Supplementary Material for:

- 2 Preservation of terrestrial organic carbon in marine
- 3 sediments offshore Taiwan: Mountain building and
- 4 atmospheric carbon dioxide sequestration
- 5 S.-J. Kao^{1,2*}, R. G. Hilton³, K. Selvaraj^{1,2}, M. Dai², F. Zehetner⁴, J.-C. Huang⁵, S.-C.
- 6 Hsu¹, R. Sparkes⁶, J. T. Liu⁷, T.-Y. Lee¹, J.-Y. T. Yang², A. Galy⁶, X. Xu⁸ and N.
- 7 Hovius⁹
- 8 [1]{Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan}
- 9 [2]{State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen,
- 10 China}
- [3] [3] [Department of Geography, Durham University, Durham, United Kingdom]
- 12 [4]{Institute of Soil Research, University of Natural Resources and Applied Life Sciences,
- 13 Vienna, Austria}
- 14 [5]{Department of Geography, National Taiwan University, Taipei, Taiwan}
- 15 [6]{Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom}
- 16 [7]{Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung,
- 17 Taiwan}
- 18 [8]{School of Physical Sciences, University of California Irvine, CA, USA}
- 19 [9]{Section 5.1: Geoecology and Geomorphology, GFZ German Research Centre,
- 20 Telegrafenberg, Potsdam, Germany}
- 21 Correspondence to: S.-J. Kao (sikao@gate.sinica.edu.tw; sikao@xmu.edu.cn)

23 1 Mixing or organic carbon loss control on the variables

- 24 The linear relationship between $\Delta^{14}C_{org}$ and $\delta^{13}C_{org}$ (see Fig. 4a, P<0.0001) in marine sediments
- 25 receiving fluvial sediments away from submarine canyons and direct hyperpycnal inputs
- 26 (Okinawa Trough, Taiwan Strait, Gaoping Shelf) may be the result of mixing two end members
- 27 with distinct isotopic compositions (see main text for discussion). The trend is consistent with
- 28 mixture of the mean of the riverine particulate OC input (itself a mixture of OC from the
- 29 terrestrial biosphere, OC_{biosphere}, and rock-derived OC, OC_{petro}) with marine OC (OC_{marine}).
- 30 However, it may also result from preferential loss of terrestrial OC (or OC_{marine}), with the
- resulting composition moving toward that of OC_{marine} (or terrestrial OC). To distinguish between
- 32 these hypotheses, we can use the C_{org}, as loss of OC will result in a lowering of C_{org} which is
- distinct from mixing (see Section 4.2 in the main text for a full discussion of the outputs).

34 1.1 End member mixing model

- We define a binary mixing model resulting from terrestrial and marine end members (e.g.
- 36 Komada et al., 2004; Leithold et al., 2006; Clark et al., 2013):

37
$$\delta_x = f_t \cdot \delta_t + f_m \cdot \delta_m$$
 Equation S1

38
$$\Delta_x = f_t \cdot \Delta_t + f_m \cdot \Delta_m$$
 Equation S2

$$39 f_t + f_m = 1 Equation S3$$

- 40 where δ_x and Δ_x are the measured stable isotopes and radiocarbon compositions (%),
- respectively, and the equivalent for marine (m) and terrestrial (t) end members. f_t and f_m are the
- 42 mass fractions of OC derived from each source, respectively, whose sum is 1 by definition of a
- binary mixture. The C_{org} for a sample $(C_x, \%)$ is then derived from the relative mass fraction of
- 44 sediment contributed by terrestrial matter (RF_t) and marine matter (RF_m) , with their
- 45 corresponding C_{org} of C_t (%) and C_m (%), respectively:

46
$$C_x = \frac{RF_t}{(RF_t + RF_m)} \cdot C_t + \frac{RF_m}{(RF_t + RF_m)} \cdot C_m$$
 Equation S4

47 where:

$$48 \qquad RF_t = \frac{f_t}{C_t/100}$$

58

Equation S5

- Equations S1-S5 can be used to model the predicted elemental and isotopic composition (C_x , δ_x
- and Δ_x) of a binary mixture of terrestrial OC and OC_{marine}.
- For illustrative purposes we can define the δ_t , Δ_t and C_t of terrestrial OC using the linear
- 52 trends through the data (Fig. 4a and 5a). These values (Table 2 in the main text) are within the
- range permitted by the standard deviation on the mean riverine OC composition (see Fig. 4 and
- 5). It is important to note that we do not seek to quantify f_t and f_m , and instead seek to examine
- 55 whether mixing or terrestrial OC loss is producing the trends in the data. The absolute values
- which are output from the mixing analysis of the marine sediments (Fig. 4) are therefore not used
- in any further analysis. The results are plotted on Figures 4b and 5b.

