
Geophysical Research Letters

Supporting Information for

How ocean waves rock the Earth: 

two mechanisms explain microseisms with periods 3 to 300 s

Fabrice Ardhuin1,2, Lucia Gualtieri3, Eleonore Stutzmann3

1Ifremer, Laboratoire d'Océanographie Spatiale, Brest, France.

2Laboratoire de Physique des Oceans, CNRS-Ifremer-UBO-IRD, Brest, France

3Institut de Physique du Globe, PRES Sorbonne Paris-Cité, Paris, France.

 

Contents of this file 

Text S1 
Figures S1 to S4

Additional Supporting Information (Files uploaded separately)

none

Introduction 

The text S1 gives more details and some corrections on the theory by 
Hasselmann (1963) as well as the pratical implementation.  The four figures 
illustrate various aspects related to the expected seismic sources on realistic 
bathymetric profiles. 
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Text S1.

Detailed theoretical aspects of the generation of seismic waves by ocean 
waves

We give here a few important details and corrections to the general theory laid out by 
Hasselmann [1963] , with a particular attention to its application for long ocean waves 
with periods larger than 30 s.  Both primary and secondary mechanisms enable the short 
surface gravity waves to generate much longer wavelengths, and thus much faster waves 
that can couple to seismic waves. The question we address is rather quantitative: how 
much seismic energy is radiated by each of these mechanism?

After giving the expression for transforming the wave-induced pressure into seismic 
ground displacement, which is common to both mechanisms, we detail the expressions of 
the long-wavelength pressure spectrum as a function of the usual ocean wave spectrum, 
beginning with the secondary mechanism because this is the most studied mechanism.  
This follows the plan of Hasselmann  [1963], with less mathematical detail for some 
parts, and a final expression in terms of ocean wave spectra, as given by usual numerical 
models.  

For both mechanisms the conversion of pressure in the ocean to seismic amplitudes uses 
the coupling coefficients that were first determined by Longuet-Higgins [1950, his figure 
2], and recomputed by Gualtieri et al. [2013] using normal modes. This follows exactly 
what has been done for the secondary mechanism by Kedar et al. [2008], Ardhuin et al. 
[2011], Stutzmann et al. [2012] and others.  In the case of the primary mechanism we 
apply the same formulation to the wave-induced pressure at the bottom because of the 
shallow water depth. Hence the oscillating bottom elevation is transformed into a flat 
bottom with a pressure at the sea surface. 

1) From  the wave-induced  pressure spectrum at large wavelengths to seismic 
waves
For both primary and secondary mechanisms, the source of seismic waves S is a function 
of the wave-induced pressure spectrum at seismic wavelengths. Since these wavelengths 
are much larger than those of surface gravity waves, we may practically estimate the 
pressure spectral density at near-zero wavenumber. For linear waves in a homogeneous 
ocean (i.e. constant depth and current velocity), this spectral density would be zero. Its 
non-zero value is due to either nonlinearity (secondary mechanism) or spatial non-
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homogeneity (primary mechanism). For a solid half space of density ρs and shear wave 
speed β, Longuet-Higgins [1950] and Hasselmann  [1963] give the local seismic source 
as a function of the seismic frequency fs  and of the wave-induced pressure spectral 
density near zero wavenumber Fp(kx≈0,ky≈0,fs),

S (fs) =  4π2 fs c2 Fp(kx≈0,ky≈0,fs)  /  ( β5 ρs
2)                                   (S1)

where c is a non-dimensional coefficient for microseismic generation  [Longuet-Higgins  
1950; Ardhuin and Herbers 2013], which is c=0.2 for β=2.2 km/s,  ρs = 2.6 kg/m3, ρw = 
1.0 kg/m3 , and T=200 s with a water depth of 2000 m. The following sections give the 
details on how to compute  Fp , based on the secondary mechanism considering Fp,2 (eq. 
S5) or based on the primary mechanism considering Fp,1 (eq. S22). 

