
Relating marine ecosystem indicators to fishing and
environmental drivers: an elucidation of contrasting responses

Jason S. Link, Dawit Yemane, Lynne J. Shannon, Marta Coll, Yunne-Jai Shin, Louize Hill,
and Maria de Fatima Borges

Link, J. S., Yemane, D., Shannon, L. J., Coll, M., Shin, Y-J., Hill, L., and Borges, M. F. 2010. Relating marine ecosystem indicators to fishing and
environmental drivers: an elucidation of contrasting responses. – ICES Journal of Marine Science, 67: 787–795.

The usefulness of indicators in detecting ecosystem change depends on three main criteria: the availability of data to estimate the
indicator (measurability), the ability to detect change in an ecosystem (sensitivity), and the ability to link the said change in an indi-
cator as a response to a known intervention or pressure (specificity). Here, we specifically examine the third aspect of indicator change,
with an emphasis on multiple methods to explore the “relativity” of major ecosystem drivers. We use a suite of multivariate methods
to explore the relationships between a pre-established set of fisheries-orientated ecosystem status indicators and the key drivers for
those ecosystems (particularly emphasizing proxy indicators for fishing and the environment). The results show the relative
importance among fishing and environmental factors, which differed notably across the major types of ecosystems. Yet, they also
demonstrated common patterns in which most ecosystems, and indicators of ecosystem dynamics are largely driven by fisheries (land-
ings) or human (human development index) factors, and secondarily by environmental drivers (e.g. AMO, PDO, SST). How one might
utilize this empirical evidence in future efforts for ecosystem approaches to fisheries is discussed, highlighting the need to manage
fisheries in the context of environmental and other human (e.g. economic) drivers.
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Introduction
Ecosystems are fundamentally dynamic. Their dynamics are an
integrated response of the various ecosystem components
(species groups) to several drivers that act independently but coin-
cidentally (though often synergistically or even antagonistically).
This presents major challenges for fisheries managers attempting
to make the most appropriate decisions regarding fishing strat-
egies, particularly as the world moves towards an ecosystem
approach. Calls for an ecosystem approach to fisheries (EAF;
Link, 2002; Garcia et al., 2003; Pikitch et al., 2004; Garcia and
Cochrane, 2005; Hall and Mainprize, 2005) have noted the need
to account simultaneously for social, economic, and ecological
objectives. Such calls have explicitly noted the need to examine
the wide range of ecosystem drivers concurrently in terms of
how they influence ecosystem dynamics.

Initiated under the auspices of the European Network of
Excellence Eur-Oceans (http://www.eur-oceans.eu), the IndiSeas
working group was tasked with identifying and applying a suite
of ecosystem indicators that would capture the effects of fishing

on exploited marine ecosystems worldwide (Shin and Shannon,
2010). Several analyses have been performed to categorize and
rank ecosystems in terms of fishing effects (Rochet et al., 2005;
Bundy et al., 2010; Coll et al., 2010). Coll et al. (2010) considered
a small set of “abiotic” indicators that may potentially have
accounted for some of the similarities (or differences) found
among all the ecosystems examined, as well as “human-induced”
indicators, including fishing and socio-economic factors. The
IndiSeas collective results confirm that non-fishing drivers or
pressures can indeed have notable large-scale effects on ecosys-
tems, so the interpretation of our suite of ecosystem indicators
should take these external factors into consideration along with
the measures of fishing.

Ecosystem models have been used as a means to explore fishing,
environmental, and internal (i.e. interactions, usually trophic,
among species) drivers of ecosystem dynamics (Fulton et al.,
2004, 2005; Shannon et al., 2008; Coll et al., 2008a, 2009;
Mackinson et al., 2009). Fishing is the most important driver in
many marine ecosystems, but environmental drivers can more
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strongly impact other types of ecosystem (Mackinson et al., 2009),
and the combined effects of the various drivers are often non-
additive (Shannon et al., 2008). Using a more empirical approach,
Link et al. (2002) and Frank et al. (2007) similarly found the same
outcome for Northwest Atlantic ecosystems, ecosystems previously
thought to be dominated by fishing effects. Therefore, it is impor-
tant to examine the effect of non-fishing drivers on our compara-
tive results of the impacts of fishing across ecosystems.

