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Abstract. The Atlantic Ocean is one of the most important curs in the temperature-driven subtropical North Atlantic,
sinks for atmospheric carbon dioxide (gQbut this sink  with uptake in winter and outgassing in summer. The sea-
has been shown to vary substantially in time. Here we usesonal cycle is antiphased in the subpolar latitudes relative to
surface ocean Cfobservations to estimate this sink and the subtropics largely as a result of the biologically driven
the temporal variability from 1998 through 2007 in the At- winter-to-summer drawdown of COOver the 10 yr analy-
lantic Ocean. We benefit from (i) a continuous improvementsis period (1998 through 2007), sea surfa€0, increased

of the observations, i.e. the Surface Oceamp@@as (SO-  faster than that of the atmosphere in large areas poleward
CAT) v1.5 database and (ii) a newly developed technique toof 40° N, while in other regions of the North Atlantic the
interpolate the observations in space and time. In particularsea surfacepgCO; increased at a slower rate, resulting in a
we use a two-step neural network approach to reconstrudbarely changing Atlantic carbon sink north of the Equator
basin-wide monthly maps of the sea surface partial pressuré-0.01+ 0.02 Pg C yr! decade?). Surface oceapCO; in-

of CO; (pCOy) at a resolution of 1x 1°. From those, we creased at a slower rate relative to atmospherie ©@er
compute the air-sea GClux maps using a standard gas most of the Atlantic south of the Equator, leading to a sub-
exchange parameterization and high-resolution wind speedstantial trend toward a stronger @8ink for the entire South
The neural networks fit the observe€O, data with a root ~ Atlantic (—0.14+ 0.02 Pg Cyrldecade?). In contrast to
mean square error (RMSE) of about 10 patm and with al-the 10yr trends, the Atlantic Ocean carbon sink varies rela-
most no bias. A check against independent time-series dattively little on inter-annual timescales0.04 Pg C yr?; 10).

and new data from SOCAT v2 reveals a larger RMSE of

22.8 patm for the entire Atlantic Ocean, which decreases to

16.3 patm for data south of 40l. We estimate a decadal

mean uptake flux 0£0.45+0.15Pg Cyr! for the Atlantic 1 Introduction

between 44S and 79N, representing the sum of a strong

uptake north of 18N (—0.39+ 0.10 Pg C yrl), outgassing Over the last two decades, the Atlantic Ocear? @40 79 N

in the tropics (18S—18 N, 0.11+0.07 PgCyrl), and up-  and west of 19E) has taken up about 0.490.11PgCyr*
take in the subtropicalitemperate South Atlantic south ofon average&chuster et al2013. This makes the Atlantic
18 S (~0.164 0.06 Pg CyrY), consistent with recent stud- Ocean one of the most important sinks for atmospherig,CO

ies. The strongest seasonal variability of the Cfdx oc-  and especially for anthropogenic @(Babine et a].2004
Mikaloff Fletcher et al. 2006 2007 Gruber et al. 2009.
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The Atlantic sink estimate was taken from a recent Regionakhe observegpCO, is mainly a result of rapid warming. Fur-
Carbon Cycle Assessment and Processes (RECCAP) synthtier support for a decreasing North Atlantic sink comes from
sis by Schuster et al(2013, where the authors reviewed Lefévre et al(2004), Luger et al(2006, Olsen et al(2006),
different methodologies to estimate the air-sea@Oxes  andSchuster et a2009, although each study analysed dif-
and provided a “best” estimate. The methods included estiferent regions and periods and also used different methods to
mates derived (i) using ocean surface partial pressure ef COdetermine trendsSchuster et al(2009, for example, anal-
(pCO,) measurementsTakahashi et al.2009, (i) from ysed data from 1990 to 2006 in the eastern subpolar gyre and
ocean general circulation models that include a full repre-throughout most of the central North Atlantic, whilisen
sentation of the oceanic carbon cycle (d.g.Quéré et aJ. et al.(2006 only focused on the Nordic Seas, but looked at
2007 Graven et al.2012 Doney et al. 2009, (iii) inver- a more extended period, i.e. from 1981 to 2002/2003.
sions of ocean interior carbon measurements @mber Based on the results of a global ocean biogeochemistry
et al, 2009 and (iv) from inversions of atmospheric GO model, Thomas et al(2008 argued that this trend toward a
(e.g.Gurney et al.2008. For the “best” estimate, only the smaller North Atlantic sink is transitory and is expected to
observational-based estimates were used, however, i.e. thosebound in the near-term future, i.e. that the decreasing sink
relying on pCO, observations and those derived from the strength is the result of “natural” variability, and should not
ocean interior carbon observations through an inversion apbe interpreted as a signal of anthropogenic climate change.
proach. These methods gave rather similar long-term meaithey interpreted the decline in sink strength to be the result
values for the whole basin, although with substantial sub-of a NAO-driven reduction in the transport of water by the
basin differences. North Atlantic Current into the eastern subpolar gyre. In a
The Atlantic Ocean sink varies substantially by season,contrasting modelling studiliman et al.(2009 argued that
which is in part driven by seasonal variations in surface ocearthe North Atlantic carbon sink actually increased from the
pCO, (Takahashi et a1.1993 2002 Schuster et al.2013, mid-1990s to the mid-2000s. They proposed that the declin-
but is also affected by seasonal variations in surface oceaing trend in the NAO from the early- to mid-1990s until the
winds and atmospheric GO Surface ocearpCO, varies  mid-2000s led to reduced convective mixing in the subpolar
over a wide range above and below the atmosphe@i©,, gyre, counteracting the impact of warming.
with much of the seasonal amplitude dominated by temper- The initial year and period of data analysed for trends
ature in the subtropical regions in both hemisphe@wsiber  are crucial aspects to consider when resolving different per-
et al, 2002 Takahashi et al.2002 Sarmiento and Grubgr spectivesGruber 2009. McKinley et al.(2011) pointed out
2006, explaining the summer maximum in surface oceanthat when the surface ocean trendspi@O, are analysed
pCOu. In contrast, biological processes acting in synergyover more than 25yr, all regions in the North Atlantic ex-
with ocean mixing and circulation dominates the seasonahibit trends that are not statistically different from the trend
pCO;, cycle in equatorial and high latitude regions (poleward in atmospheric C@ implying no change in the sink/source
of 40°) (Takahashi et 811993 Bennington et a).2009, ex- strength. However, when the periods of analyses were short-
plaining the summer minimum in oceam€0,. Due totheir  ened to 10yr and the beginning and ends shifted, substan-
opposite phasing, these two drivers cancel each other outal trends emerged, largely reflecting inter-annual to decadal
along the regime boundaries at around flakahashi et al.  timescale variability.
2002, leading to a minimum in the seasonal amplitude there. A major challenge in detecting trends in the Atlantic
Schuster et a[2013 identified a broad agreement among in- Ocean carbon sink is due to the highly heterogeneous dis-
dependent seasonal flux estimates in the temperature drivemibution of the surface ocegnCO, observations in time and
subtropics, but not elsewhere. space. Different approaches have been employed to over-
Long-term trends and inter-annual variability of the At- come this limitation and to create basin or sub-basin wide
lantic carbon sink represent a source of substantial disagreesstimates. These include the binning of data%tx4° bins
ment between the different methodologies and studies. Usin latitude and longitude followed by an advection-based
ing surface ocearpCO, observationsSchuster and Wat- interpolation methodTakahashi et al.1999 2003 2009,
son (2007 argued for a decrease in the North Atlantic car- binning of data to large-scale biogeochemical provinces
bon sink and a reduction in the seasonal amplitude in both(McKinley et al, 2011), multi-linear regression models (e.g.
the subtropical and temperate North Atlantic from the mid- Chierici et al, 2009 Peng and Wanninkhpf2010, and
1990s to the mid-2000s. They linked this reduction to theneural network-based methods (elgfévre et al. 2005
large changes that occurred in the climate mode of the Northrriedrich and Oschlie009 Telszewski et a).2009 Sasse
Atlantic over this period, i.e. a shift of the North Atlantic Os- et al, 2013. Each of these approaches has its strengths
cillation (NAO) from very positive phases in the early 1990s and weaknesses. For example, the binning and interpolation
to negative and near-zero phases in the mid-2000ghiere  scheme employed Byakahashi et a(1999 is well suited for
et al. (2007 supported this conclusion on the basis of their constraining monthly climatologies, however, its coarse reso-
observations from the subpolar gyre over the 1993 to 2003ution tends to smooth out small-scale features. However, the
period, pointing out that the larger than expected increase imethod is very robust and it is not sensitive to outliers. The
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binning to large-scale biogeochemical provinces works wellstage approach has the advantage over previously employed

to determine long-term trend$/€¢Kinley et al, 2011), but one-stage approaches (é=gedrich and Oschlie2009 Tel-

its resolution is even more coarse. The multi-linear regresszewski et al.2009 that the pre-clustering of the data sub-

sion models allow very finely resolved estimates, however,stantially reduces the variance of tp€0;, that needs to be

the explained variance in these statistical models is often relexplained by neural network methods, resulting in substan-

atively low, causing substantial uncertainties in the estimatedially better fits.