The pressure spectrum in eq. (S1) corresponds to the wave-induced spectrum at the sea 
surface. However, in the case of the primary mechanism, the water depth at the source is 
small compared to the acoustic wavelength and the bottom pressure is equivalent to a 
surface pressure. 
This source S has S.I. units of m/Hz.  Here we integrate these sources along great circle 
paths for all azimuths ϕ, and all epicentral distances ∆,  taking into account the seismic 
attenuation and geometrical spreading [e.g.  eq. (4.36) in Ardhuin and Herbers 2013]. The 
integral over ∆ goes from zero to 2π, covering one full orbit around the Earth in each 
direction.  The power spectral density of the seismic displacement is

F δ ( f s )=∫
0

2 π

∫
0

2π

S ( Δ ,ϕ , f s )
exp (− 2π f s Δ RE /UQ )

(1 −b ) RE sin Δ
RE

2 sin Δd Δd ϕ ,                          (S2)

where b is the attenuation over one orbit around the Earth,  
b=exp (− 2 π f s 2 π RE/UQ ) , hence the factor 1/(1-b)= 1+b+b2+b3... corresponds to the 

incoherent sum of the energies of all the orbits. This incoherent sum for epicentric 
distances larger than one orbit is consistent with the coarse spectral resolution used in 
figure 2, in which the normal mode structure is not resolved. For spectra with frequency 
resolution finer than U/ (2π RE)  [e.g. Webb 2007], one could first perform a coherent 
sum over the orbits. Values of U and Q are discussed in the article and illustrated in 
figure S1. 

A simple estimation of the shape and order of magnitude of the expected microseismic 
response to the ocean wave forcing in any water depth is provided by assuming a uniform 
source distribution  S. In this case S  reduces to a function of the seismic frequency fs  
only.  Under these assumptions the frequency spectrum of ground vertical displacement 
Fδ  is uniform, and eq. (S2) writes,  
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F δ ( f s )=S ( f s )∫
0

2 π exp ( −2 π f s Δ RE /UQ )
(1− b ) RE sin Δ

RE
2 2 π sin Δd Δ=S U Q / f s (1 −b ) ,  

(S3)

where U is the group speed of the considered seismic mode, ∆ is the epicentric distance 
between the source and the seismic station, RE is the radius of the Earth and Q is the non-
dimensional seismic attenuation factor. 
Eq. (S3) is strictly valid for underwater measurements, within a region of homogeneous 
sea state. This was shown by Ardhuin et al. [2013] to apply for microseisms with periods 
of 3 s and less. For the general case of  a variable sea state, we expect this equality to 
hold only for time and spatial averages. Since the measurements discussed here are 
generally made on land, and the oceans only cover part of the Earth surface, eq. (S3) is 
only expected to provide a reasonable order of magnitude. This approach is consistent the 
analysis in Webb [2007].  In this context we may neglect the (1-b) factor, with b = 0.35 at 
3 mHz, decreasing rapidly towards higher frequencies, with b=0.01 at 7 mHz. 

Combining (S1) and (S3), for either the primary or secondary mechanism, we thus note 
that the seismic displacement power spectrum Fδ  is directly proportional to the wave-
induced pressure power spectrum Fp, and the  fs  term in (S1) cancels the  1/fs in (S3).  
This will be important for the asymptotic shapes of the seismic acceleration power 
spectrum for the primary and secondary mechanisms. 

2) How short ocean waves make long seismic waves: Secondary mechanism
The  seismic noise source given by the secondary mechanism is proportional to the 
square of the wave-induced orbital velocity at the sea surface [eq. 2.11 in ref Hasselmann 
1963]. As a result, any pair of wave trains with velocities given by u1cos(k1x-2πf1t) and 
u2cos(k2x-2πf2t) will yield a surface pressure pattern that contain the term 

 u1u2{cos[(k1+k2)x - 2π(f1+f2)t] +  cos[(k1-k2)x – 2π(f1-f2)t]}. 
(S4)

This nonlinear interaction of waves involves sum and difference interactions, which are 
given by the two parts of this interaction term.  

