Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model

Type Article
Date 2005-01
Language English
Author(s) Pasquer B1, Laruelle G1, 2, Becquevort S1, Schoemann V1, Goosse H3, Lancelot C1
Affiliation(s) 1 : Free Univ Brussels, Ecol Syst Aquat, B-1050 Brussels, Belgium.
2 : Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands.
3 : Univ Catholique Louvain, Inst Astron & Geophys Georges Lemaitre, B-1348 Louvain, Belgium.
Source Journal Of Sea Research (1385-1101) (Elsevier Science Bv), 2005-01 , Vol. 53 , N. 1-2 , P. 93-108
DOI 10.1016/j.seares.2004.07.001
WOS© Times Cited 24
Keyword(s) ecological modelling, diatoms, pico/nanophytoplankton, coccolithophorids, Phaeocystis spp., iron, air-sea CO2 fluxes, global ocean, antarctic ocean, North Atlantic
Abstract We present results obtained with SWAMCO-4, a complex model of the marine planktonic system calculating C, N, P, Si, Fe cycling within the upper ocean, the export production and the exchange of CO2 between the ocean and atmosphere. The model, constrained by physical, chemical and biological (grazing, lysis) controls, explicitly details the dynamics of four relevant phytoplankton functional groups with respect to C, N, P, Si, Fe cycling and climate change. Those are diatoms, pico/nano phytoplankton, coccolithophorids, and Phaeocystis spp. whose growth regulation by light, temperature and nutrients has been obtained based on a comprehensive analysis of literature reviews on these taxonomic groups. The performance of SWAMCO-4 is first evaluated in a 1D physical frame throughout its cross application in provinces with contrasted key species dominance, export production, CO2 air-sea fluxes and where biogeochemical time-series data are available for model initialisation and comparison of results. These are: (i) the ice-free Southern Ocean Time Series station KERFIX (50degrees40S, 68degreesE) for the period 1993-1994 (diatom-dominated); (ii) the sea-ice associated Ross Sea domain (Station S; 76degreesS, 180degreesW) of the Antarctic Environment and Southern Ocean Process Study AESOPS in 1996-1997 (Phaeocystis-dominated); and (iii) the North Atlantic Bloom Experiment NABE (60degreesN, 20degreesW) in 1991 (coccolithophorids). We then explore and compare the ocean response to increased atmospheric CO2 by running SWAMCO-4 at the different locations over the last decade. Results show that at all tested latitudes the prescribed increase of atmospheric CO2 enhances the carbon uptake by the ocean. However, the amplitude of the predicted atmospheric CO2 sinks displays large regional and interannual variations due to the actual meteorological forcing that drives the local hydrodynamics. This is particularly true in the marginal ice zone of the Ross Sea (AESOPS) where the magnitude of the predicted annual CO2 sink is positively related to the length of the surface ocean ice-cover period which determines the iron surface concentration at the time of ice melting.
Full Text
File Pages Size Access
Publisher's official version 16 547 KB Open access
Top of the page