fields. For both stages we use global data, as this permits us
In order to investigate the variability of the sea surfaceto take advantage of the fact that biogeochemical provinces

pCO; and the resulting carbon flux, we develop a novel neu-with limited coverage in a particular ocean basin can learn

ral network based approach that overcomes most of the afordrom observations in the same biogeochemical province in

mentioned issues which have limited previous studies. Oulanother ocean basin. Here, we evaluate and discuss only the

method is capable of capturing a large amount of variabil-results for the Atlantic Ocean. The resulting surface ocean

ity due to the non-linear predictor-observation relationship pCO, distribution is then combined with corresponding at-

on a fine * x 1° spatial grid. The method determines the mosphericpCO, data and wind-speed based estimates of the

non-linear relationships between the surface ogg2@, ob- gas transfer velocity to construct the mean and variability of

servations and a set of independent observations to produdée Atlantic Ocean carbon sink from 1998 through 2007.

basin-wide sea surface maps @€0, on a monthly basis.

Our network gathers information from similar ocean biogeo-2.1 Data

chemical provinces and provides us with regiop@lO, es-

timates, which we then use to investigate the changing dis :
tribution of the sea surfaceCO; in the Atlantic Ocean. Our Co, (f_COZ) from SOCAT _V1'5 (Sa_bme et aJ.2_013 form
the basis for our computations. This data set includes global

method relies on the assumption that the Atlantic Ocean car i )
bon sink and its variability can be estimated as a function®PServations over the period 1970 to 2007 and was homog-

of proxy variables, which are subjectively chosen. We fur- enized by an extensive series of automatic and manual sec-
ther rely on ocean carbon measurements in order to estatdary quality controlsRfeil et al, 2013. The fCO; data

lish a correct relationship. We therefore benefit from the re-distribution in the Atlantic O(Zegn Is highly skewed in time
cent publication of the Surface Ocean £@&tlas (SOCAT), and space. The number o21° pixels with £ CO, measure-
which provides the to-date largest global data set of surfac&"€NtS Per year varies from as lowas80 per year in 1999
ocean fugacity of C@observationsRfeil et al, 2013 Sabine ~ 2nd 2000, to over 4000 in 2006 and 2007, with the last two
et al, 2013, which we converted tpCO,. To evaluate our  Y8&'s accounting for 40 % of all measurements. The global
estimates, we compare our results to independent data frof{at@ in the other ocean basins are more homogeneously dis-
time-series stations and additional independe®0, mea- tributed in time. In contrast, the Atlantic has a good spatial
surements. Our basin-wideCO, maps provide a basis to COVerage, while this is not the case for many of the other

calculate the air—sea fluxes for the entire Atlantic and to©C€an basins. _
quantify the seasonal to inter-annual variability in its sink . 1h€ reportedfCO; estimates were converted €0, us-
strength. ing the formulation (see e.¢6rtzinger, 1999

The gridded observations of the surface ocean fugacity of

-1
pCO; = fCOz.exp<P§‘t‘,irﬁfB;2T 8) , Q)
2 Data and methods

wherePSUTis the total atmospheric surface press@ends
We combine two neural network methods to reconstruct theare viral coefficients\Weiss 1974, R is the gas constant and
sea surface partial pressure of £(»CO,) for the period T is the absolute temperature. National Centers for Environ-
January 1998 to December 2007 on a monthilk11° res-  mental Prediction (NCEP) monthly mean sea level pressure
olution. In particular, we use a two-stage approach to estabwas used fowggggf (Kalnay et al, 1996.
lish numerical relationships betwe@€O, and a suite of in- A crucial choice concerns the selection of the inde-
dependent predictors that are known to drive its variability. pendent input variables used for the training of the net-
In the first stage, we use a neural network clustering algoworks. We chose sea surface temperature (SST), chloro-
rithm to define a discrete set of biogeochemical provincesphyll a concentration (CHL), ocean mixed layer depth
that share a common relationship between the independerfMLD), sea surface salinity (SSS) and the atmospheric
variables and climatologicgiCOs. In the second stage, we CO, mole fraction §COy am). These parameters repre-
derive for each biogeochemical province a non-linear andsent physical, chemical and biological proxies determin-
continuous relationship betwe@€O, and the input param-  ing the distribution ofpCO; in the sea surface layer. For
eters on the basis of a feed-forward network (FFN) method SST, we use the National Oceanic and Atmospheric Ad-
This input—output relationship is then used to estimate surministration (NOAA) Optimum Interpolation (Ol) sea sur-
face ocearpCO; for each month and each pixel. This two- face temperature v.2Rgynolds et a). 2002, for CHL

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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the SeaWiFS mapped chlorophyll (SeaWiFSProjéttp: unvarying during these months, we expect that this choice
/loceancolor.gsfc.nasa.gov/cg)ll8or MLD the mixed layer  has a relatively small influence on our results.
depth data from the Estimating the Circulation and Cli- We use data from two sources to evaluate and validate our
mate of the Ocean, Phase Il (ECCOZ2) projédefiemen-  results. First, we extracted time-series data from the com-
lis et al, 2008, for SSS the Simple Ocean Data As- bined record from BATS (Bermuda Atlantic Time Series Sta-
similation (SODA) sea surface salinity dat€grton and tion) and Hydrostation “S”"Bates 2007 Gruber et al.2002
Giese 2008 and for xCOy atm the monthly atmospheric and the European Station for Time Series in the Ocean (ES-
CO, from GLOBALVIEW-CO2 (2011). Furthermore, the TOC) (e.g.Gonzalez-Davila et 3l2007. Second, we use
monthly pCO, climatology of Takahashi et al(2009 is 3065 additional data points within our study region and pe-
used as an additional input parameter for defining the bio+iod from the updated SOCAT v2 databafakker et al.
geochemical provinces. Due to their strongly skewed distri-2013, which were not included in version v1.5 and therefore
bution, MLD and CHL were log-transformed before use asconstitute independent data.
predictor values. To evaluate the sensitivity of the results with regard to the

We restricted our analyses to the time period from Januarychosen data product, we further performed 4 sensitivity runs,
1998 to December 2007 due to the temporal limitations ofnamely (i) SR1 (sensitivity run 1) where we replaced the
the data we chose for our study. No satellite chlorophyll dataSODA sea surface salinity with the World Ocean Atlas 2009
are available before the 1997 launch of the SeaWiFS mission(Antonov et al, 2010 sea surface salinity climatology, (ii)
and the CQ observations in SOCAT v1.5 extend to the year SR2, where we replaced the ECCO2 MLD product with the
2007. de Boyer Montegutde Boyer Montegut et 2004 MLD

Data with an original resolution finer than the required climatology, (iii) SR3, where we used the SOD84rton and
1° x 1° were averaged onto the desired grid, whereas inpuGiese 2008 sea surface temperature and (iv) SR4, where we
data with a coarser resolution were interpolated using a biexcluded chlorophyl: as an input parameter.
linear interpolation. We further took monthly averages of all
inputs with a finer temporal resolution. 2.2 Methods

To highlight anomalies and year-to-year trends within our
data sets, we further produced deseasonalized sets of our ifWe use a self-organizing map (SOM) methdtblonen
put variables by removing their long-term mean seasonal cy1987, 2001) to partition the global ocean into 16 biogeo-
cle from 1990 to 2010 (1998 to 2010 in the case of chloro-chemical provinces. Such a biogeochemical province is char-
phyll a and 1992 to 2010 in case of MLD and SSS) from the acterized by each of its location having a similar relationship
original data set. among all considered input variables. Based on trial and er-