1.2 Terrestrial organic carbon loss

- We model how the elemental and isotopic composition of OC in marine sediment may evolve
- due to instantaneous loss of terrestrial OC. Instantaneous loss is considered because progressive
- loss through time should alter the $\Delta^{14}C_{org}$ due to aging and result in a non-linear relationship
- between $\Delta^{14}C_{org}$ and $\delta^{13}C_{org}$ values, whereas the data show a linear trend (Fig. 4). To model OC
- loss, we consider the initial mass of carbon present in the sediment, m_o (g), comprised of
- terrestrial OC with a carbon mass, m_t , and OC_{marine} with a carbon mass, m_m :

$$65 m_o = m_m + m_t Equation S6$$

- Terrestrial OC loss is represented by loss percentage (L, %) so that the modified mass of carbon
- following loss, m_x :

68
$$m_x = m_m + m_t (1 - L/100)$$
 Equation S7

- The modification in C_x , δ_x and Δ_x can then be calculated for a unit of sediment mass using the
- 70 Equations S1-S5.
- 71 To examine selective loss of terrestrial OC_{biosphere} from the sediments, we can modify the above
- equations (S1-S7) to define a three component system where m_t is comprised of $OC_{biosphere}$
- 73 $(m_{biosphere})$ and petrogenic OC (m_{petro}) :

 $74 m_t = m_{biosphere} + m_{petro}$

Equation S8

This allows us to assess the impact of pervasive terrestrial OC loss (using m_t) and selective terrestrial OC loss (only $m_{biosphere}$). For consistency, we model these trends using the end member compositions used with the mixing model. The loss from a sample with and initial $f_t = 0.8$ is shown for illustrative purposes in Figures 4b and 5b. The values of $C_{biosphere}$, C_{petro} , $\delta_{biosphere}$, and Δ_{petro} (of the biosphere-derived OC and petrogenic OC end-members) are selected based on the terrestrial mixing domain (Fig. 2a) and published data (Kao and Liu, 2000; Hilton et al., 2010) (Table 2 in the main text). Again, these values are for illustrative purposes and their range can be altered within the known bounds with no impact on the conclusions of the mixing and modeled loss analysis. Only the values of $\Delta_{biosphere}$, and Δ_{petro} which are well constrained in Taiwan and relatively invariant (Hilton et al., 2008) are used in a quantitative analysis (see Section 4.1 of the main text).

86

87

							•	
River	Latitude	Longitude	$Q_w (m^3 s^{-1})$	SSC (g L ⁻¹)	C _{org} (%)	$\delta^{13}C_{org}$	$\Delta^{14}C_{org}$	Lab Code
						(‰)	(‰)	
Suspended sed	diments collected	d during Typhoon	i Tim (1994), easi	ern flank				
Lanyang	24.715	121.772	1195	7.7	0.68	-25.1	-802	NZA-4392
			2550	24.5	0.71	-25.4	-714	NZA-10292
			453	11.4	0.58	-25.0	-434	NZA-5055
			1560	6.7	0.62	-25.3	-297	NZA-5051
			444	9.8	0.58	-25.6	-241	NZA-5056
			642	5.3	0.58	-25.7	-227	NZA-5053
			59	0.4	1.03	-26.1	55	NZA-5048
			64	0.4	1.08	-25.6		-
			112	0.7	0.92	-25.4	_	_
			938	5.6	0.66	-25.1	_	_
			526	12.8	0.58	-25.0	_	_
Suspended sec	diments collected	d during Typhoon	n Doug (1994), we	estern flank				
Jhuoshuei	23.810	120.469		6.5	0.66	-24.5	-760	NZA-10315

