Transcriptomic Profiling of Gametogenesis in Triploid Pacific Oysters Crassostrea gigas: Towards an Understanding of Partial Sterility Associated with Triploidy

Type Article
Date 2014-11-06
Language English
Author(s) Dheilly Nolwenn M.1, 2, Jouaux Aude1, Boudry PierreORCID2, Favrel Pascal1, Lelong Christophe1
Affiliation(s) 1 : UPMC, IRD 207, UMR BOREA Biol ORganismes & Ecosyst Aquat, UNICAEN,MNHN,CNRS 7208, Caen, France.
2 : IFREMER, UMR LEMAR Lab Sci Environm MARin 6539, UBO CNRS IRD, Plouzane, France.
Source Plos One (1932-6203) (Public Library Science), 2014-11-06 , Vol. 9 , N. 11 , P. 1-9
DOI 10.1371/journal.pone.0112094
WOS© Times Cited 21
Note Supporting Information : Fil_S2 : Fil_S4 : Fil_S5 :
Abstract Background: Triploidy can occur in many animal species but is often lethal. Among invertebrates, amphibians and fishes, triploids are viable although often sterile or infertile. Most triploids of the Pacific oyster Crassostrea gigas are almost sterile (named "3n beta'') yet a low but significant proportion show an advanced gametogenesis (named "3n alpha''). These oysters thus constitute an interesting model to study the effect of triploidy on germ cell development. We used microarrays to compare the gonad transcriptomes of diploid 2n and the abovementioned triploid 3n beta and 3n alpha male and female oysters throughout gametogenesis. Results: All triploids displayed an upregulation of genes related to DNA repair and apoptosis and a downregulation of genes associated with cell division. The comparison of 3n alpha and 3n beta transcriptomes with 2n revealed the likely involvement of a cell cycle checkpoint during mitosis in the successful but delayed development of gonads in 3n alpha individuals. In contrast, a disruption of sex differentiation mechanisms may explain the sterility of 3n beta individuals with 3n beta females expressing male-specific genes and 3n beta males expressing female-specific genes. Conclusions: The disruption of sex differentiation and mitosis may be responsible for the impaired gametogenesis of triploid Pacific oysters. The function of the numerous candidate genes identified in our study should now be studied in detail in order to elucidate their role in sex determination, mitosis/meiosis control, pachytene cell cycle checkpoint, and the control of DNA repair/apoptosis.
Full Text
File Pages Size Access
Publisher's official version 9 534 KB Open access
Supporting Information_S1 3 205 KB Open access
Supporting Information_S3 4 701 KB Open access
Top of the page