2.a) Why the difference interaction of ocean waves cannot produce seismic waves in a 
horizontally homogeneous environment.
It is well known that difference interactions, the second part of eq. (S4) with the 
frequency (f1-f2) can have very long periods. Recent publications by Uchiyama and 
McWilliams [2008] and Traer and Gerstoft [2014] have used that result to suggest this 
interaction could directly generate seismic noise in the hum frequency band. However, 
only sum interactions, the first part of eq. (S4) with (f1+f2), were considered for seismic 
wave generation theory.  The reason for neglecting difference interactions, is that they 
cannot produce fast traveling waves in a horizontally homogeneous environment. This 
was already mentioned by Hasselmann [1963], and discussed in Webb [2008].

Namely, the difference interactions cannot match the wavenumbers of seismic 
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components. This is clearly established by considering any pair of frequencies  f1 and f2  , 
with  f2  > f1 .  The speed C2= 2π(f2 -f1)/|k2 -k1| is fastest for k1 and k2 aligned and in the 
same direction. For a constant depth D, these frequencies fi are functions of the norms ki 
of ki given by the linear dispersion relation fi =h(ki) = g ki tanh(kiD)/(2π), where g is the 
acceleration of gravity. Applying the Taylor-Lagrange formula, there is a wavenumber k3 
such that 

[f2-f1]/(k2 -k1) = h'(k1) + (k2 -k1)h''(k3)/2. 
The group speed of ocean waves is 2π h'(k1), known to be slower than the ocean phase 
speed. Because h''(k) is strictly negative, then C2 is less than this ocean phase speed, itself 
much slower than the seismic waves. 
 
2.b) Surface and bottom pressure induced by sum interactions
Ocean wave properties are usually represented by a wave frequency-directional spectrum 
E(f,θ), where f is the wave frequency, and θ is the azimuth of ocean waves. Only the 
direction-integrated spectrum E(f ) is really well known, 

                                                                E ( f )=∫
0

2π

E ( f , θ ) dθ .   

Very few estimates [Ardhuin et al., 2012; Ardhuin et al. 2013] are available for the 
directional “overlap integral”, defined here using the convention of Webb [2008], which 
is twice the value used in Ardhuin and Herbers [2013],            

                                                   I ( f )=∫
0

2π

E ( f ,θ ) E ( f , θ+π )dθ / E2 ( f ) .                     

In deep water, the spectral density at kx =ky =0 of the equivalent second order pressure at 
the sea surface that generates seismo-acoustic noise is given by Hasselmann [1963] and 
Ardhuin and Herbers [2013], 

  F p ,2 ( k x=0, k y=0, f s )=( ρw g )
2 f E2 ( f ) I ( f )                            (S5)

where fs = 2f  is the seismic frequency, equal to twice the ocean wave frequency f, g is the 
acceleration of gravity and w is the water density. 

Finite depth effect in the secondary mechanism 
Because we are also dealing with very long waves that also modify directly the bottom 
pressure, we need to consider the effect of wave-induced bottom pressure together with 
the wave-induced pressure at the sea surface. That additional bottom pressure term was 
not considered in previous investigations on the hum by Webb [2007, 2008]. 
On the full model grid we compute the second order pressure spectrum at the sea surface 
and at near-zero seismic wavenumber ks . This is given by eq. (2.29) in Ardhuin and 
Herbers [2013]. Ardhuin and Herbers [2013] showed that considering the wave-induced 
pressure at the ocean bottom gives a reduction by a factor

  G (kD )=[ tanh (kD ) ]
2
[1+2 kD /sinh (2 kD ) ] ,  

(S6)  
where the ocean wavenumber k is related to the wave frequency f by the linear wave 
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dispersion relation 
 (2  f )2 = gk tanh(kD),                                                           

with D  the water depth.  For long periods and shallow water, kD << 1, and 
G(kD)  can be replaced by 2 tanh2(kD). In practice, this correction has no significant 
effect for seismic waves with periods around 5s, for which most of the sources are in 
deep enough water for the approximation G1 to be accurate as used by Stutzmann et al. 
[2012], but it changes the results for the hum by several orders of magnitude.  