Given the recognized need, the empirical evidence, and the
modelling outcomes that hint at the need for some form of simul-
taneous examination of both environmental and human drivers,
our objectives were to elucidate relatively how much the main
anthropogenic and environmental drivers can influence the
major indicators of ecosystem structure and function (i.e. the
IndiSeas suite of indicators; Shin et al., 2010). The aims of this
paper were therefore specifically to partition explainable variance
between fishing and other (i.e. environmental) drivers and to
explore further empirical evidence for the need to develop
thresholds of ecosystem overfishing (while accounting for other
drivers). We do so by assessing potential drivers of ecosystem
dynamics from a multivariate and multi-ecosystem perspective.

Methods
The data sources have been described in other sister papers in this
suite (Coll et al., 2010; Shin et al., 2010). In all, 19 exploited eco-
systems were included in the analysis (Table 1), corresponding to
upwelling, high latitude, temperate, and tropical marine ecosys-
tems and covering a range of low- to high-productive areas that
have been fished at different levels (generally, Pitcher et al.,
2009; Worm et al., 2009; these specific ecosystems, Blanchard
et al., 2010; Coll et al., 2010; Shannon et al., 2010; Shin et al.,
2010). These ecosystems are variously located in the Atlantic and
Pacific Oceans and the Mediterranean Sea. Here, we primarily
examine what we term response (or more classically, species) indi-
cators that include total biomass, proportion of exploited biomass,
mean trophic level (TL) of landings, mean length of the (fish)
community, proportion of predators, inverse fishing pressure
(1/landings/biomass), and mean lifespan. Shin et al. (2010)
provide fuller descriptions of these metrics. We also examine
what we term explanatory (or more classically, environmental)
indicators that include total landings and a human development
index, HDI [United Nations Development Program (UNDP),
http://hdr.undp.org], both of which we classify as human
drivers. The HDI is an index used to rank countries by the level
of human development according to the UNDP. It combines nor-
malized measures of life expectancy, literacy, educational attain-
ment, and the standard of living as measured by the gross
domestic product per capita for each country worldwide. In
addition to the human drivers, we also examined a set of environ-
mental drivers including annual mean sea surface temperature
(SST, 8C; Smith and Reynolds, 2004), and some form of broad-
scale climate forcing, i.e. El Niño–Southern Oscillation (ENSO)
and the Pacific Decadal Oscillation (PDO) index, or the North
Atlantic Oscillation (NAO) and Atlantic Multidecadal
Oscillation (AMO) index, depending on which ocean an ecosys-
tem is in. We note that while the explanatory variables listed
here are not sensu strictu drivers in the technically causal sense
of the term, they are indeed a subset of ecosystem processes (or
more accurately, indices thereof) that drive ecosystem dynamics.

Multivariate methods: BV-STEP
The multivariate non-parametric technique BV-STEP,
implemented in the software PRIMER-E (Clarke and Gorley,
2006; http://www.primer-e.com), was applied for each ecosystem
to assess the potential drivers of ecosystem dynamics. In this
approach, a resemblance matrix was first created for each ecosys-
tem using time-series of normalized data and Euclidean distance.
The distance matrix was converted to a lower triangular distance
matrix and imported to PRIMER-E for BV-STEP analysis.

Initially, BV-STEP was a method developed for assessing
matches between environmental variables and the species compo-
sition of sampling sites (time or distance). Specifically, it attempts
to find the best combination of environmental (or driver) variables
that maximize the match, measured using Spearman rank corre-
lation (r) between sites in terms of their species composition
and environmental gradient (Clarke and Gorley, 2006; Clarke
et al., 2008). Although here we are not exactly tackling the same
problem, the concept is sufficiently general for the test to be
reasonably applied to our case. The aim is to arrive at the best
combination of the subset of the environmental variables (in
this case, the environmental drivers PDO, ENSO, SST, AMO,
and normalized values of the human drivers total landings and
HDI) that maximize the match (higher rank correlation, r)
between the temporal pattern in these drivers and the temporal
pattern in the ecosystem response indicators to indicate the best
explanatory variables. A resemblance matrix of inter-year distance
was created for each ecosystem based on the indicator time-series.
This resemblance matrix represented the response matrix, whereas
the corresponding time-series of landings and environmental vari-
ables represented the drivers’ data matrix. Significance of the rank
correlation was determined using permutation testing. Once a first
BV-STEP procedure had been applied, it was iterated another 999
times, using successive permutations of the sample labels of one of
the two sets (in this case, driver indicators or ecological indicators)
and recording the value of r for each run. The p-value of the test
was determined by taking the ratio of the number of r values com-
puted under the null hypothesis that they are greater than or equal
to the actual r values computed initially and the total number of
permutations.