In the next step the monthly’X 1° input data are rear- ror, we finally chose the climatologicagiCO, from Taka-
ranged into 3 major data sets. Each of these data sets cohashi et al.(2009, SST, log(MLD) and SSS as our input
sists of input vectorsy|,) where the input data are organized variables for the SOM (SINP data set). We did not include
as row vector elements, for example SST, log(MLD), SSS,chlorophyll, i.e. log(CHL), due to its many missing values.
and pCO; Takahashifor the self-organizing map input (SINP) A SOM is a neural network based cluster algorithm that
data set, sampled at the same space-time point (Tablavo can detect regularities within the provided input data and then
of these sets, SINP and the feed-forward network input 2earns to group them together. Similar input data, arranged
set (FINP2) are global sets and do not have a correspondas input vectors, are identified via their Euclidean distance
ing target data set (TablB. Input vectors with empty vec- towards the nodes (or neurons) of the network. The choice
tor elements, e.g. where no salinity data are available, weref 16 provinces represents a subjectively determined opti-
removed from these data sets. The third major set, the feednum between too many provinces with too little data but a
forward network input set (FINP), consists only of input vec- high degree of correlation between the provinces, and too few
tors where corresponding SOCAT v1.5 observations, or tarprovinces with a lot of data, but too high variance in the data.
gets ), are available, i.e. they are subsampled in time at theDetails on the SOM method can be found in Appendix Al.
locations where observations are available. In order to train The provinces change in shape from one month to the next
the feed-forward network, two sub sets of the FINP set areand further change slightly between years, i.e. they are not
created, namely the actual training (FITR) set and a valida-static, unlike conventional provinces or biomes. As we did
tion (FIVAL) set (Tablel, Appendix A2). not provide any additional time or space information to the

Where no chlorophylk satellite data are available, due SOM, these temporal variations emerge solely from the tem-
e.g. to cloud cover or lack of sufficient light at high latitudes poral variability of the input data. Despite their strong sea-
in winter time, we estimate the sea surfgg€0, with the sonal dynamics in space (Fitg) and time (Figlb), the es-
remaining input parameters. This applies to about 22 % oftimated biogeochemical provinces exhibit a coherent large-
all pixels and mainly concerns the high latitude oceans inscale behaviour, reflecting the well known oceanic struc-
winter. Since chlorophyll concentrations tend to be low andtures such as the gyres, the equatorial regions, and the high-

latitude North Atlantic. Figurela shows the mode of the
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Table 1.Input and target vector elements for each subset used within our method. The subscript ds describes deseasonalized data, which ar
computed by subtracting the long-term mean seasonal cycle from the original data set as explained in the text. Additionally, log(CHL) was
excluded from sets FINP, FITR, FIVAL and FINP2 to estimat@0O, when no satellite chlorophy#l was available due to cloud cover.

Set name Elementsof the jth input vectorsy{; Targets (/)
SINP SST, log(MLD), SSSHCO; Takahashi -
FINP, FITR, FIVAL  SST, log(CHL), log(MLD), SSSyCOy atm, SSTys, CHLgs, MLDgs, SSQis: *COp atmds  PCO2 socAT
FINP2 SST, log(CHL), log(MLD), SSS;CO2 atm, SSTygs, CHLgs, MLD g5, SSQis, XCO2 atmds  —
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Fig. 1. Map of the biogeochemical provinces in the Atlantic Ocean identified by the self-organizing map (SOM) n&}peoazince number
of the mode (i.e. most frequent occurrence). Provinces 1 and 2 do not occur in the Atlantic (d¢ddre number of different provinces
every pixel belongs to for each month from January 1998 to December 2007.

provinces, i.e. the province each pixel mainly belongs tocontinuities Pemuth et al.2008. Similar to multi-linear re-
from 1998 to 2007 and Fidlb shows the number of shift- gressions, a feed-forward network adjusts coefficients to es-
ing provinces per pixel. These provinces vary in time andtablish a relationship between inputs and targets. The adjust-
space mainly in accordance with the variability of the clima- ment of the coefficients follows an iterative process. The first
tological pCO». In the tropics, and the high latitude North iteration includes an initial guess, where the coefficients are
Atlantic, the climatologicalpCO, vary little seasonally and randomly initialized, the estimates are computed and com-
therefore the provinces remain fairly steady, with only min- pared to the target observations. From there on the network
imal province shifts. In contrast, the gyre regions of both goes backwards (hence the name backpropagation) and au-
hemispheres exhibit much larger seasonal variability, hencéomatically re-adjusts the coefficients with the aim to reduce
pixels there undergo many more province changes. We findhe mean squared error between estimates and targets. For
the largest shifts along the Gulf Stream, where certain re-each iteration, only a random subset of the data is used to
gions change their province association up to 10 times. train the network, while the remaining data are used for val-
As a second step we use a feed-forward network (FFN)dation. The updating process of the coefficients is repeated
method to reconstruct the non-linear relationship betweeruntil the network estimates derived from the validation set
our input variables and the target, i@2CO,, separately for no longer improve significantly relative to the targets. The
each of the 16 biogeochemical provinces. The FFN methodestablished relationship is further used to predict g0,
is a type of backpropagation network method that is capabldor each point in time and space where no observations are
of approximating any function with a finite number of dis-

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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available. This process is explained in more detail in Ap- Table 2. Statistical measures of the comparison of the neural
pendix A2. network-based estimates pCO, with the SOCAT v1.5 gridded
The feed-forward network was trained with the FINP data observations in the Atlantic Ocean from“g& to 79 N and west of
set that included all input variables including their desea-30°E
sonalized representation (see Tab)eTo this end the data

set was split into the 16 ocean provinces (FINPINPZ, Pericd r? RMSE  bias #
with k=1,...,16) and each of them was processed sep- [watm]  [uatm] data
arately. Due to the temporal and spatial variability of the 1998-2007 0.87 9.89 —0.10 20003
provinces and the heterogeneous spatiotemporal distribution 1998 0.93 7.15 -0.18 583
of the pCO, data, large differences exist in the number of ob- 1999 0.89 9.35 1.62 186
servations within the different provinces. However, our neu- 2000 078 11.14 -0.19 178
ral network fit does not show degeneration as a function of 2001 083 1148 —0.87 566
the data density, as shown in Sect. 3.1 for the temporal distri- 2882 8'2? 3?13 _Ool'fz 1;2§1
bution, and the spatial heterogeneity of the data does not lead 2004 0:87 8:13 _0:14 2729
to any major hidden bias. Details on the settings used for the 2005 0.88 952 —043 3575
FFN can be found in Appendix A2. 2006 085 1151 —010 4280
The air—sea flux was then calculated from the estimated 2007 0.87 10.89 0.12 4002

pCO;, for each grid cell and month, using the quadratic wind
speed dependence of the gas transfer velocityarininkhof
(1992 with the gas transfer coefficient froBweeney et al.
(2007 and monthly mean wind speeds from the cross-
calibrated multi-platform (CCMP) product bitlas et al.

To test the impact of the inhomogeneous distribution of the
neural network input data aneCO, observations, we show
the residuals calculated as the difference between the neural

(2013). More details are provided in Appendix A3. networkpCO, estimates and the gridded SOCAT vp6O,
observations (Fig3). The residuals are independent of the

3 Results magnitude of the estimatgdCO,, and also do not show any
dependence on the magnitude of the independent variables

3.1 Residuals and validation (Fig. 3). Each bin median of the residuals is close to zero,

with the strongest spread occurring in the I@€0, bins
The combined SOM-FFN method obtains very good fitsaround 275 patm which coincides with low SST at around
with an overall mean-? between the fitepCO, and the  5°C and high log(CHL) concentrations at arour@.25 to
gridded Atlantic Ocean SOCAT v1.5 data of 0.87 and al1.25mgn73. Figure 3 further shows that large residuals,
RMSE of about 10 patm (TabB. The overall bias is small most of which stem from regions characterized by strong hor-
(—0.10 patm). These results apply also to each year individuizontal pCO;, gradients, are independent of the data density.
ally, indicating that the temporally inhomogeneous data dis- In conclusion, the residuals indicate that the combined
tribution does not have a measurable effect on the estimateSOM-FFN method fulfils most tests for a good fit and does
for each year. not contain any major hidden biases. In particular, there is no
The residuals are not entirely randomly distributed in indication of a substantial degeneration of the fits as a func-
space. As shown in Figa, the temporal mean residuals in tion of data density, neither in time nor in space. Regions
each pixel show generally low values in the open ocean rewith high spatial or temporal variability are the least well fit-
gion, but tend to increase toward the fronts. The strongested, while the fits for most of the less variable open ocean are
model-observation discrepancies occur in the equatorial Atvery good.
lantic, along the Gulf Stream and North Atlantic Current as
well as in the Norwegian, Greenland and the North seas, i.e3.2 Validation with independent observations
mostly in regions with relatively strong horizontal gradients .
in surface oceapCOy. A se_cond gnd more robu.st test of the model's ability to
The standard deviation of the residuals (g shows that ~ Predict basin widepCO; fields was conducted by com-
the strongest temporal errors occur again in the high latitude®2iNg output values to independent data. To this end, we
of the North Atlantic, in particular the Norwegian and North compare the network-basqeCO, estimates with observa-
seas, as well as along the North American coastline and in thONS from two time-series stations in the subtropical North
eastern South Atlantic between 0 and 30 This indicates  Atlantic, i.e. the combined record from BATS and Hydro-

that the model input parameters are not able to predict all th§tation “S” Bates 2007 Gruber et al. 2003, which is
temporal variability occurring in these regions with known l0catéd in the northwestern Sargasso Sea near Bermuda
biogeochemical complexity. (310N, 6430 W), and ESTOC (e.gGonzalez-Davila

et al, 2007 located in the eastern subtropical gyre near the
Canary Islands (29.0N, 15.5 W). These stations provide
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Fig. 2. (a) Temporal mean residuals afin) standard deviation of the residuals in patm between neural network estimates and SOCAT v1.5
gridded observation$S@bine et a].2013 for the period from 1998 to 2007. Pixels that have a valu@)rbut not in(b) indicate where only
1 observation in time is available.

