
1 Supplementary Material

2 S1 Flow Through cleaning method:

Differences between the procedures shown in Table 1 and Table 2

4

Figure S 1A: Elemental concentrations of sample AB1, treated as described in Table 2, with
the strongest HYDRX solution (0.5 M), the dashed lines frame the cuts in which
the dissolved foraminiferal calcite was collected

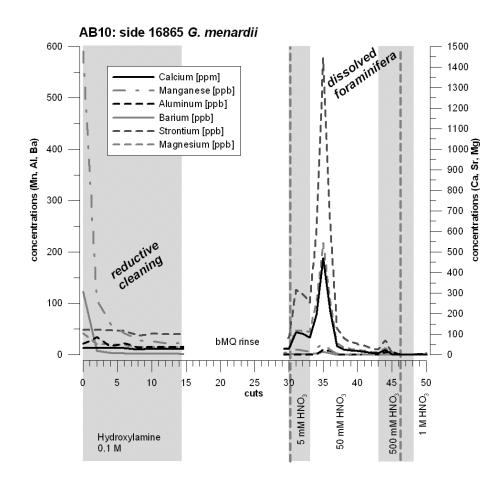


Figure S 1B: Elemental concentrations of sample AB10, treated as described in Table 3,
representative for all samples, cleaned with the flow through procedure (0.1 M
HYDRX), the dashed lines frame the cuts in which the dissolved foraminiferal
calcite was collected

13 S 2 Residual sediments

Step 1	3 ml conc. HCl	Reflux over night at Evaporate to dryness afterwards					
	1 ml conc. HNO ₃	140°C					
	2 ml HF						
Step 2	1 ml conc. HNO ₃	Reflux over night at Afterwards evaporate at 120-140					
	5 ml HF	140°C					
Step 3	$2.5 \text{ ml conc. HNO}_3$	Reflux over night at	t Evaporate to dryness at 180°C				
	0.5 ml perchloric acid	140°C					
	2.5 ml HF						
Step 4	4 ml 6 M HNO ₃	Reflux over night at	Evaporate to dryness at 180°C				
		120°C					
Step 5 & 6	4 ml 6 M HNO ₃	Evaporate to dryness at 180° to 190°C					
Step 7	4 ml 6 M HNO ₃	Reflux at 120°C					
	100 µl H ₂ O ₂	wait until reaction completed (open vials with lids lo					
	200 µml H ₂ O ₂	wait until reaction completed (open vials with lids lo					
		min. 1 h					
	200 µml H ₂ O ₂	wait until reaction completed (open vials with lids loose on)					
		min. 1 h					
		Evaporate to dryness afterwards					
Step 8	1 ml 6 M HNO ₃	reflux					
Step 9	centrifuge (1.5 ml safe loc	centrifuge (1.5 ml safe lock tubes), pipette into Teflon and evaporate					
Step 10	Preparation for column ch	Preparation for column chemistry					

14 **Table S 2**: Sediment treatment procedure for complete dissolution of the residual sediments

Conc. HCl ~10.5 M, quartz-distilled Conc. HNO₃ ~ 14.5 M, quartz-distilled HF 40% sp. Perchloric acid 70% $H_2O_2 \sim 30\%$ sp.

15 S 3 Neodymium separation from dissolved foraminifera

16 Table S 3: Nd separation of foraminiferal samples with 3.14 ml Eichrom Ln-spec resin (50-

17 *100 μm*)

Volume	Acid	stage
8 ml	6 M HCl	pre-clean
0.5 ml	0.1 M HCl	pre-conditioning
1 ml	0.1 M HCl	pre-conditioning
0.5 ml	0.1 M HCl	sample load
0.5 ml	0.1 M HCl	wash-in
10 ml	0.25 M HCl	elute LREE
2 ml	0.3 M HCl	elute LREE
6 ml	0.3 M HCl	collect Nd
8 ml	6 M HCl	clean
1 + 1 ml	0.3 M HCl	pass and store

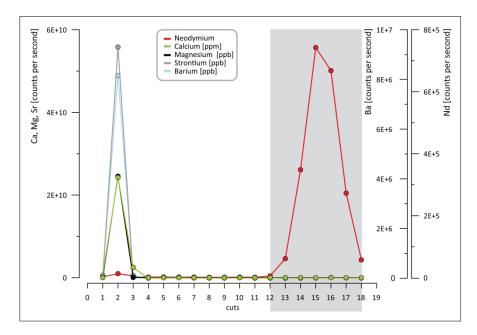
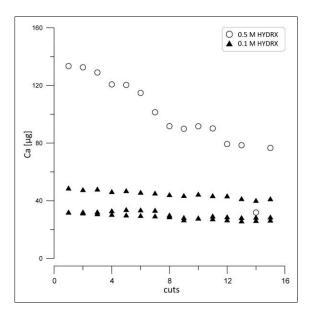



Figure S 3: Yield test for adapted neodymium separation (3.14 ml Eichrom Ln-spec resin, 50
- 100 μm, see Table S 2), without Sr-REE separation, sample: synthetic carbonate
solution (~2.8 % Ca, 106 ppb REE, 70 ppm Mg, 65 ppm Sr, 50 ppb Ba), the LREE
elution and the Nd collection step was divided into 18 cuts of 1 ml each. The gray
bar frames the cuts which were used for isotopic analyses.

