FN Archimer Export Format PT J TI The Vertical Structure of Large-Scale Unsteady Currents BT AF HOCHET, Antoine COLIN DE VERDIERE, Alain SCOTT, Robert AS 1:;2:1;3:1; FF 1:;2:;3:; C1 IFREMER, IRD, CNRS, UBO,Lab Phys Oceans,UMR6523, Brest, France. C2 UBO, FRANCE UM LOPS IF 3.026 TC 1 UR https://archimer.ifremer.fr/doc/00260/37081/35586.pdf LA English DT Article DE ;Circulation/ Dynamics;Ocean dynamics;Rossby waves;Waves;oceanic;Mathematical and statistical techniques;Fourier analysis;Models and modeling;Quasigeostrophic models AB A linear model based on the quasigeostrophic equations is constructed in order to predict the vertical structure of Rossby waves and, more broadly, of anomalies resolved by altimeter data, roughly with periods longer than 20 days and with wavelengths larger than 100 km. The subsurface field is reconstructed from sea surface height and climatological stratification. The solution is calculated in periodic rectangular regions with a 3D discrete Fourier transform. The effect of the mean flow on Rossby waves is neglected, which the authors believe is a reasonable approximation for low latitudes. The method used has been tested with an idealized double- gyre simulation [performed with the Miami Isopycnal Coordinate Ocean Model (MICOM)]. The linear model is able to give reasonable predictions of subsurface currents at low latitudes (below approximately 308) and for relatively weak mean flow. However, the predictions degrade with stronger mean flows and higher latitudes. The subsurface velocities calculated with this model using AVISO altimetric data and velocities from current meters have also been compared. Results show that the model gives reasonably accurate results away from the top and bottom boundaries, side boundaries, and far from western boundary currents. This study found, for the regions where the model is valid, an energy partition of the traditional modes of approximately 68% in the barotropic mode and 25% in the first baroclinic mode. Only 20% of the observed kinetic energy can be attributed to free Rossby waves of long periods that propagate energy to the west. PY 2015 PD MAR SO Journal Of Physical Oceanography SN 0022-3670 PU Amer Meteorological Soc VL 45 IS 3 UT 000350984900010 BP 755 EP 777 DI 10.1175/JPO-D-14-0077.1 ID 37081 ER EF