near monthly coverage over the time period estimated by thef data used to train our network. Figuseshows the tem-
model. As we do not have estimates centred at the exact geg@oral mean and standard deviation of the residuals, simi-
graphical position of both time-series stations, we interpolatdar to Fig. 2. The largest misfit between our estimates and
the 4 closest surrounding grid boxes, weighted by their dis-the additional observations can again be identified along the
tance, to compare our results. Gulf Stream and North Atlantic Current, confirming that our
Figure 4 shows the comparison between the neural net-method has difficulties to fully capture all variability within
work estimates with both time series for the period betweenthis region. Overall, the neural network estimates have a
1998 through 2007 and additionally the mean seasonal cyRMSE of 22.83 patm and a bias of 4.85 patm. When we ex-
cle within this period. While the phase of the seasonal cy-clude data north of 40N, where we obtain the largest mis-
cle is captured fairly well, Fig4 shows that the neural net- fits, the results improve with a RMSE of 16.29 patm and a
work estimates in general underestimate the winter minimamean difference of-1.12 patm similar to the numbers ob-
at Bermuda from January to April and the autumn maximatained from the independent time-series stations. This sug-
at ESTOC from August to November. This underestimationgests that over most of the ocean, our method succeeds in
of the seasonal amplitude is likely linked to the early stop- predicting the observedCO, at any given time and place to
ping approach (see Appendix A2) which was implementedwithin about 20 patm, and a bias of a few patm.
to prevent our neural network from overtraining. The neural
network estimates further show a decrease in the summer sef3  Uncertainty of the air—sea flux
surfacepCO, from 2005 onwards which is not seen in the
ESTOC data. The decadal mean difference between BATShe yncertainty of the flux product stems from the error in
data and neural neMork estimates is 7.56 patm Wlth a RMSEpe estimatedA pCO, and the uncertainty of the gas trans-
of 17.53 patm. Similar to BATS, the decadal mean differenceser coefficient Takahashi et al2009. We estimate this un-
between the estimates in this study and the ESTOC data igertainty for the integrated flux over the 4 considered REC-

—8.06 patm with a RMSE of 16.85 patm. CAP/ocean inversion regions (see Tabfer region borders)
As a last test, we use data from the recently updated SOyaiher than for each®lx 1° grid cell.
CAT v2 databaseRakker et al. 2013, which provides new The ApCO; estimate is subject to two main sources of

independent data points within our study period to validategrors, j.e. the error derived from discretizing the original ob-
the results. A total of 3065 gridded observations, spread oveggryations into 1 x 1° bins and the error of the neural net-

the entire Atlantic Ocean have been added for our study reyork method to interpolate the data in time and space. For
gion from 1998 to 2007 representing 15 % of the total amountye giscretizing error we use a value of 5 patm as reported

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 78152013
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Fig. 3. Residuals as a function @&) fitted pCO», (b) atmosphericpCOy, (c) sea surface temperature (SS{@) natural log of surface
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depicts the residuals, shown as a box-and-whiskers plot. The red line in the box show the median, the blue box indicates the 25 and 75
percentiles and red crosses mark residuals outside this interval. The lower plot shows the relative number of observations within each bin.

by Sabine et al(2013, while we adopt our RMSE value of gion, it would be inappropriate to assume that each of the
about 10 patm (see Tal® for the interpolation error. When estimates is independent, as these errors are spatially corre-
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Fig. 4. Validation of neural network results withCO» (a, b) from the BATS Hydrostation “S”Bates 2007 Gruber et al.2002 and(c, d)

from the ESTOC Gonzalez-Davila et gl2007) time-series stations. Ifa) and(c) the actual time-series data are compared, whi{@)jrand

(d), the long-term mean seasonal cycle is evaluated. Grey shading shows the uncertainty of the neural network estimate based on its RMSE
Red shading shows the standard deviation of the mean seasonal cycle for each time-series station.

To estimate the discretization error associated with grid- Furthermore, followingSweeney et al(2007), we as-
ding for each RECCAP/ocean inversion region, we use thesume a random error of 30% in the gas-transfer veloc-
spatial decorrelation length scale of 400 km estimated byity. For our long-term mean estimate of the Atlantic Ocean
Jones et al(2012 to compute the effective number of de- (—0.45Pg Cyrl) the error due to the piston velocity uncer-
grees of freedom. The uncertainty of the mean is then estitainty is 0.13 Pg C yrl. This results in a total uncertainty es-
mated by dividing the standard deviation by the square rootimate for the Atlantic Ocean a£0.15 Pg C yr?, or roughly
of the effective degrees of freedom. This results in an uncer33 %, with the largest contribution stemming from the uncer-
tainty of between 1 and 2 patm for the individual regions.  tain gas transfer velocity.

To estimate the spatial mean of the neural network er-
ror for each RECCAP/ocean inversion region, we estimate3.4 Decadal mearpCO; and air-sea CQ flux

the spatial correlation by analysing the semi-variogram of
the residuals (see e.ialkhan 2011 (for details see Ap- The lowest decadal mean sea surfa€, values are found

pendix A4). While in some regions the spatial correlation of in the northern North Atlantic, especi_ally the La_brador Sea,
the residuals fall very quickly, the correlation of the residuals the Greenland Sea and the Norwegian Sea wiliO, be-
within one bin is substantial, yielding a substantial reduction/oW 320 patm and in the midlatitudes, along the Gulf stream
in the effective degrees of freedom. The uncertainty betweei@nd North Atlantic Current and the South Atlantic south of
different regions ranges from 1 to nearly 4 patm. _300 S (Fig. 6a)._The hlghespCOZ values can bg identified
Adding the error from the gridding and the neural net- I tr_le equatorial Atlantic, in the North Atlantu_: along the
work together, and assuming a mean error of 0.2 patm fopar!bbean Current and the trop|cal_and subtropical S_outh At-
the atmospherigCO, (Takahashi et al2009, yields a to- lantic northwards of 30S. Further high values are estimated

tal ApCO, error for the 4 regions of between 2 and 6 patm. & 60 N around the Irminger basin and at"39 in the sub-
With a mean gas transfer rate in the Atlantic Ocean oftropical North Atlantic along the Portugal Current, and in the
0.05mol Cnr2yr— patnm? this results in a flux error be- eastern North Atlantic along the Canaries Current.

tween 0.03 and 0.06 Pg Cyr and an overall basin error of ~ 'he decadal meapCO; distribution from the neural net-
0.07 Pg Cyr? calculated by standard error propagation. work method is generally very similar to that estimated by
Takahashi et al(2009, with some important exceptions

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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Fig. 6. (a) Decadal mean surface oceaB0, and(b) CO, flux density in mol Cnr2yr—1 for the Atlantic Ocean. Negative flux densities

indicate CQ uptake by the ocean.

(Fig. 7). To produce this comparison plot, we first binned our estimates to the year 2000 by subtracting 4.5 patm on the

our estimates to the same resolutioh 45°) as the original

basis of the assumption that the surface ocean follows the

climatology of Takahashi et al(2009. We then corrected atmospheric trend of 1.5 patm per year and the fact that our

Biogeosciences, 10, 7793815 2013
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estimate is centred around 2003. The strongest difference:
can be identified in the high latitudes of the North Atlantic
within the Labrador Sea, the Greenland Sea and the Norwe-
gian Sea. For the entire Atlantic we derive a mean difference gqop -
of 0.38 patm and a RMSE of 6.45 patm.