Because the orbital velocities induced by ocean waves are much larger for a given height 
when waves are in shallow water, it was expected by Webb [2007] that  microseismic 
sources would be amplified compared to deep water. Instead, the reduction in bottom 
pressure is fundamentally related to the Bernoulli effect, in which the pressure drops 
proportionally to the square of the velocity. Applied at the bottom and in the limit kD → 
0, this effect exactly cancels the surface velocity effect. This cancellation is a well known 
property in the incompressible context [Herbers et al. 1991; Ardhuin and Herbers 2013] 
and is supported by bottom pressure observations that resolve both the short and long 
ocean waves [Herbers et al. 1991] . The consistency between the compressible and 
incompressible theories is detailed in the appendix A of Ardhuin and Herbers [2013], 
with the sum of surface and bottom contributions given there by eq. (A4). 

Power law behavior of wave and microseismic spectra for the secondary mechanism
Combining eqs. (S1), (S3) and (S5) gives a dependence of the vertical displacement 
power spectrum on the seismic frequency that is proportional to fs if E(f,θ) is constant, 
giving a power spectrum of the acceleration proportional to fs

5. In our model, E(f,θ) 
increases like fs around fs = 10 mHz. That increase and the factor G(kD) combine to give 
an acceleration power spectrum that is closer to  fs

8. At higher wave frequencies f = 0.15 
Hz, the wave spectrum typical decreases like  f -n 

with n between 4 and 5. Taking n=4 gives the observed shape of the acceleration power 
spectrum, decreasing like  fs

4+1-2n = fs
-3 (Figure 2a).

3) How short ocean waves make long seismic waves: Primary mechanism 
This mechanism is a linear transformation of ocean waves into seismic waves of the same 
frequency f . For a practical application we use the wave model output of E(f,θ) along 
shorelines, and more particularly its value in the direction perpendicular to shore. The 
primary mechanism was previously explored in the case of constant bottom slopes by 
Hasselmann [1963]. We give here a few more details and show general results for 
realistic bottom profiles.  We estimate the spectral density at kx =ky =0 in order to give, 
for the primary mechanism, the equivalent of the secondary source of eq. (S5). 
 We estimate a similar pressure spectrum at large wavelengths, for the first order pressure 
field in the presence of a sloping bottom. The final result is eq. (S22).  We first 
characterize the bottom pressure field for a monochromatic wave train, and then apply 
that result to random waves and express the pressure spectrum as a function of the wave 
spectrum E(f,θ) . 
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3.a)  Bottom pressure for monochromatic waves
A monochromatic wave train propagating over depths varying only in direction x 

gives field of surface elevation and bottom pressures, with amplitudes that are modulated 
as shown in figure 1.c. In order to normalize all the wave-related fields, we use the wave 
amplitude aA for a reference depth that we set at DA = 4000 m. The assumption of 
alongshore uniformity is appropriate if the depth varies alongshore on scales much larger 
than the seismic wavelength. For cases where the depth varies in the y direction at scales 
comparable or shorter than the seismic wavelength, we only expect a qualitative 
agreement, which is supported by preliminary tests with a phase-resolving refraction-
diffraction model. We note that for linear ocean waves over a flat bottom, the dispersion 
relation is 

 (2  f )2 = gk tanh(kD),                                                   (S7)
where k is the wavenumber, f is the frequency, D is the water depth, and g is the vertical 
acceleration due to gravity. 

We will see that one effect of the bottom slopes is to put a very small fraction of the 
ocean wave energy at wavenumbers that are very far from this linear dispersion relation. 
With an alongshore wavenumber ky we consider the bottom pressure P0 (x, ky, f ) induced 
by our monochromatic wave train, normalized by the wave amplitude aA. Because of this 
normalization, P0 has units of Pa/m. Its Fourier transform in the x dimension over a 
distance Lx  is         

                                 K ( f , k x , k y)=
1

2π
∫
− Lx

0

P0 ( x , k y , f ) e
ik x x dx ,                            

   (S8) which has units of Pa. This spectrum K is used with the same definition by 
Hasselmann [1963]. The actual bottom pressure spectrum is aA K, with units of Pa.m . In 
Hasselmann, the eq. (4.23) is an integral from minus infinity to plus infinity. Here we 
have defined our Fourier transforms over a finite domain because this is how it is used for 
practical applications in the next section. Because the shoreline is at x=0, P0  is zero for x 
> 0. As a result our definition of K is the same as Hasselmann's, in the limit   Lx  → ∞ .  
Figure S2 shows examples of the pressure field at the bottom for waves propagating in 
one dimension. 