Most datasets are characterized by large numbers of missing
values for some or all the indicators. To address this, we employed
two approaches for this method by either applying row-wise del-
etion of all time-series with missing data, or in cases where there
were only one or few datapoints (mainly total landings for the
Bay of Biscay in 1999 and for Portugal in 1985), the average of
the series was used to fill in the missing values.

Multivariate methods: canonical correlation
Multivariate analysis was also undertaken using the method of
canonical correlation (CanCorr) in the SAS statistical package.
This approach seeks to find linear combinations of explanatory
(i.e. SST, HDI, climate-forcing, and landings) and response
(various measures of biomass or proportions thereof) variables
along canonical axes. It is a similar technique to PCA and factor
analysis, but it attempts to relate the canonical variates between
response and explanatory factors. It also provides a mechanism
to partition explainable variance and, in so doing, provides an
assessment of the relative importance of key processes or drivers
(explanatory indicators) as they influence ecosystem structure
and function (response indicators). The method also provides
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Table 1. Ecosystems considered in the comparative approach, ancillary summary information, and the extent of the data time-series used in the analyses.

Coastal ecosystem Geographic area
Type of
ecosystem Surrounding countries

Large marine
ecosystem

Extent of catch
time-series

Extent of survey
time-series

Adriatic Sea (North Central) Central Mediterranean Temperate Italy, Slovenia, Croatia,
Bosnia-Herzegovina, Montenegro

Mediterranean 1975– 2006 1976–2006

Baltic Sea (Central) NE Atlantic Brackish
temperate

Germany, Estonia, Sweden, Poland,
Russia, Lithuania, Latvia, Finland,
Denmark

Baltic Sea 1974– 2005 1974–2005

Barents Sea NE Atlantic High latitude Norway Barents Sea 1984– 2006 1984–2006
Bay of Biscay NE Atlantic Temperate France Iberian Coastal 1993– 2005 1994–2005
Benguela (Southern) SE Atlantic Upwelling South Africa Benguela Current 1980– 2006 1986–2006
Bering Sea, Aleutian Islands NE Pacific High latitude Alaska, USA E Bering Sea 1977– 2006 1977–2006
Canada coast (West) NE Pacific Seasonal

upwelling
Canada Gulf of Alaska 1980– 2005 1980–2007

Catalan Sea (Southern) NW Mediterranean Temperate Spain Mediterranean 1976– 2006 1978–2003
Guinean EEZ E Central Atlantic Upwelling Guinea Guinea Current 1985– 2006 1985–2000–2001–2006
Humboldt (Northern) SE Pacific Upwelling Peru Humboldt Current 1983– 2006 1983–2006
Humboldt (Southern) SE Pacific Upwelling Chile Humboldt Current 1993– 2005 1993–2005
Irish Sea NE Atlantic Temperate Ireland, UK Celtic–Biscay Shelf 1973– 2003 1980–2005
Mauritanian EEZ E Central Atlantic Upwelling Mauritania Canary Current 1990– 2005 1982–2007
Morocco (Sahara Coastal) E Central Atlantic Upwelling Morocco Canary Current 1993– 2005 1998–2005
North Sea NE Atlantic Temperate UK, Norway, Denmark, Germany,

Netherlands, Belgium
North Sea 1963– 2003 1983–2006

Portuguese EEZ NE Atlantic Upwelling Portugal Iberian Coastal 1981– 2006 1981–2006
Scotian shelf (Eastern) NW Atlantic Temperate Canada Scotian Shelf 1960– 2006 1970–2006
Senegalese EEZ Eastern central

Atlantic
Upwelling Senegal Canary Current 1981– 2005 1981–2000; 2001–2005

US coast (Northeast) NW Atlantic Temperate USA NE US continental shelf 1964– 2005 1963–2007

R
elatin

g
m

arin
e

ecosystem
in

d
icators

to
fi

sh
in

g
an

d
en

viron
m

en
tal

d
rivers

789

 at Ifremer, BibliothÃ¨queLa PÃ©rouse on February 24, 2015 http://icesjms.oxfordjournals.org/ Downloaded from 

http://icesjms.oxfordjournals.org/


some measure of statistical significance in terms of the canonical
relationships among variables.