Zengwun	23.108	120.205		12.9	0.49	-24.9	-622	NZA-10302	
Wu	24.154	120.522		3.9	0.68	-24.7	-441	NZA-10317	
Fonshan	24.851	121.015		0.5	0.67	-25.3	-407	NZA-10290	
Gaoping	22.770	120.454		3.6	0.58	-25.4	_9	NZA-10316	
Daan	24.366	120.664		4.3	0.58	-25.1	_	_	
Dahan	24.958	121.536		3.2	0.62	-25.5	_	_	
Toucian	24.760	121.075		1.4	0.44	-25.9	-	_	
Suspended sediments collected in the Jhuoshuei watershed during Typhoon Mindulle (2004), western flank									
J16r	23.785	120.636	3200	199.0	0.23	-26.6	-808	OS-70920	
J18r	23.785	120.636	2520	87.9	0.25	-25.4	-674	OS-71071	
J26r	23.785	120.636	6390	11.6	0.45	-25.6	-487	OS-71072	
C16	23.772	120.652	639	133.9	0.30	-26.2	-697	OS-70921	
C18	23.772	120.652	970	134.2	0.25	-26.7	-872	OS-71094	
C26	23.772	120.652	1292	132.3	0.20	-26.4	-879	OS-70922	
R003	23.784	120.885	313	62.8	0.63	-26.2	-849	OS-71073	
R010	23.784	120.885	976	41.4	0.37	-26.0	-869	OS-71074	
R025	23.784	120.885	2655	36.6	0.32	-25.6	-756	OS-71095	

S004	23.695	120.852	43	0.8	0.32	-24.3	-747	OS-71096			
S010	23.695	120.852	61	67.5	0.29	-24.4	-759	OS-70914			
S019	23.695	120.852	247	83.6	0.35	-25.1	-338	OS-71131			
Suspended sediments collected during Typhoon Mindulle & Aere (2004), eastern flank											
Liwu	24.179	121.492	37	2.5	0.41	-23.0	-593	SUERC-15280			
			126	13.1	0.27	-21.8	-897	SUERC-13675			
			403	64.2	0.38	-23.2	-572	SUERC-13678			
			195	24.4	0.34	-23.7	-917	SUERC-13679			
			173	17.6	0.39	-24.1	-926	SUERC-15281			
			44	7.7	0.42	-24.4	-948	SUERC-13680			
			35	5.8	0.37	-24.3	-956	SUERC-13681			
			87	30.6	0.16	-22.5	-826	SUERC-13682			
			72	17.7	0.28	-23.2	-872	SUERC-13683			
Suspended sedi	Suspended sediments collected during Typhoon Morakot (2009), eastern flank										
Liwu	24.156	121.622		59.5	0.17	-24.1	-604	OS-76535			
					0.12	_	-698	OS-76536			

83.6	0.19	-23.8	-644	OS-76537
65.1	0.15	-24.0	-746	OS-76538
43.6	0.13	-24.0	-698	OS-76539
53.0	0.20	-23.5	-729	OS-76540
34.3	0.20	-23.9	-888	OS-76541
39.6	0.30	-24.7	-861	OS-76409
30.3	0.30	-24.7	-914	OS-76410

Table S2: Radiocarbon and stable isotopic composition ($\Delta^{14}C_{org}$ and $\delta^{13}C_{org}$) of marine sediments, Gaoping Canyon.

Station	Depth (m)	Latitude	Longitude	Year	$\mathbf{C}_{\mathtt{org}}$	$\delta^{13}C_{org}$	$\Delta^{14} C_{org}$	Lab code
					(%)	(‰)	(‰)	
T7-KP-b-13-14	Trap	22.354	120.274	2008	0.65	-24.5	-558	NZA37397
T7-KP-3	Trap	22.354	120.274	2008	0.55	-25.5	-551	OS-76305
T7-KP-5	Trap	22.354	120.274	2008	0.42	-25.3	-624	OS-76306
T7-KP-10	Trap	22.354	120.274	2008	0.40	-24.8	-643	OS-76307
T7-KP-14	Trap	22.354	120.274	2008	0.33	-25.6	-630	OS-76308
T7-KP-22	Trap	22.354	120.274	2008	0.41	-25.7	-605	OS-76309
T7-KP-31	Trap	22.354	120.274	2008	0.35	-25.7	-612	OS-76478
T7-KP-32	Trap	22.354	120.274	2008	1.58	-25.8	-112	OS-76479
T7KP-33	Trap	22.354	120.274	2008	0.43	-25.5	-548	OS-76480
T7-KP-43	Trap	22.354	120.274	2008	0.20	-25.7	-870	OS-76481
T7-KP-49	Trap	22.354	120.274	2008	0.37	-25.3	-758	OS-76534
T7-KP-50	Trap	22.354	120.274	2008	0.56	-24.6	-622	OS-76408
K1-0	Surface	22.458	120.415	2009	0.70	-24.6	-794	UCIT22740
K1-19	0.19	22.458	120.415	2009	0.54	-24.1	-753	UCIT22741
K1-41	0.41	22.458	120.415	2009	1.33	-25.9	-644	UCIT22742

