FN Archimer Export Format PT J TI Scattering of inertial waves by an ocean front - Comments BT AF KLEIN, Patrice TREGUIER, Anne-Marie AS 1:1;2:1; FF 1:;2:; C1 Laboratoire de Physique des Oceans, IFREMER, Plouzané, France C2 IFREMER, FRANCE SI BREST SE PDG-ODE-LPO IN WOS Ifremer jusqu'en 2018 IF 1.948 TC 2 UR https://archimer.ifremer.fr/doc/00254/36565/35119.pdf LA English DT Article AB Rubenstein and Roberts (1986, hereafter RR86) have studied the scattering of inertial waves by a geostrophic jet. The most remarkable effect of the jet is to concentrate near-inertial energy in the negative vorticity region. This effect is due to the horizontal dispersion of near-inértial waves. It is demonstrated by RR86 Using a stratified linearized model. A similar result has been obtaîned by Kunze (1985) using a ray-tracing approach and bas been confirmed by observations (Kunze and Stanford 1984). Another result of RR86 concems the mixed layer depth variations. Their Figs. 3 and 8 show a systematic downwelling in the negative vorticity region of the jet and systematic upwelling in the positive vorticity region. Although large upwellings and downwellings occur in the presence of a wind stress perpendicular to the front (Niiler 1969), it is not clear how such systematic effects can result from unforced inertial oscillations. RR86 find this behavior of the mixed layer depth in a shallow-water model where horizontal dispersion is neglected (their Fig. 3 ) and therefore suggest it is due to the nonlinearity of the mass equation. Our failure to reproduce the results of RR86 with a fully nonlinear shallow-water mode1led us to investigate more carefully the role of nonlinear terms, using both direct numerical simulation and asymptotic analysis. In the present note we show that the systematic upweIIings and downwellin~ are spurious effects due to the neglect ofsome (but not all) nonlinear terms in RR86's mixed layer equations. PY 1995 PD MAY SO Journal Of Physical Oceanography SN 0022-3670 PU Amer Meteorological Soc VL 25 IS 5 UT A1995RB29300022 BP 1018 EP 1022 DI 10.1175/1520-0485(1995)025<1018:COOIWB>2.0.CO;2 ID 36565 ER EF