^{13}$ CvPDB19 ⁽⁵⁾ sample Fm to a $\overline{\mathbf{\delta}}$ 13CVPDB v, as the half-life of radiocarbon the sample is further corrected that collection and measureme	m) is a measurement of the devi % [Olsson, 1970]. AMS results alue of -25 % 2) Reporting of a and are reported without reserv (to account for the decay betwee and date are the same.	ation of the ¹⁴ C/C ratio of a are calculated using the int tges and/or activities follov oir corrections or calibratio en collection (or death) and	sample from "modem." M ernationally accepted modes the convention outlined I to calendar years. A Δ^{14} C the time of 10/6/2005 mea	(odern is defined as em value of 1.176∃ by Stuiver and Pola 2 activity normalize surement if a colle	95% of the radic -0.010 x 10-12 [<i>I</i> tch [1977] and St cd to 1950 is also ction date is spec	carbon concentration (in AD 1 <i>karlen et al.</i> , 1968] and a final uiver [1980]. Radiocarbon ages reported according to these coi ified on the submittal form, oth	950) of NBS Oxalic AcidI 13 Concetion is made to normalize the s are calculated using 5,568 (yrs) nventions. The activity, or Δ^{14} C of nerwise Δ^{14} C is reported assuming

Table S1. Globorotalia inflata ¹⁴C AMS ages and calibrated calendar year ages for core MD02-2594.

Core depth			
(cm)	Age (a BP)	Age control point	¹⁴ C calibration and references
50.5	2,815	¹⁴ CAMS	[Fairbanks et al., 2007]
110.5	7,014	¹⁴ CAMS	[Fairbanks et al., 2007]
155.5	9,460	¹⁴ CAMS	[Fairbanks et al., 2007]
165.5	9,966	¹⁴ CAMS	[Fairbanks et al., 2007]
210.5	12,626	¹⁴ CAMS	[Fairbanks et al., 2007]
245.5	15,813	¹⁴ CAMS	[Fairbanks et al., 2007]
255.5	16,935	¹⁴ CAMS	[Fairbanks et al., 2007]
295.5	18,833	¹⁴ CAMS	[Fairbanks et al., 2007]
345.5	30,559	¹⁴ CAMS	[Fairbanks et al., 2007]
405.5	37,881	¹⁴ CAMS	[Fairbanks et al., 2007]
465.5	44,887	¹⁴ CAMS	[Fairbanks et al., 2007]
545.5	55,074	$\delta^{18}O_{\text{benthicc}}$ tuned to MD97-2120	[Pahnke et al., 2003; Pahnke and Zahn, 2005]
669.5	74,479	$\delta^{18}O_{benthic}$ tuned to MD97-2120	[Pahnke et al., 2003; Pahnke and Zahn, 2005]

Table S2. Tie points for establishing the age model of MD02-2594.

For the youngest part of MD02-2594, i.e. sediment samples above 50.5 cm (our first radiocarbon age), we have assigned ages by extrapolation. To do so, we have assumed an age of 0 for the sample at 1 cm core depth (sample interval 0-2 cm) and computed the equation of the straight line between that present age and our first ¹⁴C calendar age at 2,815 yr (50.5 cm sample depth, Fig. S1). We have used this equation to compute all ages younger than 2,815 yr. Age for samples between control points are calculated by linear interpolation.

In order to fill the gap in MD96-2080 and to construct the continuous ABS records we determined the best fit with MD02-2594 by comparing the benthic [*Martínez-Méndez et al.*, 2008; *Martínez-Méndez et al.*, 2009] δ^{18} O and δ^{13} C and planktonic records, the planktonic Mg/Ca records and the \overline{SS} [*Martínez-Méndez et al.*, 2008, *Negre et al.*, in press] of both cores with each other (see Fig. S2). Data records from the nearby Cape Basin Record (CBR) [*Peeters et al.*, 2004] were used as further reference (Fig. S2). The MD96-2080 and MD02-2594 δ^{18} O and Mg/Ca records match well at 80 ka while planktonic and benthic δ^{13} C of both cores are offset in this section. This potentially indicates that some of the MD96-2080 sediment section that we initially ascribed to MIS 5a may actually be from MIS 3, in which case multiple

hiatuses would exist in this core. Hence to construct the spliced ABS record we use the MD02-2594 records back to MIS 5a and then splice in MD96-2080 at 87 ka.

