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Recruitment variability is an important component of the dynamics of Iberian sardine (Sardine pilchardus). Since 2006, poor recruit-
ment has led to a decrease in stock biomass, the latest in a series of such crises for sardine fisheries. Understanding the mechanisms
behind recruitment fluctuations has been the objective of many previous studies, and various relationships between recruitment and
environmental variables have been proposed. However, such studies face several analytical challenges, including short time-series and
autocorrelated data. A new analysis of empirical relationships with environmental series is presented, using statistical methods
designed to cope with these issues, including dynamic factor analysis, generalized additive models, and mixed models.
Relationships are identified between recruitment and global (number of sunspots), regional (NAOAutumn), and local [winter wind
strength, sea surface temperature (SST), and upwelling] environmental variables. Separating these series into trend and noise compo-
nents permitted further investigation of the nature of the relationships. Whereas the other three environmental variables were related
to the trend in recruitment, SST was related to residual variation around the trend, providing stronger evidence for a causal link, pos-
sible mechanisms for which are discussed. After the removal of trend and cyclic components, residual variation in recruitment is also
weakly related to the previous year’s spawning-stock biomass.
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Introduction
The Iberian sardine (Sardina pilchardus) exemplifies the life strat-
egy of small pelagic fish around the world: short life, fast growth,
high fecundity, and long spawning season (Carrera and Porteiro,
2003; Stratoudakis et al., 2007, and references therein). As is true
for most marine fish (Cushing, 1996), recruitment of small
pelagic species is highly variable and does not relate clearly to
the abundance of the parental stock (measured as spawning-stock
biomass, SSB), because of (among other factors) high and variable
rates of mortality during the early life stages, which are thought to
be strongly affected by environmental processes. In species with
short lifespans, the small number of extant year classes in the
population leads to a high dependence of SSB on recruitment.

This, together with recruitment variability, presents great chal-
lenges to fishery managers because traditional approaches to man-
agement developed for fisheries on long-lived demersal species
may be inappropriate. As part of the implementation of an ecosys-
tem approach to fisheries management, European fishery scientists
are required to take account of environmental forcing in stock as-
sessment and forecasting (CE SEC, 2008), with the aim of achiev-
ing sustainable fisheries. Although sustainability has several
dimensions (e.g. environmental, economic, and social), in terms
of stock abundance, this means fisheries that would not collapse
or suffer wide fluctuations in catches. For short-lived species,
knowledge of recruitment dynamics and understanding of the
mechanisms through which recruitment is controlled by the
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environment become even more important in ensuring sustainable
and long-term exploitation (Rice, 2011).

Recognizing the need to incorporate environmental informa-
tion into fisheries management is one thing; finding ways of
doing so effectively is another. Marine ecosystem dynamics are no-
toriously complex, responding to physical processes at different
spatial and temporal scales (Mann and Lazier, 1996). Several hy-
potheses have been proposed describing mechanisms by which
the environment could be affecting recruitment or population
variability in fish. These range from ideas based on the properties
of the water column at short temporal scales (e.g. the stable ocean
hypothesis; Lasker, 1975), mesoscale features (e.g. the optimal en-
vironmental window, OEW, hypothesis; Cury and Roy, 1989), and
phenological processes (e.g. the match/mismatch hypothesis;
Cushing, 1990) to theories based on ocean-scale, long-term cli-
matic modes of variability (e.g. Chavez et al., 2003).

The Iberian sardine is considered to form a single stock distrib-
uted from the Strait of Gibraltar to the border between France
and Spain (ICES, 2010; Figure 1). Although some exchange with
other sardine populations outside the stock boundaries is likely,
there is currently no evidence that this substantially influences
stock dynamics (ICES, 2010). The Iberian stock has been assessed
annually since 1978 by ICES, using data on Portuguese and
Spanish fishery landings and the information obtained by
fishery-independent acoustic and daily egg production method
surveys.

The sardine fishery has been (and remains) economically im-
portant in Portugal, although it has decreased in importance in
Galicia (NW Spain) over the years. In both countries, most of
the catch is taken by purse-seiners, and landings show interannual
and seasonal patterns reflecting the availability of the fish to the
fleet. Periods of successive low recruitments in the past have led
to “crises” in the fishery, most recently at the end of the 1990s

(felt particularly in Galician waters), when the SSB reached a his-
torical low (Wyatt and Porteiro, 2002; Carrera and Porteiro, 2003).
Several studies have tried to identify possible mechanisms that
could explain the variability of recruitment success of Iberian
sardine and have explored the role of a series of environmental
variables at global (e.g. sunspots as a proxy for solar irradiance;
Guisande et al., 2004), regional (e.g. Atlantic Multidecadal
Oscillation, AMO, and North Atlantic Oscillation, NAO;
Guisande et al., 2001; Borges et al., 2003), and local scales [e.g.
sea surface temperature (SST), upwelling, wind strength; Roy
et al., 1995; Guisande et al., 2001; Santos et al., 2001; Borges
et al., 2003].