24 **S 4** Foraminiferal element concentrations in the reductive solution of the Flow

25 Through (FT) cleaning method

26

Figure S 4A: Ca concentrations in the reductive cleaning solution (HYDRX) measured in
cuts of about 3.5 ml, cleaning included clay removal and oxidative cleaning

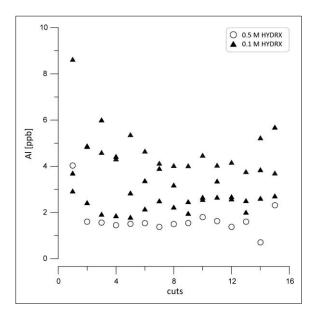
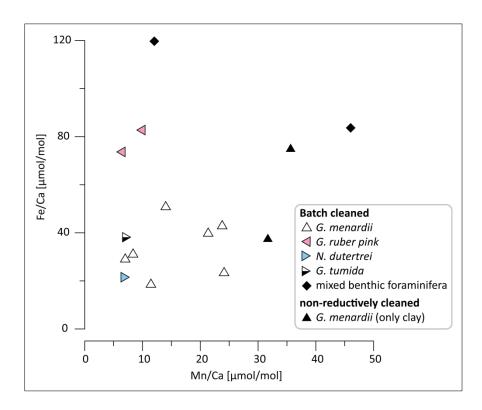
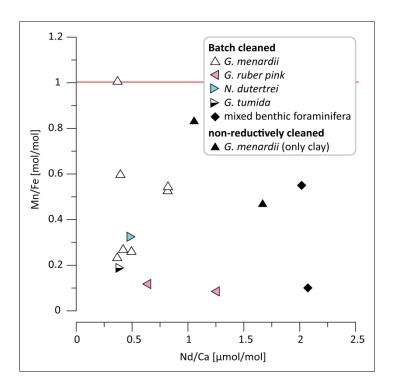



Figure S 4B: Al concentration in 1 ml of the reductive solution (HYDRX) measured in cuts
of about 3.5 ml, cleaning included clay removal and oxidative cleaning

Table S 5: Rare Earth element (REE) concentrationsNormalized to PAAS (ppm) (Nance and Taylor, 1976), results x10e³


sample	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Niger site east														
SK-AD 46, G. ruber pink	45	15	49	53	71	78	79	72	69	54	52	47	44	39
SK-AD 43, G. menardii	16	5	19	22	26	29	28	27	26	23	23	19	21	15
SK-AD 51, N. dutertrei	16	7	22	25	34	37	37	34	33	26	26	23	22	19
SK-AD 52, G. tumida	6	2	7	9	11	11	12	11	10	9	9	7	8	6
SK-AD 52, G. tumida	6	2	8	9	11	11	11	11	11	10	10	7	9	6
SK-AD 52, G. tumida	13	5	16	17	24	25	26	24	23	18	19	18	15	13
SK-AD 47, mixed benthic foraminifera	51	10	44	48	47	50	49	43	43	37	36	30	32	24
SK-AD 42, <i>G. menardii</i> , non- reductively cleaned	55	22	65	73	88	97	96	90	87	76	74	57	64	52
Niger site west														
SK-AD 45, G. menardii	13	5	14	16	21	23	24	22	22	17	18	16	16	14
SK-AD 49, mixed benthic foraminifera	46	13	42	48	50	54	55	50	49	42	42	34	39	29
SK-AD 44, G. menardii , non- reductively cleaned	38	16	41	45	61	68	71	64	64	52	51	45	45	39

34 S 6 Element to calcium ratios

35

36 Figure S 6A: Fe/Ca versus Mn/Ca

38 Figure S 6B: Mn/Fe versus Nd/Ca

39 *References*

40	Boyle, E. A. (1983) Manganese carbonate overgrowths on foraminifera tests. Geochimica Et
41	<i>Cosmochimica Acta,</i> 47, 1815-1819.
42	Nance, W. B. & Taylor, S. R. (1976) Rare-Earth Element Patterns and Crustal Evolution .1.
43	Australian Post-Archean Sedimentary-Rocks. Geochimica Et Cosmochimica Acta, 40,
44	1539-1551.