Table S3: Radiocarbon and stable isotopic composition (Δ¹⁴C_{org} and δ¹³C_{org}) of marine sediments collected from the
Okinawa Trough (OT), Taiwan Strait (TS) and Gaoping Shelf (GP).

Core	Site	Depth	Foram age	Latitude	Longitude	Year	C_{org}	$\delta^{13}C_{org}$	$\Delta^{14}C_{org}$	Lab code
		(m)	(ka)				(%)	(‰)	(‰)	
NE441w	ОТ	surface	_	24.707	121.912	1995	0.52	-23.4	-711	OS-70886
431y	OT	surface	_	24.576	121.932	1995	0.49	-24.1	-703	OS-70887
5021	OT	surface	_	25.004	122.352	1995	0.56	-23.5	-682	OS-70889
5123	OT	surface	_	25.369	122.364	1995	0.68	-22.1	-586	OS-70890
MD012403 ^a	OT	0.26-0.27	0.0	25.283	123.160	2001	0.72	-22.6	-543	NZA25459
MD012403 ^a	OT	2.41-2.42	3.0	25.283	123.160	2001	0.68	-22.5	-632	NZA25404
MD012403 ^a	OT	4.91-4.92	6.6	25.283	123.160	2001	0.55	-22.6	-602	NZA25405
MD012403 ^a	OT	9.51-9.52	10.4	25.283	123.160	2001	0.74	-22.9	-434	NZA25406
T5/3-11	OT-trap	trap	_	25.108	122.501	1994	0.90	-21.8	-268	OS-70919
T5/4-7	OT-trap	trap	_	25.108	122.501	1994	1.33	-21.4	-256	OS-70915
T5/4-8	OT-trap	trap	_	25.108	122.501	1994	1.04	-21.8	-338	OS-70916
T5/4-11	OT-trap	trap	_	25.108	122.501	1994	0.85	-22.3	-423	OS-70917
T5/4-12	OT-trap	trap	_	25.108	122.501	1994	0.87	-22.0	-423	OS-70918

TS-12	TS	surface	_	23.999	119.500	2006	0.35	-23.7	-552	OS-71097
TS-21	TS	surface	_	25.000	120.666	2006	0.71	-22.8	-379	OS-71100
KP-3B	GP	surface	_	22.337	120.085	2009	0.70	-23.0	-622	OS-76300
KP-6B	GP	surface	_	22.330	120.167	2009	0.58	-23.1	-651	OS-76301
KP-05-B	GP	surface	_	22.417	120.252	2009	0.47	-23.3	-669	OS-76302
KP-B-9	GP	surface	_	22.082	119.916	2009	0.90	-23.0	-501	OS-76303
KP-5A	GP	surface	_	22.374	120.207	2009	0.49	-23.3	-676	OS-76304
L9-5	GP	0.05	_	22.184	120.361	2009	0.73	-23.8	-555	UCIT22747
L9-25	GP	0.25	_	22.184	120.361	2009	0.73	-23.0	-544	UCIT22748
L9-30	GP	0.3	_	22.184	120.361	2009	0.92	-23.9	-734	UCIT22749
K11A-0	GP	surface	_	22.253	120.176	2009	0.69	-23.3	-637	UCIT22743
K11A-5	GP	0.05	_	22.253	120.176	2009	0.53	-22.9	-708	UCIT22744
K11A-30	GP	0.30		22.253	120.176	2009	0.63	-22.5	-655	UCIT22745

^aIMAGES core where $\Delta^{14}C_{org}$ was estimated at time of deposition using co-deposited foraminifera (*Globigerinoides ruber*,

3

² Globigerinoides sacculifer, Globigerinoides conglobatus, Globigerina ququilateralis and Orbulina universa) ¹⁴C-ages (Kao et al., 2008)