Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

Type Article
Date 2015-04
Language English
Author(s) D'Hondt Steven1, 2, Inagaki Fumio1, 3, Zarikian Carlos Alvarez1, 4, Abrams Lewis J.5, Dubois Nathalie1, 6, Engelhardt Tim1, 7, Evans Helen1, 4, Ferdelman Timothy1, 8, Gribsholt Britta1, 9, Harris Robert N.1, 10, Hoppie Bryce W.1, 11, Hyun Jung-Ho1, 12, Kallmeyer Jens1, 13, Kim Jinwook1, 14, Lynch Jill E.1, 15, McKinley Claire C.16, Mitsunobu Satoshi1, 17, Morono Yuki1, 3, Murray Richard W.1, 18, Pockalny Robert2, Sauvage Justine2, Shimono Takaya1, 19, Shiraishi Fumito1, 20, Smith David C.1, 2, Smith-Duque Christopher E.1, 21, Spivack Arthur J.1, 2, Steinsbu Bjorn Olav1, 22, Suzuki Yohey1, 23, Szpak Michal1, 24, Toffin LaurentORCID1, 25, Uramoto Goichiro1, 3, Yamaguchi Yasuhiko T.1, 23, Zhang Guo-Liang1, 26, Zhang Xiao-Hua1, 27, Ziebis Wiebke1, 28
Affiliation(s) 1 : Integrated Ocean Drilling Program Expedit 329 Shi, Tokyo, Japan.
2 : Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA.
3 : Japan Agcy Marine Earth Sci & Technol, Kochi Inst Core Sample Res, Nankoku, Kochi 7838502, Japan.
4 : Texas A&M Univ, Int Ocean Discovery Program, College Stn, TX 77845 USA.
5 : Univ N Carolina, Ctr Marine Sci, Wilmington, NC 28409 USA.
6 : Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland.
7 : Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Meeres, D-26129 Oldenburg, Germany.
8 : Max Planck Inst Marine Mikrobiol, Dept Biogeochem, D-28359 Bremen, Germany.
9 : Aarhus Univ, Ctr Geomicrobiol, DK-8000 Aarhus, Denmark.
10 : Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
11 : Minnesota State Univ, Dept Chem & Geol, Mankato, MN 56001 USA.
12 : Hanyang Univ, Dept Marine Sci & Convergent Technol, Ansan 426791, Gyeonggi Do, South Korea.
13 : GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany.
14 : Yonsei Univ, Earth Syst Sci, Seoul 120749, South Korea.
15 : Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
16 : Texas A&M Univ, Dept Oceanog, College Stn, TX 77813 USA.
17 : Shizuoka Univ, Inst Environm Sci, Suruuga Ku, Shizuoka 4228526, Japan.
18 : Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
19 : Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki 3058572, Japan.
20 : Hiroshima Univ, Grad Sch Sci, Higashihiroshima, Hiroshima 7398526, Japan.
21 : Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England.
22 : Univ Bergen, Dept Earth Sci, N-5007 Bergen, Norway.
23 : Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan.
24 : Dublin City Univ, Sch Chem Sci, Dublin 9, Ireland.
25 : Inst Francais Rech Exploitat Mer, Ctr Bretagne, F-29280 Plouzane, France.
26 : Chinese Acad Sci, South China Sea Inst Oceanol, Qingdao 266071, Peoples R China.
27 : Ocean Univ China, Coll Marine Life Sci, Qingdao 266003, Peoples R China.
28 : Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA.
Source Nature Geoscience (1752-0894) (Nature Publishing Group), 2015-04 , Vol. 8 , N. 4 , P. 299-304
DOI 10.1038/NGEO2387
WOS© Times Cited 104
Abstract The depth of oxygen penetration into marine sediments differs considerably from one region to another. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor. In areas with low sedimentary respiration, O2 penetrates much deeper but the depth to which microbial communities persist was previously unknown. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15–44% of the Pacific and 9–37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.
Full Text
File Pages Size Access
Author's final draft 21 1 MB Open access
6 1 MB Access on demand
26 2 MB Access on demand
Top of the page

How to cite 

D'Hondt Steven, Inagaki Fumio, Zarikian Carlos Alvarez, Abrams Lewis J., Dubois Nathalie, Engelhardt Tim, Evans Helen, Ferdelman Timothy, Gribsholt Britta, Harris Robert N., Hoppie Bryce W., Hyun Jung-Ho, Kallmeyer Jens, Kim Jinwook, Lynch Jill E., McKinley Claire C., Mitsunobu Satoshi, Morono Yuki, Murray Richard W., Pockalny Robert, Sauvage Justine, Shimono Takaya, Shiraishi Fumito, Smith David C., Smith-Duque Christopher E., Spivack Arthur J., Steinsbu Bjorn Olav, Suzuki Yohey, Szpak Michal, Toffin Laurent, Uramoto Goichiro, Yamaguchi Yasuhiko T., Zhang Guo-Liang, Zhang Xiao-Hua, Ziebis Wiebke (2015). Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nature Geoscience, 8(4), 299-304. Publisher's official version : , Open Access version :