Many of these studies have proposed that the environmental
effects on recruitment success involve the modulation of the up-
welling episodes taking place in the area. The Atlantic Iberian
coast is characterized by a marked seasonality in oceanographic
processes. There is a summer peak in the intensity of upwelling
events responsible for the area’s elevated primary production
and high ecosystem productivity in general (Figueiras et al.,
2002), and autumn sees the development of the Iberian
Poleward Current (IPC), which flows north along the shelf
break, is characterized by high temperature and salinity, and per-
sists until spring (Pingree and Le Cann, 1990). That current gen-
erates frontal structures between coastal and offshore waters that
affect plankton distribution and composition (Fernández et al.,
1993) and may limit offshore advection of sardine larvae
(González-Quirós et al., 2004; Santos et al., 2004). Sardine eggs,
larvae, and juveniles could be vulnerable to high upwelling inten-
sity that can cause offshore advection and increase mortality
(Chesney and Alonso-Noval, 1989), but survival would also
depend on the availability of suitable prey that will concentrate
in waters enriched by mixing.

Sardine produce a large number of eggs (typically 50 000–
60 000 eggs per female, or 300–400 eggs g21; Muus and Nielsen,
1999; Zwolinski et al., 2001) over an extended spawning period.
Spawning takes place from September to May, with two main
peaks of activity, in winter (November–January; more important
along the Atlantic coast; Ré et al., 1990) and spring (March–May;
more important in the Cantabrian Sea; Solá et al., 1992), and re-
cruitment in a particular year integrates all this spatio-temporal
variability in reproductive output (Cabanas et al., 2007). This
life-history strategy offers obvious benefits for sardine survival
by ensuring that at least part of the new generation will encounter
favourable conditions but at the same time makes it more difficult
to choose the most suitable variables for the study of environmen-
tal forcing on recruitment. For example, over which periods and
geographic scales should one aggregate the environmental vari-
ables to arrive at a suitable index that captures the conditions in
which good recruitment takes place?

The nature of the data available presents several statistical chal-
lenges, not always successfully addressed in previous studies, e.g.
the short time-series, autocorrelated data, collinearity between pu-
tative explanatory variables, and the existence of non-linear rela-
tionships. We argue that this also justifies a re-evaluation of
previously proposed environmental relationships in the Iberian
sardine stock.

The aim of the present study was therefore to re-examine
the pool of global, regional, and local environmental variables
previously proposed as influencing sardine recruitment, using
statistical methods (e.g. dynamic factor analysis, DFA; general-
ized linear models, GLMs; generalized additive models, GAMs;

Figure 1. Map of the distribution area of the Iberian sardine stock.
Limits of the ICES Subdivisions covered by the stock (VIIIc and IXa)
are shown together with the main spawning locations (shaded
areas). The dots indicate the position of the local environmental
variables (SST, AT, wind strength, and the northerly and westerly
components of wind direction) used in this study.
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mixed modelling) designed to cope with the challenges pre-
sented by such data. Using these techniques, we make a new
selection of relevant environmental variables and test their rela-
tionships with sardine recruitment. To deal with the issue that
time-series showing simple trends may inevitably show empir-
ical relationships with one another, each other, whether causal
or coincidental, we decompose the recruitment and environmen-
tal time-series into their trend and residual components, with
the aim of identifying which components of the series
are related to each other. Owing to the uncertainties in the
timing of the potential impact of environmental variables on
the early life stages of sardine, we consider both contemporan-
eously measured environmental variables and those with a
1-year time-lag in relation to our recruitment series.

Material and methods
The Iberian sardine stock has been assessed by ICES since 1978.
Recruitment (R, i.e. abundance of fish aged 0) and SSB for the
whole stock are estimated annually using an age-structured
model (AMCI, http://www.ices.dk/datacentre/software.asp) and
were available up to 2009 (ICES, 2010), providing a time-series
of 32 years.

Several studies have explored possible relationships between
Iberian sardine recruitment and environmental variables at
global, regional, and local scales (see above), so we selected envir-
onmental variables identified in those earlier studies. We have,
however, avoided the use of smoothed series, e.g. based on
moving averages, because the separation of trend and noise com-
ponents is part of our subsequent analysis. Table 1 lists the

Table 1. Selected environmental variables, listing the periodicity with which data were available and their source and reference to how
they were calculated, for local indices.

Abbreviation Name Periodicity Source Observations

Global
avspots Average number of

sunspots
Monthly and

annual
http://solarscience.msfc.nasa.

gov/greenwch/spot_num.
txt

Regional
NAO North Atlantic

Oscillation
Annual http://www.cru.uea.ac.uk/cru/

data/nao.htm
Atmospheric sea level pressure anomaly: difference in the

normalized sea level pressure between Iceland and the
Azores

NAOWinter Winter NAO Quarterly http://www.cru.uea.ac.uk/
cru/data/nao.htm

Averaged over December–February

NAOSpring Spring NAO Quarterly http://www.cru.uea.ac.uk/
cru/data/nao.htm

Averaged over March–May

NAOSummer Summer NAO Quarterly http://www.cru.uea.ac.uk/
cru/data/nao.htm

Averaged over June–August

NAOAutumn Autumn NAO Quarterly http://www.cru.uea.ac.uk/
cru/data/nao.htm

Averaged over September– November

AMO Atlantic
Multidecadal
Oscillation

Annual http://www.esrl.noaa.gov/
psd/data/timeseries/
AMO/

Index of long-term SST in the North Atlantic Ocean

EA East Atlantic pattern Annual http://www.cpc.noaa.gov/
data/teledoc/ea.shtml

North –south dipole of anomaly centres spanning the
North Atlantic from east to west