Owing to the nature of this approach and unlike BV-STEP,
those ecosystems for which there were insufficient data (time-
series shorter than the number of variables, or time-series with
many missing years; more than one quarter of the time-series)
were not analysed. Therefore, of the 19 ecosystems posited
throughout this suite (Table 1), we were only able to analyse 14
using this statistical method. Here, we only plot and present
results for the first two canonical axes, noting those instances
where the second axis was marginally significant.

One of the advantages of using multiple statistical tools is that it
helps one to place more weight on the results and conclusions
drawn. Although the two methods here have some structural
differences, differences in assumptions, and differences in under-
lying approach, they have different methods of exploring and elu-
cidating the data, which seemed reasonable, and the two methods
are complementary given their different underlying method-
ologies. BV-STEP is more simple (non-parametric) than
CanCorr, and it is basically a multiple correlation between expla-
natory and predicted variables. CanCorr also assesses the relation-
ship between variables, but also allows for partitioning of the
explainable variables to be obtained, along with the importance
of each driver. There is a notable precedent of utilizing multimodel
inference in the fields of ecology, oceanography, and fisheries
science. Moreover, some methods are good at identifying relation-
ships from time-series of any length, whereas others are severely
constrained by the length of the time-series; some have non-
parametric assumptions, others do not, etc. Therefore, in cases
where both statistical methods concur, credence is lent to the
results and conclusions drawn.

Results
BV-STEP
Overall when comparing across ecosystems, HDI is the most
important ecosystem driver in most ecosystems, followed by
total landings as the next most important (Table 2). Of the
environmental variables, AMO and SST were most important, fol-
lowed by ENSO and PDO. In some ecosystems, the relationship
between the response and the drivers was not significant, and
the rank correlation (r) was generally low [e.g. Biscay, Southern
Humboldt (Chile), Guinea, and Mauritania]. That these ecosys-
tems displayed non-significant results might be an indication of
the limited temporal extent of the data (Table 1; cf. Blanchard
et al., 2010; Coll et al., 2010; Shin et al., 2010), rather than a
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Table 3. Summary metadata of the CanCorr approach for the 19
ecosystems examined.

Of the 19 ecosystems
Five had insufficient data or time-series that were too short 26.3%
Three had insignificant results 15.8%
Four had significant CanCorrs on the first axis only 21.1%
Seven had significant CanCorrs 36.8%

Of the 11 significant CanCorr ecosystems
Seven had canonical axes explaining .90% of the

explainable variances
63.6%

Ten had canonical axes explaining .80% of the explainable
variances

90.9%

Those ecosystems retained in the analysis are shown in Table 4.
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Figure 1. CanCorr biplots for ecosystems with sufficient data. The response (black diamonds) and explanatory metrics (open squares) are
plotted on the same axes to demonstrate comparability of scale. HDI, human development index; SST, sea surface temperature; NAO-W,
winter North Atlantic oscillation index; NAO-Ann, annual NAO index; AMO, Atlantic Multidecadal Oscillation index; Tot Land, total landings;
ENSO, El Niño–Southern Oscillation; PDO, Pacific Decadal Oscillation; Prop Preds, proportion of predator biomass; TL, trophic level of
landings; Tot Biomass, total surveyed biomass; Prop Exploited, proportion of exploited biomass. (a) North –central Adriatic, (b) central Baltic
Sea, (c) Barents Sea, (d) Bering Sea, (e) Canadian West Coast, (f) Southern Catalan Sea, (g) Irish Sea, (h) North Sea, (i) Portugal, (j) eastern
Scotian Shelf, and (k) Northeast US shelf. Note that for ecosystems (g)–(j), only the first canonical axis is statistically significant.

(Continued on next page).
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minimal or absent relationship between the driver and the ecosys-
tem response indicators.

Collectively all ecosystems showed a range from low to high
susceptibility to drivers, six showing only one or no important
driver, nine showing two important drivers, and four showing
more than two drivers as important. Interestingly, ecosystems
with a higher response to the drivers were ranked as less heavily
impacted by fishing in terms of recent states (i.e. 2003–2005; cf.
Blanchard et al., 2010; Coll et al., 2010; Table 2). This may be
because historically these systems have already experienced
notable exploitation and more recently are more responsive to
other drivers.