Given the overall small bias and the low RMSE between
the two very different methods to interpolate the data, it ap-
pears that the long-term mean surface ocg@®, can be 30°N
very robustly estimated from the available observations.

The CQ flux density (Fig.6b) largely follows thepCO;
pattern, although with some notable differences. Overall, the
North Atlantic is a strong sink for atmospheric €@ the 0°
mid and high latitudes, whereas the lower latitudes act as a
source for atmospheric GOThe strongest C@uptake in the
North Atlantic occurs along the Gulf Stream and the North
Atlantic Current, as well as in the Labrador, Norwegian, and 5q50g | 1 |
Greenland seas, and in the South Atlantic south 6f30

We estimate a decadal mean flux of 7
—0.44+0.15PgCyr! for the Atlantic Ocean from £ ‘ ‘

(o] (o]
44°Sto 76 N and 100 W to 19 E (—0.45+0.15Pg Cyr? LW ¢
from 44 S to 79 N and west of 30E). This is in good A [ S
agreement wittschuster et a[2013, who provided a “best” -20 -10 0 10 20
estimate 0f—0.49+ 0.11 Pg Cyr?! (derived from the mean [natm]

fluxes of the pCO, climatology and the ocean inversion

fluxes within the RECCAP project). decadal mean neural network estimates (this study), corrected to

Table 3 lists the Iong-term T“.ea” fluxes for the Atlantic the year 2000, and the estimates from the climatologiasé&hashi
Ocean as well as the four individual ocean RECCAP/ocearbt al.(2009. Positive differences indicate highp€0O, for the neu-

inversion regions considered Bghuster et al2013. While 14 network estimates. The neural network estimates have been in-
the basin average flux is well within the uncertainty range ofterpolated to the @x 5°) grid of the Takahashi climatology.
the best estimate frof8chuster et a(2013, the subtropical

North Atlantic (18—-49N) mean flux is just outside the un-

certainty range of the RECCAP best estimate. In general, the

neural network fluxes are closest to those of p&0, cli- pCQO, from October to April and low values from May

matology ofTakahashi et a[2009 with the exception of the to September. The opposite cycle occurs in the subtropical

subtropical South Atlantic (44—1&) where the long-term North Atlantic between 10-40N and 10-40S with low

mean flux is closest to the results of the ocean inversion angbartial pressures in winter and a seasonal maximum in the

the ocean biogeochemical models. We estimate the main cawarmer summer months.

bon sink region to be the high latitude North Atlantic with  The mean seasonal cycle of our neural network-based esti-

strong uptake throughout the year and a decadal average umates ofpCO, agrees relatively well with the seasonal cycle

take of—0.204+0.07 Pg Cyr?. estimated byTakahashi et al(2009, but substantial differ-
Comparing the decadal mean flux of -024%15 Pg C yr! ences exist at the regional level (FB). As above, we cor-

to the results derived from the sensitivity runs SR1-4 re-rected our estimate to the year 2000 in order to have better

veals that the choice of products does not significantly in-comparable estimates. The strongest difference can be iden-

fluence the long-term mean result. The decadal mean fluxesfied in the high latitude North Atlantic, where we estimate a

from the sensitivity runs range from -040.14 (SR2) up  stronger seasonal cycle with higher values in the winter and

to -0.48+:0.16 Pg Cyr! (SR4) and are therefore well within lower values in the summer, with differences of more than

Fig. 7. Difference in the surface ocegrCO; in patm between the

the estimated uncertainty range. 10 patm. In comparison, the differences throughout the At-
lantic Ocean are mostly within the calculated RMSE of our
3.5 Seasonality method.

To determine the drivers behind the seasonal cycles, we
The 10yr mean sea surfageCO, seasonal cycle exhibits split the long-term mean seasonal cycle at each grid cell into
strong latitudinal differences (Fig8). While we find the  athermal and into a non-thermal compone3dimiento and
weakest seasonal signals north of 80 south of 40 S and  Gruber 2006 Takahashi et al.2002 Egs. 1, 2). The latter
near the Equator from 2( to 10 N, the temperate North is driven by the seasonal changes in temperature and is com-
Atlantic (40-60 N) has a distinct seasonal cycle with high puted on the basis of the well known temperature sensitivity

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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Table 3. Comparison of regional and basin-wide decadal mean fi@es in Pg Cyr! from the neural network-based method (column

VIIl) compared to a range of other methods. This includes (1)it8€, climatology of Takahashi et al2009 and the tier 1 methodologies
described irSchuster et al2013 which include (1) ocean inversiorGruber et al.2009, (lll) atmospheric inversionReylin et al, 2013,

(IV) ocean biogeochemical models as well as observation based results including (V) a SOCAT v1.5 based multi-parameter regression
(Schuster et al2013 and (VI) an estimate based on th€0, database ofakahashi et a[2009 updated bycKinley et al.(2013). (VII)

lists the best estimate from combining the different RECCAP methodologies as descr8maister et al2013

0] (n (1 (V) (V) (V1) (Vi) (Vi
Region pCO Ocean Atmospheric OBGC SOCAT pCOy RECCAP Neural
climatology inversion inversion models MPR database best estimate network
[PgCyr'] [PgCyr?] [PgCyr?'] [PgCyr?] [PgCyrl] [PgCyr'] [PgCyrl] [PgCyr?]
49-76 N —-0.23 -0.19 —0.28 -0.17 —-0.07 —0.30 -0.21 —-0.20
(West of 19 E) +0.12 +0.06 +0.03 +0.02 +0.04 +0.13 +0.06 +0.07
18-49 N -0.19 -0.34 -0.31 -0.13 —0.18 -0.24 -0.26 -0.19
+0.09 +0.08 +0.03 +0.03 +0.09 +0.16 +0.06 +0.07
18°S-18 N 0.11 0.13 0.12 0.15 0.10 0.12 0.12 0.11
+0.05 +0.06 +0.05 +0.06 +0.05 +0.14 +0.04 +0.07
44-18 S —-0.10 -0.17 -0.13 -0.17 —-0.25 -0.21 -0.14 -0.16
+0.05 +0.05 +0.02 +0.01 +0.12 +0.23 +0.04 +0.06
Atlantic Ocean —0.42 —0.56 —0.60 -0.32 —0.40 -0.63 —0.49 —0.44
+0.17 +0.13 +0.07 +0.07 +0.16 +0.34 +0.11 +0.15
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Fig. 8. Hovmoller plot of the zonally averaged long-term mean seasonal cyc{a)gfCO, in patm and(b) the CO flux density in
molCn2yr—1.

of pCO;, (Takahashi et al1993 Eq. 2) and the non-thermal causes an increase in the sea surfa€€, due to a reduced

component is computed by the difference. solubility. Comparing FiglOwith Fig. 8 reveals that the non-
The seasonal cycles of the thermally and non-thermallythermal seasonal cycle of the sea surfa€0, dominates

driven partial pressures tend to cancel each other (E]g.  over the thermally driven seasonal cycle polewards 6fNLO

consistent with previous analyseSafmiento and Grubger In contrast, the seasonal cycle in the subtropical North and

2006 Takahashi et al.2002), i.e. assuming a 4% change South Atlantic is driven by the thermalCO, component.

in pCOy per unit change in SST, and employing the sameThe thermal and non-thermal driven seasonal cycle of the

SST product used for the network training. In detail, we find equatorial band and in the South Atlantic south 6f SEom-

in both hemispheres the non-thermally drive€@0O, starts  pensate each other, resulting in little variability within each

to decrease due to increasing biological production and reband.

duced vertical mixing resulting in increased stratification in  The seasonal cycle of the GGlux is largely driven by

the warmer months. The thermally driven seasonal cyclethe seasonal cycle of the sea surfa€0, with only modest

however, follows the increase in sea surface temperature anahodifications by the seasonal cycles of wind and solubility