Gulf Gulf index Annual http://web.pml.ac.uk/
gulfstream/data.htm

Index of the variability of the position of the Gulf Stream

Local
Iw_43_11 Upwelling index April –

September
Spanish Metereological

Institute
Average Ekman transport (m3 s21 km21) from April to

September calculated at 438N 118W (Lavı́n et al., 1991)
IPC Poleward current

index
October–

December
Spanish Metereological

Institute
Average Ekman transport from October to December of

previous year (Lavı́n et al., 1991)
SST Sea surface

temperature
Annual + 6

monthly
http://dss.ucar.edu/datasets/

ds540.1/
Annual and October–March and April–September

averages (8C) at four locations: 408N 108W, 428N 108W,
448N 88W, and 448N 68W

AT Air temperature Annual + 6
monthly

http://dss.ucar.edu/datasets/
ds540.1/

Annual and October–March and April–September
averages (8C) at four locations: 408N 108W, 428N 108W,
448N 88W, and 448N 68W

U Wind westerly
component

Annual + 6
monthly

http://dss.ucar.edu/datasets/
ds540.1/

Annual and October–March and April–September
averages (m s21) at four locations: 408N 108W, 428N
108W, 448N 88W, and 448N 68W

V Wind northerly
component

Annual + 6
monthly

http://dss.ucar.edu/datasets/
ds540.1/

Annual and October–March and April–September
averages (m s21) at four locations: 408N 108W, 428N
108W, 448N 88W, and 448N 68W

W Wind strength
(scalar
windspeed)

Annual + 6
monthly

http://dss.ucar.edu/datasets/
ds540.1/

Annual and October–March and April–September
averages (m s21) at four locations: 408N 108W, 428N
108W, 448N 88W, and 448N 68W
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environmental variables used, their periodicity, source, and details
of any calculations applied.

Data exploration
All dataseries were first explored for outliers, normality, homogen-
eity of variance, collinearity, etc., following the protocol proposed
by Zuur et al. (2010). Logarithmic transformation was applied to
the recruitment R series to obtain a better approximation to a
normal distribution.

Because of the large number of potential explanatory variables,
we first carried out DFA, a dimension-reduction technique specif-
ically designed for time-series (Zuur et al., 2003), to try to identify
common trends in the series of explanatory variables. First, for
some variables, we had several alternative series available.
Second, DFA was used to determine the presence of common
trends over time among the different environmental variables.
Where two different variables show similar trends, one would nor-
mally be dropped from subsequent models. As an example of the
first process, seasonal and annual dataseries for average number of
sunspots were available. We fitted models with 1, 2, and 3 common
trends. The lowest Akaike information criterion (AIC) was
obtained with one common trend, confirming the similarity of
the 12 monthly series. We therefore considered it justified to
choose the annual value as representative of the variable. This ap-
proach allowed for direct comparison with the results of previous
studies.

DFA was also used to extract a common trend from the pool of
finally selected environmental variables series (n ¼ 26) with time-
lags of 0 and 1 year relative to the R series. GAMs were then used to
explore if these trends were related to the R series (log-
transformed). Gaussian GAMs with an identity link were used,
with the maximum number of degrees of freedom restricted to 3
(k ¼ 4), to avoid overfitting.

Modelling approach
Time-series can be thought of as constituted by a trend, a cycle, an
autocorrelation (AC) component, and residual variation (the vari-
ation that remains in the series after trend, cycle, and the AC have
been removed). In the present work, this residual variation could
include, for example, environmental/fishery/stock effects and un-
explained noise. Given the relatively short series of R and SSB
available, although evidence for cyclical patterns in all series
using spectral analysis was sought, we did not attempt to remove
cyclical patterns from the series. For AC, we took the view that
in the response variables, AC could be “explained” by AC in the
explanatory variables. However, if AC persisted in model residuals,
mixed models were used in an attempt to control for it, using a
specified variance structure (normally AR1). Hence, the focus of
the analysis was the trend and noise components, following the ar-
gument that common trends could be coincidental, but that where
response and explanatory variables show similar variation around
trends, this is more likely to imply a causal link.

Trends, cycles, and autocorrelation
The existence of linear and simple polynomial trends in R and the
explanatory variables was explored using GLMs, with time (year)
as the explanatory variable. Models were fitted in which the highest
order term was a linear, quadratic, or cubic function of time. The
best model was chosen based on the lowest AIC. Spectral analysis
was carried out to determine the presence and length of cycles in

the detrended series of response and explanatory variables. Visual
comparison was used to identify any cycles of equal length.