Canonical correlation
A summary of the major CanCorr results is provided in Table 3.
From the 19 ecosystems initially included in this study, there
were sufficient data to execute CanCorr on just 14 ecosystems,
and significant results were obtained for only 11. If one looks at
the biplots for those ecosystems with significant CanCorr, the
general pattern is that there are typically one or two explanatory
indicators (on the first axis) that produce the spread in the data,
with one or two response indicators similarly spreading the data,
and most other indicators clumped near the origin (Figure 1).
Some ordinations did a better job than others in terms of spread-
ing the indicators across multivariate space (cf. Figure 1d, h, j, k),

Figure 1. Continued.

Table 4. Summary of CanCorr results for all 11 ecosystems that were significant.

System

Explainable variance (%) Highest absolute value weighted variable

Axis 1 Axis 2 Cumulative Response Explanatory

Adriatic Sea (NC) 82.2 13.3 95.5 Tot Biomass Tot Land
Baltic Sea (Central) 93.2 4.8 98.0 Tot Biomass Tot Land
Barents Sea 74.1 15.5 89.6 Prop Exp Tot Land, HDI
Bering Sea 65.3 30.9 96.2 Tot B, Inv F Pressure (B/Y) Tot Land
Canada, West Coast 63.9 19.1 83.0 Inv F Pressure ENSO
Catalan Sea (S) 72.4 24.6 97.0 Inv F Pressure, Prop Exp Tot Land
Irish Sea 94.1 – 94.1 TL Landings HDI
North Sea 68.6 – 68.6 Tot Biomass Tot Land, SST
Portugal 81.1 – 81.1 Tot Biomass, Prop Preds HDI
Scotian Shelf (E) 97.0 – 97.0 Prop Exp Tot Land
US Shelf (NE) 95.2 3.6 98.9 Inv F Pressure Tot Land

Tot Land, total landings; HDI, human development index; SST, sea surface temperature; ENSO, El Niño–Southern Oscillation; Prop Preds, proportion of
predator biomass; TL Landings, trophic level of landings; Tot Biomass, total surveyed biomass; Prop Exp, proportion of exploited biomass, Inv F Pressure,
inverse fishing pressure.
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particularly with respect to the second axis. Yet despite this clump-
ing of data, the pattern described above generally held.

Almost two-thirds of the canonical relationships explained
more than 90% of the variance, and 10 of 11 explained more
than 80% of the variance (Tables 3 and 4). Additionally, when
one examines those indicators that had the highest weightings,
they were usually total biomass or the proportion of exploited
biomass as the most prominent response indicators, and total
landings or HDI as the most prominent explanatory (i.e.
driver) indicators (Table 4). Total landings constituted the
main explanatory variable for the Mediterranean case studies,
central Baltic Sea, Bering Sea, eastern Scotian Shelf, and
Northeast US shelf system. HDI was the main factor for the
Irish Sea and Portugal, whereas the ENSO index was the most
important driver for Canada West Coast. HDI and Landings
were often on opposites sides of an ordination. The most
straightforward interpretation we can provide is that the landings
from a fishery often decline as the country develops, as measured
by the HDI. This development provides both the capital invest-
ment and fishing know-how to fish new fishing grounds and
previously unfished stock/species, hence normally resulting in
declining catch rate and ultimately sequential overexploitation/
depletion of incumbent stocks.

Therefore, similar to the BV-STEP results, collectively these
results demonstrate the overriding prominence of human-induced
drivers on these ecosystems relative to climate drivers. It is not that
climate drivers do not show up as important or secondary factors
in many ecosystems, but rather that the landings and HDI

indicators were almost always one of the most highly weighted
indicators in all these ecosystems.

Comparison of the two methods
Comparing the outcomes of the two methods (Table 5), it is
apparent that despite the caveats among the two, overall both
multivariate methods detect similar drivers. However, owing to
the nuances among the methodology, BV-STEP tended to high-
light more explanatory variables than CanCorr. Except the Baltic
and southern Catalan Seas, all ecosystems at least shared a major
driver (environmental or anthropogenic) in the analyses.
Moreover, both methods showed that human drivers (HDI or
Landings) were the most prominent explanatory factors.