Biogeosciences, 10, 7793815 2013 www.biogeosciences.net/10/7793/2013/
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Metzl et al.(2010 investigated the sink trend over a similar
time period (2001-2008) in the North Atlantic subpolar gyre
(53-57.8N, 45-33 W and 57.5-62N, 40-25 W). These
> authors found a particularly strong increase in the winter sea
- | W' surface fCO, of 5.8+ 1.1 and 7.2- 1.3 patmyrt. While
this is much stronger than suggested here (seelBjghoth
studies agree on the North Atlantic subpolar gyre having a
trend towards a stronger increase of the sea surfdi®,
over the~ 2000 to~ 2007 period.McKinley et al. (2017
0- 1 found a similar trend towards a weaker undersaturation in
10 their subtropical seasonally stratified region arountMdor
20- | the period 1993 until 2005, but did not identify a significant
> —— trend in the subpolar gyre over the same period. This may
_4 : -20 reflect differences in the time period, as their analyses with
Jan Apr Jul Oct Jan an earlier start, i.e. pre-1990, suggest also a trend toward a
Fig. 9. Zonally averaged difference in the long-term mean seasona?Neaker undersatu_ranon. .
cygcle of the gurfacegoceapcoz between ourgneural network es- Decadal trends in surface O?eﬁﬁoz inthe Labrador Sea
timates (this study), corrected to the year 2000 and those from th@lnd gome parts of the IceIanQ|c Seas were much §maller than
climatology ofTakahashi et a(2009. Positive differences indicate ~ that in the atmosphere, leading to an overall relatively small

higher partial pressures of GOn the neural network-based esti- trend for the entire region north of 48l. As the low lati-
mates. tudes of the North Atlantic (0—4MN) have close to zero trend

relative to that of the atmosphere, the entire North Atlantic
pCO, trend is also very close to that of the atmosphere, i.e.
(Fig. 8b). The temperature driven solubility and the wind lead 1.80+ 0.77 patmyr* versus 1.9@& 0.34 uatmyr? for the
to a larger outgassing of GOn large areas in the high lat- atmosphere.
itudes in winter, where the sea surfag€0; is supersatu- As expected from the uptake of anthropogenico®§ the
rated, and to an increasing uptake of £i@ the subtropics surface ocean, the majority of the oce@@80O;, trend stems
and low latitudes and vice versa in summer. Throughout thérom the non-thermal part, i.e. the increase in surface ocean
entire Atlantic, the flux densities are considerably larger dur-DIC (dissolved inorganic carbon) (1.461.75 uatmyr?).
ing the Northern Hemisphere winter season, compared to thelowever, the overall warming trend in the North Atlantic
summer. The neural network estimates show a strong seaver this decade further enhances the oqga@» trend quite
sonal CQ outgassing in summer in the northern subtropics,considerably (with on average stronger than atmospheric in-
driven by the increasingCOy, with a 6 month difference in  creases of 2.2% 0.77 patm yr! from 40 to 60 N and east of

80— —— T —
- T
»—_‘
—
60-
—

20

40-

20- o

Latitude [deg]
[uatm]

the Southern Hemisphere. 50° W and 4.03t 3.18 patm yr* at 60—70 N and 0-10 W).
Splitting the trend into thermal and non-thermal component
3.6 CO; trends and inter-annual variability shows on average a linear trend of 1:46.75 patmyr?!

for the non-thermal components, while the thermally driven
The main driving variable for trends in the sea surfa€O, trend is on average 0.371.47 patmyrt. However, given
is the atmospheric C£) but within our study period the neu- their uncertainty, we cannot statistically distinguish both
ral network estimates show that these trends are not in partrends from zero. The small difference in the increase in sur-
allel. Across large areas of the Atlantic, the 10yr trend of face ocearpCO; relative to the atmosphere results in an al-
surface oceapCO; is estimated to be lower than that of at- most steady strength of the Atlantic carbon sink in time north
mospherigpCO, (Fig. 11a), but there are notable exceptions. of the Equator{0.01+ 0.02 Pg C yr! decade?).
In this plot, the atmospheric trend has been subtracted from Trends for the South Atlantic show a weaker increase
the long-term mean trends for eachx11° pixel, so that pos-  in the sea surfac@CO; relative to that in the atmosphere
itive values indicate a rate of increase faster than of the atmowith the exception of the eastern South Atlantic and parts
sphere and vice versa for negative values. Taldbows that  along the South American coast. On average, surface ocean
the bias between estimates and observations is fairly constaptCO; increased only by 0.9% 0.97 patm yr! over the 1998
at each year individually, suggesting that trends are capturethrough 2007 period, resulting in a carbon sink increase of
well where observations exist. —0.14+0.02 Pg Cyrldecade?. Similar to the North At-

The strongest increase in ocean surfa€O, relative to  lantic, the non-thermal component of tp€0, with an av-

that in the atmosphere is found in the North Atlantic pole- erage trend of 0.74 1.30 patm yr! appears to be stronger
ward of 40 N along the Gulf Stream and North Atlantic Cur- compared to 0.1%0.79 patmyr?! of the thermal compo-
rent. Here, the neural network suggests an increase in se@ent, but given their uncertainty, both trends are again in-
surfacepCO, of more than twice the atmospheric increase. distinguishable from zero.

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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Fig. 10. Mean seasonal cycle of the zonally averaged sea sugf@¢®, driven by (a) the non-thermal component, such as changes in
circulation, mixing, and biology, an¢b) the thermal component, i.e. the changes in temperafayend (d) show the non-thermal and
thermal components respectively for ffekahashi et a[2009 climatology. The decadal mearCO, has been added to both components.

Taking the North and South Atlantic together, the timescale fluctuationsThomas et a).2008 Gruber 2009
trend over the entire study region is one toward aMcKinley et al, 2011). The most recent studies bcKin-
stronger sink over the 10yr period with an overall ley et al.(2011) andFay and McKinley(2013 suggest the
mean trend of 1.460.76 patmyr! and a flux trend of latter to be the case. The authors show that short-term trends
—0.15+0.04 PgCyrldecadel. on timescales similar to this study are strongly influenced

The sensitivity runs reveal that trend estimates are barelypy the chosen start and end year and strongly reflect climate
influenced by the choice of the input data product, with themode signals such as ENSO and NAO. However, reported
exception of SR2, i.e. where we had replaced the ECCOZX0yr trends in heat storagédvitus et al, 2012 and inte-
MLD product with the de Boyer Montegudé Boyer Mon-  rior ocean oxygen changes in the North Atlantegndardo
tegut et al. 2004 MLD climatology. While pCO, trends  and Gruber2012 indicate that this region has been subject
are statistically indistinguishable between our neural networkio multi-decadal changes, particularly in the subpolar gyre.
estimate (1.460.76 patmyrl) and SR1-4 (1.42 0.59, It is also tempting to point out that the resulting pattern of a
1.25+0.48, 1.48:0.77 and 1.3Z20.73 uatmyr?! respec-  decreasing sink in large areas of the North Atlantic and in-
tively), this is not always true for the fluxes. Here, SR2 creasing sink in the South Atlantic appears to be mirrored

reveals a flux trend<0.26+ 0.03 Pg C yr! decadel) out- in the observation of a faster rate of accumulation in anthro-
side the uncertainty interval of our neural network estimatepogenic CQ in the South compared to the North Atlantic
(—0.154+ 0.04 Pg Cyr! decadel). (Wanninkhof et al.2010. One needs to be careful, though,

It is not possible to conclude from our data whether as the surface ocean trends are for the sum of natural and
the 10yr trends identified here are part of truly long-term anthropogenic C& while the ocean interior trends are for
trends (30yr or longer), or whether they are part of decadalanthropogenic C@only.
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Fig. 11. Linear trendqa) in sea surfacgpCO; relative to that in the atmosphere afi) in the CG flux over the period 1998-2007. The

relative trend in sea surfageCO, was computed by subtracting the atmospheric mean trend. Areas with cross-hatch indicate where the trend

is outside the 95 % confidence level £ 0.05). Trends were derived by first applying a 12 month running mean to each pixel to deseasonalize
the data and then calculating the slope of a linear fit to these deseasonalized data.

The largest year-to-year variability in sea surfgg@O,
is found within the North Atlantic north of 40N and in
the eastern equatorial and South Atlantic. In contrast, the =
subtropics in both hemispheres show much less year-to-yeaS
variability.