Modelling R as a function of environmental variables
GAMs were used to explore the relationships between R (response
variable), SSB, and the suite of environmental explanatory vari-
ables (NAO, AMO, sunspots, etc.) for the same and previous
years (i.e. time-lags 0 and 1 year in relation to the R series).
Separate models were run for the values of environmental variables
for the same year and for the previous year to take account of pos-
sible environmental influences not only on the survival of eggs and
larvae, but also on the survival of juveniles. The rationale behind
the use of SSB for the previous year as a predictor of R is that
the effect of the abundance of the parental stock on recruitment
success is likely to be mediated by the intensity of spawning,
which occurs mainly in winter of the previous year. However,
for completeness, we also tested for an effect of SSB in the
current year, but this was never significant and is not discussed
further.

Gaussian GAMs with an identity link were used always, with
the maximum number of degrees of freedom restricted to 3
(k ¼ 4), to avoid overfitting. Forward selection was used and, at
each step, non-significant variables were dropped and one add-
itional variable added. Candidate models were compared accord-
ing to AIC values, and the model with the lowest AIC was selected
as the basis for the next round of models. If final models contained
non-significant terms, the consequence of removing these was
tested using an F-test; they were retained if they improved the
model fit significantly. Once final models were obtained, residuals
were checked for patterns and for AC. If AC was discovered in the
model residuals, mixed models (Zuur et al., 2009) with an autore-
gressive (AR) variance structure of time-lag 1 and the same fixed
components were used instead. For relatively short time-series,
more complex error structures are difficult or impossible to fit,
so AC at lags .1 may require an alternative approach (see below).

As running separate models for contemporaneous (lag 0) and
previous year’s (lag 1) environmental variables separately is a
somewhat artificial division, we also derived composite models
by amalgamating the two final models and using backward selec-
tion to prune the model back to the new “best” model.

Modelling relationships between R and the environment
for decomposed time-series
GLMs of the variable in question vs. time were used to decompose
R and environmental explanatory variables (of the latter, only
those remaining in final GAMs were used) into series of trend
and residual (noise) values. Where no trend was found, the origin-
al environmental series was used. GAMs were then used to relate
decomposed R and environmental series, including one environ-
mental variable per model. As each variable could be used in its
raw form, or as trend or noise components, this gives nine possible
models for each environmental variable (Table 2). Of these, eight
combinations are new, because GAMs of raw R vs. raw environ-
mental series would have been fitted previously. However, in prac-
tice, several of these combinations are redundant. For
environmental variables that showed no trend component and
were therefore not decomposed, there would be just three
models (two new ones). In addition, for environmental variables
with trend components, the trend vs. trend model is trivial (it
can always explain 100% of deviance in the recruitment trend),
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and if the trend in the environmental series is linear, both possible
trend vs. residual models will a priori show no relationships.

Alternative decomposition of the R series using AR
moving average
Where AC persisted in model residuals and mixed modelling failed
to remove it, we explored the alternative of first fitting an AR
moving average (ARMA) model to the R series, extracting trend
and noise components, then running further GAMs using these
components. All analyses were carried out using R (2.9.1) and
the statistical programmes Brodgar (Highland Statistics Ltd) and
Minitab (Minitab Inc.).

Results
Environmental effects on recruitment
Results from the GAMs for R (log-transformed) vs. the common
trend in the environmental variables extracted with the DFA
showed significant environmental effects on the R series. The
model with the single common trend on contemporaneous (lag
0) environmental variables explained 26.4% of the deviance in
the R series (p , 0.01). The model with the trend for the previous
year’s (lag 1) environmental data explained 37.2% of the deviance
(p , 0.01). The inclusion of SSB as an additional explanatory vari-
able did not improve either model.

Trends in the dataseries
Results from the GLM models for R (log-transformed) vs. year
show a strong, linear, decreasing trend over time (p , 0.001;
Figure 2). For higher order fits (quadratic, cubic), none of the
terms were significant and AIC values were higher. SSB did not
show a significant linear or quadratic trend, but all three terms
in the cubic relationship were significant (p , 0.01) and the
fitted trend captures the partial recovery of the stock after the
all-time low estimated value at the end of the 1990s (Figure 2).

Among the environmental explanatory variables, no significant
trends were found for upwelling or the NAOWinter or NAOSpring

series. Most of the remaining environmental variables showed sig-
nificant linear, quadratic, or cubic trends. The best fitting trends
are summarized in Table 3.

Cycles in the dataseries
The R series shows an apparent main cycle with a periodicity of
4 years and secondary cycles with 2- and 10-year periodicities.
For SSB, only a 10-year cycle is apparent from the spectral analysis
(Figure 3). As the length of the time-series is just 32 years, identi-
fication of decadal cycles should be treated with caution.

Of the environmental explanatory variables investigated
(Table 3), four of the NAO variables (annual, spring, summer,
and autumn) and EA showed 4-year cycles, as seen for

Figure 2. Fitted trends superimposed in the (a) recruitment
(log-transformed number of individuals) and (b) SSB (t) series for the
Iberian sardine stock.