Discussion
Collectively our results confirm that the dominant drivers in a wide
range of ecosystems are human-related, usually to fishing, but also
more generally to human development (see HDI indicator and
related discussion in Coll et al., 2010). That fishing can impact
marine ecosystems is not surprising (Pauly et al., 1998, 2002;
Jackson et al., 2001; Worm et al., 2009). What is intriguing is that
this pattern generally holds across such a wide array of ecosystems
with very different dynamics, exploitation histories, environmental
contexts, and socio-economic realities (including low- to high-
income countries). We admit that basically all the ecosystems here
have undergone fisheries exploitation, but the range has varied con-
siderably (Bundy et al., 2010; Coll et al., 2010). Given the types of
ecosystem response indicators we selected, it is logical that fishing
in particular will have a primary effect, as modulated by local con-
ditions. This is in line with a ranking of the ecosystems from lesser
to more strongly impacted by fishing (Coll et al., 2010), but under-
standing the degree of modulation merits further consideration.

Our results also confirm the need to examine simultaneously a
broad suite of ecosystem drivers. As in other modelling and empiri-
cal studies (Link et al., 2002; Fulton et al., 2004, 2005; Frank et al.,
2007; Coll et al., 2008a, 2009; Shannon et al., 2008; Mackinson
et al., 2009), it was apparent from these analyses that both environ-
mental and human drivers influence marine ecosystems. The relative
importance of both types of driver, as briefly elucidated here, also
remains an important topic to examine as we move towards the
implementation of an EAF. Claiming that only one or other type
of driver is the only thing to worry about (or to ignore as the case
may be) in a management context seems imprudent.

Our results confirm that the set of response variables we used are
both sensitive and relatively specific to fishing (i.e. using landings as a
proxy). The results support selection of indicators a priori to asses-
sing the ecosystem effects of fishing (Shin et al., 2010), with sensi-
tivity and specificity as the two major properties desired (Rice,
2003; Rochet and Trenkel, 2003). Apart from considering fishing
effects, this set of indicators is also meant to track changes in ecosys-
tem structure and functioning. For example, fish length is related to
many physiological and ecological processes (Shin et al., 2005), and
the total length of the fish in landings and the proportion of preda-
tors are related to the trophic structure (Cury et al., 2005).

The importance of environmental relative to human drivers
was variable across ecosystems, ranging from very minor
through about equal to dominant. It is important to note that
our analyses can help either to quantify the contributions of
different drivers on ecosystems dynamics or to define in which
cases environmental drivers cannot be ignored in an EAF. The
situations where some form of environmental drivers seemed

Table 5. Comparison of the importance of ecosystem drivers
(anthropogenic and environmental) as indicated by BV-STEP and
CanCorr.

Ecosystems CanCorr BV-STEP

Barents sea Total landing,
HDI

Total landing, HDI, SST

Bay of Biscay – SST, AMOa

Bering Sea, Aleutian Is. Total landing Total landing, HDI,
PDO

Central Baltic Sea Total landing SST, AMO
Eastern Scotian shelf Total landing Total landing
Guinea – AMOa

Irish Sea HDI HDI, AMO
Mauritania – Total landing, SSTa

North Central Adriatic
Sea

Total landing Total landing

Northeast United States Total landing Total landing, HDI
North Sea Total landing,

SST
IHD, SST, AMO

Northern Humboldt – HDI, ENSO
Portugal HDI HDI, Total landing
Morocco (Coastal

Sahara)
– HDI, AMO

Senegal – HDI, AMO, Total
landing

Southern Benguela – Total landing, HDI
Southern Catalan Sea Total landing SST
Southern Humboldt – ENSOa

West coast Canada ENSO ENSO

“–” denotes either lack of data or a lack of a significant correlation between
drivers and response.
aA lack of a significant rank correlation (r) between selected drivers and the
response matrix.

Relating marine ecosystem indicators to fishing and environmental drivers 793

 at Ifrem
er, B

ibliothÃ
¨queL

a PÃ
©

rouse on February 24, 2015
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


to be equal or more prominent were usually located in eastern
ocean boundary ecosystems. The role of upwelling as a domi-
nant feature has been well-documented for such ecosystems
(Shannon et al., 2008, 2010). That said, even in those ecosystems
that are understood to be primarily dominated by fishing (e.g.
the Northeast Unites States, eastern Scotian Shelf, and North
Sea), it is clear that there is some degree of environmentally
driven change (see discussion in Coll et al., 2010). However,
in those systems, it is currently not driving more than 35% of
the variability, so they do not dominate to the same extent as
in eastern ocean boundary systems (e.g. Portugal, Bering Sea,
southern Humboldt, and West Coast Canada). This distinction
across the types of ecosystems (Coll et al., 2010) will remain
important because not all processes have the same relative pro-
minence in all marine ecosystems.