If ky is smaller than the magnitude of seismic Rayleigh wavenumbers, then the broad 
spectrum of K overlaps with wavenumbers of seismic Rayleigh waves. In practice the 
spectrum K is nearly white, i.e. weakly dependent on wavenumbers near  kx =ky =0. We 
can thus replace K by its value at kx=0, which corresponds to the x-average of the 
pressure signal, and ky=0, which corresponds to waves exactly perpendicular to the depth 
contours.  

The alongshore wavenumber ky  is the same for ocean and seismic waves, and is 
unchanged during cross-shore propagation. Since we are considering only the spectral 
components of the ocean wave field that can couple to seismic Rayleigh waves, with a 
typical phase speed Cs = 3 km/s,  the ocean waves must have propagation angles that are 
nearly perpendicular to the depth contours, namely the ratio of the alongshore 
wavenumber ky  to the wavenumber  magnitude k should be less than the ratio of the 
ocean wave to seismic wave phase speeds  C / Cs , which is always less than 0.1. 
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3.b) Theoretical expression for the pressure spectrum 
The bottom pressure power spectral density is, by definition, the ratio of the 

bottom pressure variance and the spectral increment,        

                            F p ,1 ( f , k x , k y )=
∣aA K ( k x , k y , f ) Δk x∣

2

Δk x Δk y Δf
.                                      (S9) 

Mathematically, eq. (S9) is correct in the limit of small spectral increments, which 
correspond to spectra estimated over long times and distances. In practice, due to the 
spatial inhomogeneities and temporal variability of the sea state, we estimate (S9) with 
finite spectral increments kx= 2/Lx ,ky= 2/Ly , f= 1/ , where  Lx, Ly, and are the 
lengths over which the Fourier transform is computed in the three dimensions. The 
definition of the wave directional spectral density is again the ratio of the variance (this 
time of the surface elevation) divided by the spectral increment,

                                                     E A ( f , k y )=
∣aA∣

2

Δk y Δf
.  

(S10)
We now change the spectral coordinates (f,ky= k sinθ )  to the more usual (f,θ ) where θ is 
the azimuth of the ocean waves. The Jacobian of this spectral coordinate transform is k 
cosθ . For θ=0, cosθ =1 and eq. (S10) gives

                                         E A ( f ,θ=0 )=k A E A ( f , k y=0 ) ,  
(S11)

where, at location A, the depth is DA  , and the norm of the wavenumber vector is kA , as 
given by eq. (S7),  namely (2  f )2 = g kA tanh(kA DA ). 
                
We can now replace the wave amplitude aA  in eq. (S9) by the wave spectrum (S11), 
using (S10), and we arrive at the first order bottom pressure spectrum. We particularly 
consider the power spectral density relevant for seismic wave generation, with kx = 0, ky = 
0,

                     F p ,1 ( k x=0,k y=0, f )=
E A ( f , θ=0 )

k A
∣K 2 (k x=0,k y=0, f )∣2π

Lx

.  

(S12) 
This expression is inversely proportional to Lx , the length over which the spectrum is 
evaluated. This is so because the relevant pressure perturbation is localized at a scale 
much smaller than Lx . 

For an alongshore distance Ly , and a frequency bandwidth df  the bottom pressure 
spectrum given by (S12) is equivalent, for small k, to the one produced by a vertical force 
oscillating with a frequency f and an amplitude F  [Hasselmann 1963, Gualtieri et al. 
2013]. This amplitude is simply the area Lx Ly multiplied by the square root of twice the 
corresponding pressure variance,  

     
                                        F=2π √2 Lx L y F p ,1 ( k x=0, k y=0, f ) df .    