Table 3. Characteristics of the stock and environmental variables
used in the analysis, showing the presence and type of linear and
simple polynomial trends (arrows indicating the main direction of
the trend), the presence and periodicity of cycles (years), and the
presence and time-lag of partial autocorrelation (PAC).

Variable Cycle Trend PAC

Ra 4 Linear � 1
SSB 10 Cubic d 1
Average number of sunspots 11 Linear � 1, 2, 3
NAO 4, 8 Linear � No AC
NAOWinter 2– 3, 8 None No AC
NAOSpring 4 None 6
NAOSummer 4, 6 Linear � No AC
NAOAutumn 4-5 Quadratic d No AC
AMO 9 Cubic b 1, 9
EA 4 Linear � 1, 2
Upwelling Unclear None 1, 2, 3
IPC 6 Linear � No AC
Wind strength at 408N108Wb 3 Linear � 1, 2, 3
SST at 408N 108Wb Unclear None 1
AT at 408N 108Wb Unclear Quadratic > 1
aLog-transformed.
bWinter (October–March) averages.

Table 2. Possible combinations of the raw and decomposed series.

Recruitment series Environmental series Comment

Raw Raw Fitted previously
Raw Trend 1
Raw Noise 1
Trend Raw
Trend Trend 1, 2
Trend Noise 1, 3
Noise Raw
Noise Trend 1, 3

1, null if no trend in environmental series; 2, trivial (100% of deviance will
be explained); 3, no relationship a priori if trends in both series are linear.
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recruitment. Annual NAO also showed an 8-year cycle, and
NAOSummer displayed an additional 6-year cycle. NAOWinter

showed cycles with periodicities of 2–3 and 8 years. The average
number of sunspots showed an 11-year cycle and AMO a 9-year
cycle. No clear cycles were apparent in the upwelling index or
SST and air temperature (AT) series.

Autocorrelation in the dataseries
Significant AC was present in both response series and the major-
ity of the explanatory series. For R and SSB, partial AC (PAC) was
significant only for a 1-year lag. For the environmental series, PAC
was significant for both 1-year and some longer time-lags
(Table 3). No significant AC was present in the series of NAO,

three of the seasonal NAO components (excluding NAOSpring),
or the index of the poleward current. The PAC for NAOSpring

was significant for a 6-year time-lag.

GAMs for recruitment series
As explained above, based on the assumption that R strength
should be a consequence of parent stock abundance and environ-
mental conditions, GAMs were fitted to the R series using the SSB
of the previous year (lag 1) and the environmental series for the
same and previous years (lags 0 and 1) as explanatory variables.
The previous year’s SSB had no significant effect on recruitment
(log-transformed), confirming the lack of a stock–recruitment
relationship.

When considering the environmental variables at lag 0, the final
model for R (log-transformed) included two local variables
(winter wind strength and winter SST at 408N 108W), both of
which showed negative linear effects, and the average number of
sunspots, which showed a positive linear effect (Figure 4a). In
models containing a single explanatory variable, these variables
explained 20.2, 35.3, and 25.2% of deviance, respectively.
Together in the same model, they explained 52.4% of deviance,
with SST being the most important (p , 0.01). Significant AC
was present in the residuals at lag 4. When using mixed models
(GAMMs) in an attempt to remove AC, it was not possible to fit
an ARMA (4, 0) variance structure to such a short series, and
(as expected) a simple AR1, i.e. ARMA (1, 0), variance structure
reduced, but did not remove, the AC in the model residuals.

The final model for R (log-transformed) vs. environmental
variables for the previous year (lag 1) included positive linear
effects of NAOAutumn and the average number of sunspots (posi-
tive linear effect; Figure 5a). Inclusion of the upwelling index
improved the overall fit (as demonstrated by results of an F-test
to compare models with and without this term), although its indi-
vidual effect was not significant. In models containing a single ex-
planatory variable, these variables explained 25.4, 21.5, and 26.7%
of deviance, respectively; together in the same model, they
explained 53.2% of deviance, with sunspots being the most im-
portant (p , 0.01). Model residuals showed no AC, and a mixed
model with an AR1 variance structure had a higher AIC than
the model with no variance structure.

Finally, a third approach was to use, in the same model, all the
environmental variables at lags 0 and 1 year from the previous two
final models and to generate a new best model by backward selec-
tion. The best model included positive linear effects of NAOAutumn

(lag 1), the average number of sunspots, and winter SST at 408N
108W (lag 0). The upwelling index (lag 0) also had an effect,
with the smoother indicating lower recruitment success at inter-
mediate levels.

GAMs for decomposed time-series
As described above, GLMs vs. time were used to decompose R and
explanatory variables (of the latter, only those remaining in final
GAMs were used) into series of trend and residual values.
Where no trend was found, the original environmental series
was used. GAMs were then fitted for R vs. individual environmen-
tal variables for all meaningful combinations of raw, trend, and re-
sidual (noise) series (see Table 2 for an explanation).