Fig. S2. Data profiles for MD96-2080 and MD02-2594. MD02-2594 records are shown in pink. a) Benthic δ^{18} O (*F. wuellerstorfi*) (‰ VPDB), MD96-2080 in brown, CBR in blue; b) Benthic δ^{13} C (*F. wuellerstorfi*), MD96-2080 (cyan) (‰ VPDB); c) Planktonic δ^{18} O (*G. bulloides*), MD96-2080 in red (‰ VPDB); d) Planktonic δ^{13} C (*G. bulloides*), MD96-2080 (in green (‰ VPDB); e) MD96-2080 (violet) and MD02-2594 *G. bulloides* Mg/Ca-derived SST (°C); f) MD96-2080 (navy) and MD02-2594 \overline{SS} (µm). Top bar displays Marine Isotope Stages. Vertical shading highlights interglacials.

We observe that MIS 2 data of all MD96-2080 records is closer to Holocene values than that of MD02-2594. We suspect that disturbance in the upper meter of MD96-2080 produced mixing of sediments of Holocene and MIS 2 age erasing the full glacial signatures. Also note that most of the Holocene is lost in MD96-2080 due to flow out during core recovering. The Mg/Ca-derived SST of both cores in the upper part disagrees in which MD96-2080 Mg/Ca-derived SST reaches 20°C while the estimations from MD02-2594 hardly reach 18°C. Furthermore, we have suggested that mixing of sediments of Holocene and MIS 2 age erases the full glacial-interglacial amplitude in MD96-2080; hence, the Mg/Ca-derived SST on MD96-2080 may have been even higher. Although we do not have a satisfactory explanation for this discrepancy, we note that the region around South Africa displays high SST gradients due to the interaction of waters from the South Atlantic Subtropical Gyre, Sub-Antarctic domain and the inflow of the Agulhas Current (see Fig. 1). It may be possible that the slightly northward and westward position of MD02-2594 leaves this core with a slightly lower influence of the Agulhas Current than MD96-2080 undergoes. Indeed, the few Mg/Ca data available for the Holocene of MD96-2080 suggests an increasing trend in SST along the past 345 ka on MD96-2080.

References

Fairbanks, R. G. et al. (2007), Radiocarbon Age to Calendar Age Conversion. Http://Radiocarbon.Ldeo.Columbia.Edu/Research/Radcarbcal.Htm, edited.

Olsson, I. U. (1970), The Use of Oxalic Acid as a Standard, in *Radiocarbon Variations and Absolute Chronology, Nobel Symposium, 12th Proc.*, edited by I. U. Olsson, p. 17, John Wiley & Sons, New York.

Karlen, I., I. U. Olsson, P. Kallburg, and S. Kilici (1968), Absolute Determination of the Activity of Two ¹⁴C Dating Standards, *Arkiv Geofysik*, *4*, 465-471.

Martínez-Méndez, G., E. G. Molyneux, R. Zahn, and I. R. Hall (2009), Variation in the Glacial to Interglacial Water Column Structure of the Southern Ocean, *Quat. Sci. Rev.*, 28, 3379–3387.

Martínez-Méndez, G., R. Zahn, I. R. Hall, L. D. Pena, and I. Cacho (2008), 345,000-Year-Long Multi-Proxy Records Off South Africa Document Variable Contributions of Northern Versus Southern Component Water to the Deep South Atlantic, *Earth Planet. Sci. Lett.*, 267, 309-321.

Negre, C., R. Zahn, A.L. Thomas, P. Masqué, G.M. Henderson, G. Martínez-Méndez, I.R. Hall, J.L. Mas (in press), Reversed Atlantic Deep Water Flow During the Last Glacial Maximum, Nature.

Pahnke, K., and R. Zahn (2005), Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability, *Science*, 307, 1,741-741,746.

Pahnke, K., R. Zahn, H. Elderfield, and M. Schulz (2003), 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation, *Science*, 301, 948-952.