                (S13)
Given (S12), this force F does not depend on Lx , and varies like the square root of Ly 
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which corresponds to an incoherent sum of sources in the y direction.  
For kx = 0, ky = 0, eq. (S8) becomes a spatial average 

                                     

K ( k x=0,k y=0, f )=
1

2π
∫
− Lx

0

P0 ( x , k y=0 , f ) dx .                               (S14)

The usual spectral density is obtained when the length Lx goes to infinity, but for practical 
estimates, this length is always finite.  Without any wave dissipation, the pressure field at 
the bottom is given by the following equations. First the local group speed is defined 
from the local water depth D and the frequency f 

         C g=
2π f

k (0 .5+
kD

sinh (2kD ) )                          (S15)

 in which k is estimated from D and f using eq. (S6).  The conservation of the energy flux 
gives the local surface elevation amplitude a,

                          Cg a2 = CgA aA
2 .    (S16)

The phase is obtained by integrating the local ocean wavenumber k, [e.g. Mei 1989], 

                                                           S ( x )=∫
0

x

k ( x ' ) dx ' .                         

(S17)
These amplitudes and phase can be used to determine the surface elevation, 

ζ ( x , k y=0, f )=aA √ Cg

C gA

e iS .

Using linear wave theory gives the conversion factor from surface elevation to the bottom 
pressure, which, divided by the amplitude aA gives   

                P0 ( x , k y=0, f )=
ρw g

cosh ( kD ) √ C g

CgA

e iS .  

(S18)
All this is enough to estimate the pressure spectrum defined by (S12). We have used this 
eq. (S18) to compute the pressure field over the bottom, as shown by the red curve in 
figure 1.c. 

3.c) Practical calculation 
In general there is no simple expression for the pressure integral (S14). For a constant 
bottom slope D', Hasselmann [1963] has evaluated (S14), and proposed that

                                                  ∣K∣
2
=

ρw
2 g 4

(2π f )
4
64π

D' .    

(S19)
we will in particular use his value for D' = 1%, 

                                                        ∣K 1∣
2
=

0 .01 ρw
2 g4

(2π f )
4
64 π

.  

(S20)

We now revise this analytical expression, which is not exact but is still a good 
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approximation of (S14), for slopes D' between 1.5 and 4%. Near the shoreline, where x=0 
and S=0, the integrand in (S14) is proportional to  √S eiS .  Under the incorrect 
assumption that the integral of √S eiS  from S = 0 to infinity is defined, eq. (S19) was 
obtained by Hasselmann [1963] using contour integration on the complex plane 
[Hasselmann, personal communication 2013]. In practice, the integrand for large S  is 
very different from √S eiS  and goes to zero, which keeps the integral (S14) defined. 
For  D' between 1.5 and 4% we found that (S19) is within 10% of our numerical 
estimates using the full expression for (S14). We also verified that (S8), with the non-
zero wavenumber componentskx and ky expected for Rayleigh waves, gives similar 
results. 

We now consider any bottom depth profile, with the only assumption that the depth is 
constant in the y direction. To simplify the notations, we introduce a normalized seismic 
source s, using eqs. (S14) and (S20), 

                s = |K|2 / |K1|2. 
(S21)

This parameter s contains all the effects of the bottom topography and is an “effective 
slope”. s is a non-dimensional parameter that depends on the depth profile and the wave 
frequency f.  We finally use a wave-induced pressure power spectrum expressed as 
follows, 

         F p ,1 ( k x=0,k y=0, f )=s
E A ( f ,θ=0 )

k A

ρw
2 g 4

(2π f )
4
3200 Lx

.                                  

This equation is directly used to compute seismic sources in figure 3, with the direction 
θ=0 replaced by the local shore-normal direction θn, and, to take into account waves 
propagating towards the shore and away from the shore we replace E(f,θ=0) by [E(f,θn) + 
E(f,θn+π)],

         F p ,1 ( k x=0, k y=0, f )=s
ρw

2 g 4 [ EA ( f ,θn )+ E A ( f ,θ n+π ) ]
k A (2π f )

4
3200 Lx

.  

(S22)
   Estimates of s for different bottom profiles are shown in Figure S3.