Results of the GAMs run with the decomposed variables for R
vs. environmental variables lagged at 0 and 1 year indicate that in
the first case, the components that have significant effects on R
were the linear trends of winter wind strength at 408N 108W,

Figure 3. Cycles in detrended (a) recruitment (log-transformed
number of individuals) and (b) SSB (t) series for the Iberian sardine
stock.
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and the average number of sunspots (deviance explained 39.2%,
p , 0.001 in both cases). The variation around the trend (residuals
or noise) in R is not significantly related to either trend or residual
components of winter wind strength at 408N 108W, or the average
number of sunspots, but it is significantly related to winter SST at
408N 108W (deviance explained 16.3%, p , 0.05).

Similar results were obtained for the effects of the different
components of the environmental variable time-series lagged by
1 year. Again, it is the linear trend of the average number of sun-
spots that is significantly related to R (deviance explained 39.2%,
p , 0.001). The same applies to the effect of NAOAutumn on R,
with the trend (this time a quadratic one) being the only compo-
nent significantly related to R (deviance explained 36.5%, p ,

0.001). The variation around the trend in R was not significantly
related to either trend or residual components of the average
number of sunspots or NAOAutumn.

Alternative decomposition using ARMA
The final model of R vs. environmental variables at lag 0 had AC at
lag 4 in the residuals, which could not be removed using a mixed
model. This suggests that the model had not captured the 4-year

cycle previously observed in R. We therefore attempted an alterna-
tive decomposition of the R series, fitting an ARMA (4, 0) model
to the series, and storing trends and residuals. Plots of the residuals
and fitted values are shown in Figure 6. This process successfully
removed AC. The “trend” component here captures both the pre-
viously identified trend and the 4-year cycle. We then tested these
components for relationships with (i) the previously selected
“best” explanatory variables, and (ii) the other explanatory vari-
ables available.

Running GAMs on the fitted values using the previously signifi-
cant environmental variables (winter wind strength and SST, and
the average number of sunspots), only wind strength showed a sig-
nificant effect (deviance 34.2%, p , 0.001). None of these three
variables were related to the residuals series. However, examining
the other explanatory variables available, SSB of the previous
year (lag 1) was significantly related to residual R (deviance
14.3%, p , 0.05).

Discussion
Understanding recruitment dynamics and the mechanisms re-
sponsible for its year-to-year variation has always been a target

Figure 4. Final GAMs of recruitment (log-transformed number of individuals) in relation to environmental variables (lag 0): (a) smoothers for
significant effects of wind strength (W40_10, in m s21) and SST (SST40_10, 8C) measured in winter at location 408N 108W and average annual
number of sunspots (avspots), and (b) autocorrelograms (AC and PAC) showing that significant AC (time-lag 4) is present in the residuals.
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for fisheries management. For small pelagic fish such as sardine,
devising effective management measures becomes more difficult
if a clear relationship between stock and recruitment cannot be
established, and reference limits such as Blim (defined as the SSB
below which recruitment is impaired or the stock dynamics
unknown) have to be approximated instead based on historical
stock data, e.g. setting Blim ¼ Bloss, the biomass corresponding to
the lowest observed SSB (ICES, 1997). However, the implicit as-
sumption of such an approach is that there is an underlying
stock–recruitment relationship that is being obscured by other
factors.

Since ICES began assessing the Iberian sardine stock in 1978,
both SSB and R have fluctuated widely, and the past decade has
seen both a relatively high peak (in 2006) and record lows. In
2000, SSB fell below the value estimated in 1978 for the first
time, and in 2011, it reached an all-time low (ICES, 2011). It
has been argued that Iberian sardine is particularly well adapted
to thrive in a wider environmental window than other small
pelagic fish species (e.g. anchovy; Borja et al., 2008), with a
broad temperature tolerance recorded (both in terms of habitat
and spawning distribution; Bernal et al., 2007), and a large
number of eggs produced over an extended period (Stratoudakis

et al., 2007). If environmental effects on early life stages (eggs,
larvae, and juveniles) are the main drivers behind recruitment
success, low population sizes could still produce strong recruit-
ments. In 2000, the lowest sardine SSB on record (since 1978) pro-
duced just such a recruitment (ICES, 2010). However, this does
not imply that the stock is in a healthy state. In the past decade,
not only has recruitment continued to follow a downward trend,
it has been more variable than recorded previously. The effect of
pulses of good recruitment (another good one followed in 2004)
on adult stock abundance appears to be of shorter duration now
than was the case in the 1980s and (to a certain extent) in the
1990s.