Peeters, F. J. C., R. Acheson, G.-J. A. Brummer, W. P. M. de Ruijter, R. Schneider, G. Ganssen, M. E. Ufkes, and D. Kroon (2004), Vigorous Exchange between the Indian and Atlantic Oceans at the End of the Past Five Glacial Periods, *Nature*, 438, 661-665.

Stuiver, M. (1980), Workshop on ¹⁴c Data Reporting, *Radiocarbon*, 22, 964-966. Stuiver, M., and H. A. Polach (1977), Discussion Reporting of 14c Data, *Radiocarbon*, 19, 355-365.

Fig. S3. δ^{18} O records of sediment cores whose SST records are shown in Figure 5 of main text. a) MIS 1-3, b) MIS 5e-6. Foraminiferal species used for isotope analysis are indicated with the core names. Core sites are ABS, this study; CBR, Atlantic sector of Agulhas Corridor [*Peeters et al.*, 2004]; MD96-2077, Indian sector of Agulhas corridor [*Bard and Rickaby*, 2009]; WIND28K, western tropical Indian Ocean [*Kiefer et al.*, 2006]; MD98-2165, south Indonesian archipelago, MD79-257, Mozambique Channel [*Levi et al.*, 2007]; MD98-2162, Indonesian Through Flow [*Visser et al.*, 2003]. δ^{18} O profiles are shown on their published age scales.

References

Bard, E., and R. Rickaby (2009), Migration of the Subtropical Front as a Modulator of Glacial Climate, *Nature*, 460, 380-383.

Fairbanks, R. G. et al. (2007), Radiocarbon Age to Calendar Age Conversion.

Http://Radiocarbon.Ldeo.Columbia.Edu/Research/Radcarbcal.Htm, edited.

Karlen, I., I. U. Olsson, P. Kallburg, and S. Kilici (1968), Absolute Determination of the Activity of Two ¹⁴c Dating Standards, *Arkiv Geofysik*, *4*, 465-471.

Kiefer, T., I. N. McCave, and H. Elderfield (2006), Antarctic Control on Tropical Indian Ocean Sea Surface Temperature and Hydrography, *Geophysical Research Letters*, DOI: 10.1029/2006GL027097.

Levi, C. et al. (2007), Low-Latitude Hydrological Cycle and Rapid Climate Changes During the Last Deglaciation, *Geochem. Geophys. Geosyst*, 8, doi:10.1029/2006GC001514.

Martínez-Méndez, G., R. Zahn, I. R. Hall, L. D. Pena, and I. Cacho (2008), 345,000-Year-Long Multi-Proxy Records Off South Africa Document Variable Contributions of Northern Versus Southern Component Water to the Deep South Atlantic, *Earth Planet. Sci. Lett.*, 267, 309-321.

Olsson, I. U. (1970), The Use of Oxalic Acid as a Standard, in *Radiocarbon Variations and Absolute Chronology, Nobel Symposium, 12th Proc.*, edited by I. U. Olsson, p. 17, John Wiley & Sons, New York.

Pahnke, K., and R. Zahn (2005), Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability, *Science*, *307*, 1,741-741,746.

Pahnke, K., R. Zahn, H. Elderfield, and M. Schulz (2003), 340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation, *Science*, *301*, 948-952.

Peeters, F. J. C., R. Acheson, G.-J. A. Brummer, W. P. M. de Ruijter, R. Schneider, G. Ganssen, M. E. Ufkes, and D. Kroon (2004), Vigorous Exchange between the Indian and Atlantic Oceans at the End of the Past Five Glacial Periods, *Nature*, 438, 661-665.

Stuiver, M. (1980), Workshop on ¹⁴c Data Reporting, *Radiocarbon*, 22, 964-966.

Stuiver, M., and H. A. Polach (1977), Discussion Reporting of 14c Data, Radiocarbon, 19, 355-365.

Visser, K., R. Thunell, and L. Stott (2003), Magnitude and Timing of Temperature Change in the Indo-Pacific Warm Pool During Deglaciation, *Nature*, 421, 152-155.