Integrating our monthly air-sea GQlux estimates for
each year over the Atlantic Ocean reveals the largest
annual mean flux differences during the second half 3
of our study period (Fig.12a), where annual mean
fluxes range from—0.394+0.13PgCyr! in 2001 up to
—0.56+0.18 Pg Cyr! in 2006. Figurel2b illustrates the
inter-annual variabilities (1AV) for both hemispheres and the
entire Atlantic Ocean. The IAV, calculated as a 12 month
running average, is fairly constant from 1998 to 2004 with
a weak flux decrease in the Northern Hemisphere counter-
balanced by a weak increase in the Southern Hemisphere 0.2 ; ; ; ;
After 2004 the Atlantic Ocean sink increases mainly due 1998 2000 2002 2004 2006 2008
to increases in the Southern Hemisphere. The standard desg. 12. (a) Seasonal and annual mean fluxes from 1998 to 2007
viations of the IAV (calculated as a 12 month running av- in the Atlantic Ocean (44S—-79 N and west of 30E). Dark
erage and further detrended) for the Atlantic Ocean northblue shows the results for the Northern Hemisphere winter months
of the Equator, south of the Equator and the entire basif{DJF), light blue the spring months (MAM), light red the summer
are+0.02PgCyrl, +£0.02PgCyr! and+0.04PgCyr?! months (JJA), dark red the autumn months (SON). The annual mean
respectively, which indicates only limited inter-annual vari- flux is plotted.as a black line on .t0|()b) Inter-annual variability .
ability in both hemispheres on a basin scale. This Atlantic(calculated using a 12 month running mean) for the Northern Hemi-
Ocean low variability is further confirmed by the sensi- sphere (blue line), the Southern Hemisphere (red line) and the entire

tivity runs, ranging from+0.03PgCyr! (SR1, SR2) to Atlantic Ocean (black line).

lux [Pg

IAV [Pg Clyr]
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+0.04 Pg Cyr! (SR3, SR4), indicating that our result is not (a) 20°N to 30°N and 40°W to 50°W
sensitive with regards to the data choice. This shows that theE 400- ‘ CR " %]
main findings are statistically indistinguishable from those & 350Ww%ﬁijﬂw‘
derived without chlorophyll: (SR4), indicating the possi- 8“ 500 T o v R ‘

o

bility to expand the analysis period back in time in future
studies. (b) 50°N to 60°N and 30°W to 40°W

Inter-annual variability of the sea surfageCO, in the g 400k ‘ ]
North Atlantic has previously been linked to variations in the 3; W V,w‘% ﬁ'/“%ﬁ%'
NAO (e.g.Gruber et al.2002 Schuster and Watsp2007. Q200 ‘ ‘ ‘ ]

o

Thomas et a).2008. The NAO is the dominant large-scale
climate mode in the Atlantic Ocean (elgurrell, 1995 and ©
impacts sea surfageC0O, via changes in the driving param- ‘ ‘
eters. During positive NAO phases, sea surface temperature =, 9|
shows a tripole pattern with cold anomalies in the subpo- 5 ‘ ‘ ‘ -
lar region and warm anomalies in the midlatitudes and cor- 98 2000 2002 2004 2006 200

responding changes in ver_ti\cal mixing and nutrient §Upp|yFig. 13. (a) Temporal evolution of thegCO» (in patm) in the sub-
(Marshall et al. 2001). Corbiere et al(2007) found an in-  gqpjical (20-30 N, 40-50 W) and (b) in the subpolar box (50—

crease in sea surfageCO; in the subpolar gyre between goe N, 30-40 W). The black line shows the spatial averggeO,

the mid-1990s and mid-2000s linked to an increase in SSTwithin each 16 x 10° box. Red triangles illustrate the average sea
due to a shift from positive to negative NAO. We investigate surface measuregCO, within each box where observations are
the effect of the NAO by focusing on two 1& 10° boxes, available and the green triangles represent the average of the neural
one located in the subtropical North Atlantic (20230and  nhetworkpCO; of those T x 1° pixels which have co-locatgeCO;
40-50 W) and the other in the subpolar North Atlantic (50— °bservations in SOCAT v1.&) pCO, anomalies (left axis in patm

60° N and 30-40W). Figure 13 illustrates thepCO, esti- — detrended and smoothed using a 12 month running average filter)

mate and their anomalies for each box together with the NAQCOMPared to the NAQ index (right axis —smoothed using a 12 month
running average filter). The dashed line shows the anomaly for the

Inde)_(. We find aweak_but significarg 0.0S)_posmve cor- subtropical box, the dotted line for the subpolar box and the green

relation in the subtropicsR( = 0.32) and negative correlation .o ijustrates the NAO index.

in the subpolar boxK = —0.31). This pattern is consistent

with that identified byThomas et al(2008 on the basis of

a modelling study (see also summary ®yber(2009 and

recent multi-model analysis bgeller et al.(2012, and the  pCO, and air—sea fluxes within the subtropics in the North-

available time-series analyses (&giber et al.2002 Bates ern and Southern hemispheres, i.e. the zones where the tem-

2007 from the BATS site). The correlation patterns are de- perature effect dominates the seasonal cycle of sea surface

rived from the neural network estimates, hence the NAO sig-pCO,. Trends in sea surfageCO, suggest that in large ar-

nal stems from the signal of the input data. Clearly, an im-eas poleward of 40N the rate of increase in oceaniCO,

portant driver are the NAO-associated SST anomalies, butvas faster than in the atmosphere, leading to a regional weak-

strongly modified by the various physical and biogeochemi-ening of the carbon sink strength. However, this is counter-

cal changes that are driven by the NAO-induced changes ifbalanced on the basin scale by weaker surface op€&adp

heat fluxes and wind stress (see &gller et al, 2012. trends elsewhere in the North Atlantic. The South Atlantic, in
contrast, shows an increasing carbon sink strength through-
out the study period. In total, the Atlantic Ocean carbon sink

4 Summary and conclusions increased by-0.15+ 0.04 Pg C yr! decade?. The standard
deviation of the inter-annual variability of the spatially inte-

We have developed a novel two-step neural network apgrated CQ flux within the study period in the Atlantic Ocean

proach to diagnose monthly ocean surfa@0» fields from  was+0.04 Pg Cyr! with both low inter-annual variability

1998 through 2007 in the Atlantic Ocean using the SOCATIn the Southern Hemisphere:Q.02 PgCyr!) and in the

v1.5 pCO, measurement network. Independent testing in-Northern Hemisphere#0.02 Pg Cyr?).

dicates our estimates are accurate to within 22.8 patm for It would be beneficial to extend the study period to fur-

the entire Atlantic Ocean, which decreases to 16.2 patm fother investigate responses to climate modes such as the NAO

data south of 40N. Our study suggests a decadal mean,CO and to investigate multi-decadal variabilities. The absence

flux from 1998 through 2007 0£0.45+0.15 Pg Cyr! for of chlorophylla permits us to prolong our analysis period

the Atlantic Ocean from £4S to 79 N and west of 30E. and this option will be explored in subsequent work. How-

This result is in good accordance with the recent assessmemver, chlorophylla is a simple, but important proxy repre-

from the RECCAP projectSchuster et al.2013. We find senting the relation between biology ap@0, and our re-

the strongest seasonal variability in our predicted sea surfacsults provide no evidence that chlorophyll can be neglected

(53]
=

[uatm]

pCO
NAOQO index
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when considering longer timescales. Chloroplayls avail- the winning neuron. The neurangets updated by moving
able from models before the launch of satellite observationstowards the average position of all the training vectpiis
but the products to-date have not achieved sufficient reliabil-was identified as a winner, or a close neighbour of the win-
ity as yet. ner. This sort of training is called “batch training”. This is

Our product shows that the data collection and synthesiglone by adjusting théth row of the initial weights matrix
effort of the marine carbon community makes it possible after the iterative step following Vesanto et al(2000:
to investigate the seasonal to inter-annual variability of the . .
ocean carbon sink on a basin-scale based on observation\%_ Zﬁzls(dneighbour— dij ) pi
Future measurements are expected to increase the accuracy” S, Sdneighb d))

. . . ]_1 neighbour— &;

of such observation based estimates, and further improve-
ments of the methods used to model the observations W"(NhereW(,-,n) is theith row of the input weight matrixdl.j

result in providing better historical estimates and more accuis the Euclidean distance between the netrand the pre-

n(g+1) = ; (A2)

rate products for these important fluxes. sented;th input vector andineighbouris the neighbourhood
radius.S describes the step function. Neighbouring neurons
Appendix A will only be updated ifS(dneighbour— d; ) > 0. During the
training of our SOM we decreagieighbourin 2 steps from an
Al Dividing the global ocean into biogeochemical initial coarse training phase where we update the surrounding
provinces using a self-organizing map nearest neighbours that lie within a neighbourhood radius of