Improving understanding of the mechanisms underlying sardine
recruitment success (or lack thereof) has been the objective of
several previous studies. Proposed environmental drivers include
various global- to local-scale variables, integrated over the periods
identified as the most critical to ensure the survival of eggs and
larvae, by reducing the transport of eggs and larvae offshore.
Indirect effects, e.g. on growth and condition through variations in
food supply or water temperature, have been given less attention.
The results from these studies show that environmental effects, al-
though present, are often weak and in some cases contradictory. For

Figure 5. Final GAMs of recruitment (log-transformed number of individuals) in relation to environmental variables (lag 1): (a) smoothers for
significant effects of average annual number of sunspots (avspots), NAOAutumn (averaged over September–November), and the upwelling
index (lw_43_11, in m3s21 km21) measured at location 438N 118W, and (b) autocorrelograms (AC and PAC) showing no significant AC in the
residuals.
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example, upwelling intensity affects recruitment both positively and
negatively (Dickson et al., 1988; Santos et al., 2007). Unfortunately,
it is in the nature of short time-series that correlations tend to vary
according to the length of the series available, and great care is
needed to exclude coincidental relationships (Myers, 1998; Solow,
2002). Inconsistent results could also be attributable in part to the dif-
ferent analytical techniques used, e.g. whether non-linear relation-
ships or time-lagged effects have been considered or whether AC
has been controlled for. In the present study, there is no avoiding

the fact that one is dealing with short time-series (32 years), where un-
certainty in the recruitment estimates (arising from analytical assess-
ments based on declared catches and hence subject to error; Myers,
1998) is potentially an issue.

Here, we have been less concerned with choosing the most suit-
able measure of particular environmental characteristics (e.g. our
upwelling index could have been further subdivided into separate
monthly values, or we could have tried to obtain local variables at
different geographical scales or at time-lags of several months
instead of 1 year), and we have concentrated instead on finding
ways, within the empirical statistical modelling framework, to
reveal more about the nature of the relationships, so providing
some insight into mechanisms by which environmental variables
could affect recruitment variability. Our final GAMs explained
�50% of deviance in recruitment, with individual environmental
variables explaining between 20 and 35% of deviance. Although
these values are relatively high, the time-series are short and these
are goodness-of-fit measures, not measures of predictive power.
We have essentially erected hypotheses rather than formally tested
them.

Decomposing the time-series into their constituent compo-
nents (trends and noise) is helpful in that it reveals whether rela-
tionships arise from similar underlying trends or because the
environmental variables explain residual variation around the
trend. The former type of relationship carries more risk of being
spurious. For example, in our analysis, the number of sunspots
appeared to be one of the most important predictors of recruit-
ment variability at both time-lag 0 and time-lag 1. However, R
and sunspots share a linear trend, and there was no relationship
between residuals around the respective trends (unsurprising
given that sunspots show an 11-year cycle and recruitment
includes a cyclic component of 4-year periodicity). The same is
true of effects of wind strength (which show a 3-year cycle) and
NAOAutumn (which has a cycle of 4–5 years). Nevertheless, in all
three cases plausible mechanisms exist to link sardine recruitment
to the environmental variable, as described previously by Borges
et al. (2003) and Guisande et al. (2004), who also found significant
relationships between wind indices, winter NAO (January–
March), and sunspot cycle length and the averaged number of sun-
spots and sardine landings and recruitment.

The number of sunspots could be indirectly related to biologic-
al recruitment through a series of steps: more sunspots indicate
higher solar irradiance (Wilson and Hudson, 1991), increasing
the temperature of the stratosphere, affecting global wind patterns,
and in turn modifying wind patterns at regional scales. The NAO
controls the strength and direction of westerly winds and storm
tracks across the North Atlantic (Wallace and Gutzler, 1981).
Southerly and southwesterly winds dominate off the NW Iberian
coast from October to March (Relvas et al., 2007), helping to
develop the IPC, which is related in turn to the generation of con-
vergence zones over the shelf (Frouin et al., 1990) that can act as
retention areas for eggs, larvae, and their food (González-Quirós
et al., 2004; Santos et al., 2004). Increased winter wind intensity
could prolong and strengthen this current or could intensify the
number and intensity of upwelling events depending on the
wind component (e.g. northerly winds favour upwelling and are
the dominant winds during summer in the area). Strong upwelling
transports eggs and larvae offshore, but is simultaneously respon-
sible for the elevated primary productivity in the area (Figueiras
et al., 2002), potentially leading both to increased mortality and
better growth among the survivors.

Figure 6. ARMA decomposition of the recruitment series
(log-transformed) into (a) trend, and (b) noise (residuals)
components by fitting an ARMA (4,0) model. The autocorrelograms
for (c) AC and (d) PAC show that the residuals of this model are free
of AC.
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Compared with sunspots, NAO, and wind strength, SST is ar-
guably a better candidate for a causal role in determining recruit-
ment success, because it is the only variable in the final model that
explained residual variation around the trend in recruitment (and
individually, it explained a higher percentage of deviance). Winter
SST, i.e. from October of the previous year to March of the current
year, had a significant negative, linear effect on recruitment.
However, in a model based on the previous year’s environmental
conditions (time-lag 1 year), there was no effect of (the previous
year’s) winter SST. These results are consistent with some of the
hypothesized mechanisms for the effects of SST, but appear to
contradict others. First, temperature has a direct effect on many
physiological processes that may affect larval survival or adult re-
production. Higher winter temperatures may lead to reduced
spawning success: winter SST refers to a 6-month period that
includes one of the two important spawning peaks in the study
area (Stratoudakis et al., 2007), i.e. autumn–winter. Spawning ac-
tivity in sardine has previously been linked to SST, with an
optimum at 14–158C and avoidance below 12 or above 168C
(Stratoudakis et al., 2007). High summer temperatures persisting
into the autumn–winter spawning period may therefore have a
negative effect on total egg production of the stock. However,
this hypothesis does not address the dynamics of early life
stages, which are in theory responsible for much or even most of
the variability of recruitment (Bailey and Houde, 1989).
Therefore, higher SST could lead to increased larval growth rate,
better survival, and consequently stronger recruitment (the oppos-
ite of the trend observed).