Eq. (S22) can be combined to eq. (S3) to estimate the shape of the seismic response. 
Taking A in  4000 m depth, then kA is proportional to f for f  smaller than 10 mHz. A 
constant spectrum EA gives a pressure spectrum Fp,1 predicted by the primary mechanism 
that decreases like f -5. Combined with eq. (S3) this gives a vertical displacement power 
spectrum that decreases like  f -5 and an acceleration power spectrum that follows  f -1 . 
Since our numerical model in the infragravity wave band actually predicts a spectrum EA  

that grows like f  from 5 to 15 mHz, this explains the nearly constant acceleration 
spectrum in that frequency range. At higher frequencies, a decrease of the wind wave 
spectrum like f -4  around f=0.1 Hz gives a  f -5 seismic acceleration power spectrum. 

3.d) Interpretation of the source dependence on the bottom profile
Eq. (S22) is interesting because is gives a practical expression for the pressure spectral 
density. However, the use of Fourier transforms removes the spatial resolution, and 
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prevents us from understanding which is the part of the depth profile that is responsible 
for the seismic source. In order to discuss spatial distribution of sources, we thus define a 
partial spatial integration s(x), 

                                                 s ( x )=
1

( 2π )
2
∣K 1∣

2∣∫
x

0

P0 ( x ' , k y , f ) dx '∣
2

.                             

(S23)
Combining eqs. (S13) and (S20), this definition gives s(-Lx) = s, namely, the limit of s(x) 
when reaching the end of the depth profile is the noise source previously defined. The 
quantity s(x) is plotted infigures S1g and S1h. The locations where s(x) varies most 
rapidly can be interpreted as the locations where the seismic sources are strongest. 

3.e) Surf zone parameterization
An important detail for wave periods between 10 and 50 s is the treatment of the surf 
zone.
The ocean wave height decreases rapidly to zero for wave periods shorter than 30 s, and 
becomes roughly constant in the infragravity wave band. Hasselmann [1963] had 
proposed to represent the effect of wave dissipation in shallow water by an abrupt 
reduction of the bottom pressure to zero at a position xb. Such a sharp jump in bottom 
pressure would give an order of magnitude increase of s. Instead, we prefer to reduce 
gradually the wave amplitude, and thus the bottom pressure, by a factor proportional to 
the water depth, giving the more realistic amplitude and pressure distribution shown in 
Fig. (S1.f). In the case of a smooth bottom topography, this treatment of the surf zone 
reduces s by one order of magnitude. Using a constant amplitude, more appropriate for 
the infragravity wave band (i.e. T > 30 s), did not significantly change the results. 

3.f) Effects of unresolved bathymetric features
By taking into account realistic depth variations on the scale of the ocean wavelength for 
sandy bottoms, the value of s is typically increased by an order of magnitude, for periods 
in the range 10 to 30 s.  Here we have used  an empirical spectrum of the bottom 
elevation,

F B ( k b )=1 .5 ×10−4 k b
− 3 ,      (S24)

which is consistent with depth soundings over sandy continental shelves [Hino 1968; 
Ardhuin and Magne 2002]. This impact of the depth oscillations, on the scale of the 
ocean wavelength, can be interpreted as a classical wave-wave interaction process 
[Hasselmann 1966] with the ocean waves of wavenumber vector k1 coupling to bottom 
depth perturbations of wavenumber vector kb  to generate seismic waves of the same 
frequency but wavenumber k1 + kb  .  

In practice we have estimated the ratio s=  |K|2/|K1|2  for many different bottom profiles 
and wave periods. Our simple choice  s = 6  is consistent with these calculations, within 
one order of magnitude (figures S2 and 2), and gives a reasonable fit to the measured 
hum, as shown in figures 2, 3 anf 4.We have used east-west depth profiles are a 1 degree 
interval around 41° N [mid-Atlantic ridge, Lourenco et al. 1998], and 0.2° intervals 
around 46.47°N [Bay of Biscay, Anonymous 2008], 41.473°N [Oregon shelf, U.S. DoC 
NOAA/NGDC 2006], and north-south profiles around 157.8°W across the Oahu north 
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shore, Hawaii [Anonymous 2011] . 