In the Baltic and southern Catalan Sea, BV-STEP identified
environmental drivers as more important, whereas human
drivers appeared to be more important in the CanCorr analyses.
Therefore, it is possible to see differences between the two
methods in the prominence of the type of driver selected for
some ecosystems. For some ecosystems, the CanCorr analysis
does not produce results because of an insufficiency of data
(Tables 3 and 5), whereas BV-STEP does produce a result with
some of the drivers selected as most important (e.g. the southern
Benguela) or indicative that the relationships are not significant
(e.g. Mauritania, Guinea, southern Humboldt). However, in
most instances, similar results emerge from using both methods.
This does not mean that one method is better than the other,
though each has its strengths and drawbacks. Both methods are
similar in the sense that they are both multivariate, but one eluci-
dates linear relationships between response and drivers (CanCorr),
whereas the other looks for a driver or group of drivers that maxi-
mize the association between the response matrix and the environ-
mental matrix using non-parametric rank correlation. Despite
such methodological differences, they were both generally able
to capture the prominence of the same major drivers when exam-
ined across all ecosystems, i.e. overall both methods indicated the
importance of Landings and HDI as human drivers and SST/
AMO as environmental drivers.

Other studies that have examined human (mainly fishing) and
environmental drivers simultaneously for a subset of the ecosys-
tems we examine here have found similar outcomes. For instance,
using a trophic modelling approach, Mackinson et al. (2009) gen-
erally found that the North Sea, the southern and northern
Benguela, and the southern Catalan Sea were all mainly driven
by fishing, although the internal trophic-flow dynamics were
implicitly considered in their analyses of fishing. Our results
confirm the importance of fishing as an ecosystem driver, but
with the caveat that we seemed also to detect some (though a
smaller percentage of explainable variance) response to environ-
mental drivers. Also, in Mackinson et al. (2009), the southern
Humboldt and Irish Sea were driven by environmental factors,
which our results confirm. Additionally, Shannon et al. (2008)
found a similar outcome for the Humboldt and Benguela ecosys-
tems, though with the recognition that fishing was secondary but
also important in those locales. Therefore, exploitation is modu-
lated by the environmental conditions in which it operates, as
seen in these upwelling situations. That there are subtle distinc-
tions among various studies using different methods is to be
expected. That there are more general similarities than distinctions
demonstrates the power of such a comparative approach and

confirms the prominence of major processes in an ecosystem.
We support the principle of simultaneous examination of multiple
drivers, but also suggest the use of multiple model or multiple
(statistical) method inference when determining the relative pro-
minence of human and environmental drivers. It may be that
some methods are more appropriate for a given ecosystem given
the type and extent of data available and that such considerations
should be denoted explicitly. Yet, despite all the nuances noted
here, the general patterns found in our work and those of other
studies generally concur that across a wide range of ecosystems,
fishing is a prominent driver and environmental drivers can also
be important, depending on local conditions.

After accounting for environmental conditions, careful atten-
tion needs to be paid to the development of ecosystem overfishing
definitions (Jennings, 2005). In other words, we need to develop
indicators of ecosystem overfishing that are conditioned upon
environmental factors. Several attempts to develop such system-
wide indicators of overfishing are ongoing (Murawski, 2000;
Link, 2005; Coll et al., 2008b; Libralato et al., 2008). The indicators
in this suite could, among many others, serve as the basis for such
overfishing definitions. However, there remains the need to ident-
ify regions or points of inflection in our suite of ecosystem indi-
cators relative to these external pressures. Preliminary work
using logistic and probit-type approaches (DY, unpublished
data) proved elusive given the complexities of such a wide array
of collinear drivers and responses. Clearly, further work to estab-
lish such thresholds, both empirically and via modelling,
remains an important challenge.

One of the key challenges we are facing when implementing
EAF (from a systems perspective) is how to document the relative
importance of concurrent drivers, and subsequently how to deal
with managing fisheries in the context of these multiple drivers.
We trust that the approach presented here serves as one feasible,
extant example of how one could evaluate the relative importance
of ecosystem drivers simultaneously. We also affirm the need to do
so. Even after fulfilling this observed need, one of the next chal-
lenges will be what to do with such information. Therein lies
great opportunity.
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