Such hypotheses about direct mechanisms in any case are prob-
ably overly simplistic. SST is an emergent property of a system’s
oceanography, and as such reflects the dynamic balance between
a wide spectrum of different forcing factors (Cole and McGlade,
1998). On the West Iberian shelf from October to March, SST
will be determined largely by the interplay between the upwelling
of cold water, solar warming vs. atmospheric cooling of the surface
layers, and the intensity of the IPC. During the autumn–winter
period, characterized by low upwelling intensity and frequency
over the West Iberian shelf (Fraga, 1981), upwelling events
would be on the positive side of the upwelling–recruitment quad-
ratic function defined by the OEW hypothesis (Cury and Roy,
1989), so favouring sardine recruitment. The IPC is characterized
by warmer temperatures than the surrounding waters, and some
authors have argued that it may favour larval retention over the
shelf (González-Quirós et al., 2004; Santos et al., 2004).
Therefore, temperature, as a proxy of the presence and intensity
of the IPC, should be positively correlated with recruitment,
again the opposite of the pattern inferred from the model.

The role of the IPC in determining food availability for early life
stages of sardine is difficult to establish because, although the sub-
tropical origin of this water mass could be associated with the
prevalence of microbial assemblages (Fernández et al., 1991), its
role in the development of spring blooms and frontal structures
enhances heterogeneity in plankton composition, biomass, and
distribution (Bode et al., 2002). Analysis of the role of these pro-
cesses in determining SST, and the use of data at a higher temporal
resolution (instead of a 6-month average), could help to disentan-
gle the possible causal effect of winter SST on recruitment.

Further decomposition of the recruitment series using an
ARMA (4, 0) model allowed extraction of a trend component
that also captured the 4-year cycle, and with it all significant AC.
It is interesting that the SSB of the previous year was significantly

(but weakly) related to this residual series, indicating that indeed
there may be a stock–recruitment relationship of sorts for
Iberian sardine, though one that does not explain the main
trend and cyclic components of the series.

As with previous studies, one can hypothesize plausible
mechanisms to explain the observed empirical links, and there is
no doubt that further research on the mechanisms by which the
environment affects recruitment remains crucial to improving
the understanding of the processes. However, such studies, if suc-
cessful, may not provide a panacea: the environment in which fish
live is intrinsically multidimensional, and it may simply be wrong
to assume that a single process is the most important (Carrera and
Porteiro, 2003).

In short-lived species, annual recruitment can represent a sub-
stantial component of the stock and, as such, it is likely that envir-
onmental signals are detectable not only in stock abundance
trends, but also in sardine fishery landings, for which much
longer time-series are available. In principle, landings will be a
function of fishing effort and stock abundance. Therefore, we
can also expect to be able to detect environmental signals in land-
ings data (see Borges et al., 2003), especially if it is possible to
control for variation in fishing effort. A recent investigation of en-
vironmental relationships for Mediterranean sardine and anchovy
landings (Katara et al., 2011) indicates that such an approach may
be worthwhile. The availability of longer series offers the prospect
of both reducing the likelihood of finding coincidental relation-
ships and allowing division of the series into model-construction
and model-testing datasets.
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Ré, P., Cabral e Silva, R., Cunha, E., Farinha, A., Meneses, I., and
Moita, T. 1990. Sardine spawning off Portugal. Boletı́n del
Instituto Nacional de Investigación de Pescas, Lisboa, 15: 31–34.

Relvas, P., Barton, E. D., Dubert, J., Oliveira, P. B., Peliz, A., da Silva,
J. C. B., and Santos, A. M. P. 2007. Physical oceanography of the
western Iberia ecosystem: latest views and challenges. Progress in
Oceanography, 74: 149–173.

Rice, J. 2011. Managing fisheries well: delivering the promises of an
ecosystem approach. Fish and Fisheries, 12: 209–231.

Roy, C., Porteiro, C., and Cabanas, J. 1995. The optimal environmental
window hypothesis in the ICES Area: the example of the Iberian
sardine. ICES Cooperative Research Report, 206: 57–65.

Santos, A. M. P., Borges, M. F., and Groom, S. 2001. Sardine and horse
mackerel recruitment and upwelling off Portugal. ICES Journal of
Marine Science, 58: 589–596.

Santos, A. M. P., Chı́charo, A., Dos Santos, A., Miota, T., Oliveira,
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