3.g) Choice of s for our calculations
When evaluating the integral (S14) with the linear wave-induced bottom pressure (S18) 
we generally found a slightly larger value of s for frequencies below 10 mHz, with a 
maximum value obtained for the Hawaii bathymetry profile s= 40 at 5 mHz. The 
fundamental reason why s  is larger at these low frequencies, is that there are no strong 
enough slopes for depth such that kD > 0.76. Indeed, for f=5 mHz, kD = 0.76 corresponds 
to D=4800 m. 

For short periods (typically less than 30 s), the value of s critically depends on the 
magnitude of the bottom depth perturbations at wavelengths similar to the ocean surface 
wavelength (around 100 m), and would otherwise be as low as 0.1 for a smooth bottom 
on these scales.  The constant value s = 6, gives good results for the hum amplitude (Fig. 
2). The good amplitude for the primary peak also should not be overstated. At these 
shorter periods we would expect s to be lower (figure S2) and we know that the seismic 
attenuation model is not well constrained.  Finally we also expect that the alongshore 
variation in water depth lead to quantitative deviations from the previous result. This 
aspect has not been explored in the present paper. 
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Figure S1. 

Supporting information, figure S1. Attenuation of seismic 
waves in our model. a, Values of UQ obtained by combining QL6 for 
Q and PREM for U (computed with a water depth of 2 km), for periods 
larger than 30 s with a constant U=1.8 km/s and Q=240 for shorter 
periods. b, Corresponding distance over which the seismic energy is 
reduced by a factor 2.7. For a period of 250 s (fs=4mHz) this distance 
is half-way round the globe, which allows the constructive interference 
that yields the modal structure seen in high-resolution spectra (e.g. 
Webb 2007). 
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Figure S2. 

Supporting information, figure S2. How ocean waves propagating over a sloping 
bottom produce very long wavelength components capable of coupling to seismic 
Rayleigh waves. Example with waves of period 100 s and 16 s, over a continental shelf.  
a,b Example bottom topography in the Bay of Biscay at 47° N.  c Snapshot of the bottom 
pressure computed using linear wave theory and energy conservation – except in the surf 
zone, for a period of 100 s and d, 16 s.  e, Schematic showing how the pressure in a 
trough, with negative values, does not exactly cancel the pressure in the adjacent crest, 
due to a combination of wavelength shortening and increase in wave amplitude, giving a 
systematic phase shift between the wavelength-averaged pressure and the local pressure. 
For a non-dimensional depth kD > 0.76, corresponding to x > 250 km in c,e,g, the 
amplitude changes dominate. In shallower water the shortening dominates, giving 
opposing contributions to the mean pressure. f, close-up on the surf zone and reduction in 
wave amplitude due to breaking near the shore.  g,h, In red, expected normalized seismic 
source power s(x) due to waves between the shoreline and the local position x  as defined 
in eq. (S22). In g the areas of black bars are proportional to the increment in source 
power over one ocean wavelength.
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Figure S3. 

Supporting information, figure S3.  Amplification factors for 
primary seismic sources. The effective bottom slope s defined by eq. (S22, 
Supporting information text) is shown for different bottom depth profiles and 
for frequencies ranging from 5 to 100 mHz. These estimates are median 
values over 11 contiguous depth profiles taken from (28-31). For the 
calculations shown in figures 1 and 2, we have used a constant s = 6. The 
exact location of east-west depth profiles are a 1 degree interval around 41° 
N (mid-Atlantic ridge), and 0.2° intervals around 46.47°N (Bay of Biscay), 
41.473°N (Oregon shelf), and north-south profiles around 157.8°W across 
the Oahu north shore, Hawaii. The seismic source power is proportional 
to s .
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Figure S4. 

Supporting information, figure S4.  Primary seismic sources over the mid-Atlantic 
ridge. Results for 100 s infragravity waves over a depth profile taken from the mid-
Atlantic ridge, north of the Azores, at 41°N. a, Bottom topography,  b, bottom pressure 
computed using linear wave theory and energy conservation. c, seismic source power due 
to waves between the local position x and x=1500 km, estimated from the variance of the 
spatially-averaged bottom pressure. 
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