3, which lasts for the first 100 iterations, to a final fine train-
A map with 16 neurons was chosen, organized on a 24ing phase where only the winning neuron is updated.
dimensional 4< 4 point hexagonal grid. This means thatthe  After ¢ = 200 iterations (presenting all our input vectors
input data are clustered into 16 neurons, which represent th& the SOM 200 times) we stop the training and the input vec-
16 biogeochemical provinces. The term neuron refers to dors are re-introduced, without updating the SOM. In return
processing unit, which consist of a weight vector, where eactevery vector receives the neuron numbesf the winning
element of the weight vector corresponds to one input parampeyron, whereil.j - min(d,ﬁ;), until every training vector is
eter. In our case each weight vector consists of 4 elementgpelled with a number between 1 and 16, representing the
(SST, log(MLD), SSSpCO; Takahashl representing its co-  province the vector belongs to. Since every training vector
ordinates and the distance between 2 neurons is calculatgshs a geographical location we can now divide the global
via a distance function. These processing units are initiallyocean into these 16 provinces, i.e. the 16 biogeochemical
spread over a 2-dimensional field, in our case in a hexagongrovinces.
formation, forming a single layer of neurons. Our experience \ve forced the relative weights of the input data toward the
has shown, however, that the choice of neuron topology doegjimatologicalpCO, data, in order to minimize the variance
not have a significant effect on the final province distribution. gf pCO, within each biogeochemical province. To do so, we
The use of neurons, their initialization and their distance re-did not normalize our input data, with the exception of MLD,
lation describes the biggest difference towards other clusteryhich we log-transformed (Tabt®. As a consequence, the
ing algorithms, e.gk means clustering. For our study, the range between the lowest and highest valup©f, is one
Euclidean distance between a neurons weight vector and thgrder of magnitude larger than that for SST, and about an-
input vectors of the SINP data set was used for the distancgther order of magnitude larger than that for the remaining
function. The weight matrixW,,=16,,=4), Which is formed  input parameters (log(MLD), SSS). This was done to re-
by the 16 neurons with their 4 vector elements, was randomlyjuce the biases in the second stage of the fitting, i.e. in the
initialized. feed-forward network. As a consequence, the biogeochemi-

After initialization, the training vectors are introduced to cal provinces follow the seasonal pattern ofﬂeoz clima-

the SOM with each training parameter as 1 element of thq0|ogy, meaning that the seasonality €O, at any given

vector. For thejth input vectorp;, with the lengthn the Eu-  location will be mostly determined by the seasonal changes
clidean distances to each of the- 1,...,16 neurons repre- of the biogeochemical provinces and to a lesser degree by
sented by each rowof the weight matrix are calculated: the seasonal cycle of the input data in the second state. In ad-

dition, owing to the climatological nature of the usp@0,
i - data, there are little inter-annual shifts in the distribution of
. — -] 2 L
;(W"l )% (AL) the biogeochemical provinces.

whered;, comprises a vector containing the Euclidean dis-
tances to each neurarof the input vectorp;,. The smallest
element of the distance vector, i.e. the shortest distance ele-
ment, marks the distance towards the closest neuron, called

www.biogeosciences.net/10/7793/2013/ Biogeosciences, 10, 781%-2013
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A2 Reconstructing the sea surfacggCO- using a the number of neurons in the first or hidden layer paraboli-
feed-forward network cally starting from 2 neurons up to a number where the ratio
between of the training sample size to the number of weights
Our feed-forward network uses 2 Iayers of neurons, 1 hid-does exceed 30Amari et a|(199'/) proposed this ratio to
den layer of neurons using a sigmoid transfer function andprevent artificial neural networks from over-fitting.
1 linear output layer. The hidden layer response to the input During every pre-training process the FIN§et is divided

vector p;, can be written as follows: into 2 separate sub-sets. The first (FFJRs used to train
5 the network and the second (FIVALis used for validation
aj = _ -1, (A3) within the methodAmari et al.(1997) suggested an optimal
1+exp(—2- (Wi, - pi+bi) split (ropt) between training and validation data as a function

whereq, is the hidden layer response ith neuron. The re-  ©f the modifiable parameters:

sponse of all neurona then forms the output vector of the 1
hidden layer,,. This vector serves as input for the second "opt = —m' (A5)

layer of neurons, the linear output layer.
Modifiable parameter refers to the weights and biases of

pCOé est=Wpn -an +b (A4) the network. During every pre-training process the FITR
’ training vectors and the corresponding FfTirgets are in-
Egs. A3) and A4) show how the network calculates the oqyced to the network and the weights and biases are iter-
scalar outpupCO) . for the jth input vectorp;, in 2 steps,  atively updated in the direction where the performance func-
each step referring to 1 layer of the network. In the hiddention, which is the mean squared error between network out-

layer the input vectors are multiplied with the weight matrix putSpCOQ .and FITR targets/, decreases most rapidly.

of the hidden layew,, , and added to the layer bias vector g feed-forward network uses the Levenberg—Marquardt
b,.The output vgctor of the hldd_en layey, is created using (Marquardf 1963 algorithm to update weights and biases
a tangent sigmoid transfer function (E4g), that computes i eyery iteration step to reduce the mean squared error be-
elements ofz,, in the range from-1 to +1. Similar to the  ween outputs and targets. The application of the algorithm
SOM, the size otV,,, , is determined by the sizeof the in- i neural networks is described in more detaiHagan and

put vector and the numben of neurons in the hidden layer. Menhaj(1994; Hagan et al(1996.

The length ofb,, anda,, is as well determined by the num-  Afier every iteration of each pre-training the network is
ber of neuronsx. In the linear output layes,,, is processed yjalidated by using the FIVALsub-set. The updated weights
the same way ap;, in the hidden layer, with the exception and biases are used to simulate outputs from the Ffvat

that the output layer only consists of 1 neuron to produce ongyuts and the mean squared error between these outputs and
scalarpCO; estimate pCOéest) for every input vector. Fur-  the FIVAL* targets is calculated. Every pre-training of the

thermore, the linear output layer allowﬁioé .o have any network stops automatically when 6 consecutive iterations
L ,EeS] ]
value between-infinity and+infinity. During the training the ~ do not reduce the network’s error on the FIVAtarget§ to
weights and biases of each layer get iteratively adjusted tgrevent the network from over-fitting. After the pre-trainings
minimize the error between the network outplﬂd and  With increasing number of neurons we select the one where
2,est

. the mean squared error of the validation data set FIVAL is a
the scalar target element from the SOCAT v1.5 database minimum and receive the optimal number of neurons for the

that corresponds tp;,. Therefore, the network can only be actual training process.
trained by those input vectors which do have co-located ob- During the actual training process the number of neurons

servations. . . _ is adjusted according to the best pre-training performance for
Before the training starts, the training vectors with corre- oach of the 16 provinces separately. We perform 10 train-
sponding observations from our FIKBata set are provided ings where we randomly pick validation data according to
to initialize the network layer size. The size of the 2 network Eq. (A5) out of the entire pool of observations to avoid over
layers is determined by the number of neurons and the NuUMiting of the network output. After every training we use the

ber of input vector elements. We randomly generate the trained network to simulat@COé from the FINP data

L . . . ost
networks initial We|ghts and b|ases_. '_A‘n |mporta_mt parameterset and average the output of the 10 training cycles, to end up
that has to be provided before training starts is the numbe

f Too f t able t q {vith 1 estimate for our time period from 1998 through 2007
of neurons. 100 few neurons are not able 1o reproduce e, o, province. After 16 FFN runs we can now combine

tational perf q fitt d theref "ur results of the 16 provinces to retrieve @@ O, estimates
putational performance and cause over-fitting and thereforg | " 904 15 2007 on a globab  1° grid.

the network is not able to generaliziégmuth et al.2008.

Since the number of inputs and targets varies per province,
we cannot provide one best number of neurons to use for all
16 provinces. We therefore perform a pre-training, increasing

Biogeosciences, 10, 7793815 2013 www.biogeosciences.net/10/7793/2013/
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Fig. Al. Empirical semi-variograms of randomly chosen ensembles of the residuals as a function of dist@)adensubpolar North
Atlantic with a median decorrelation length of 430 kfin) subtropical North Atlantic with a median decorrelation length of 166 ¢anthe
equatorial Atlantic with a median decorrelation length of 530 km @)dhe South Atlantic with a median decorrelation length of 9 km.
Region borders are listed in Tat8e

A3 Air-sea CO; flux calculation The solubility of CQ is calculated according t@Veiss
(1974 and the Schmidt number according Wéanninkhof
We calculate the air-sea flux density in mol Chyr— for (1992 using the same SST and SSS data we used for the
each month and°1x 1° piXG' from training of our network.
Feo,=—ky - Sco,-(1— fice) (PCOs amwet—pCO2),  (AB) The partial pressure of atmospheric £Oi.e.
) ) ) . pCOzatmwet, Was computed from the dry air mixing
where Sco, is the mainly temperature driven solubility o+ xCO, of GLOBALVIEW-CO2 (2011), taking into

. 3 1 .
of CO, (calculated in mol Cm®patnT™) andk,, is the gas  4ccount the water vapour correction accordingdiokson
transfer velocity (calculated in myt) and where the flux is et al.(2007):

defined positive upward, i.e. outgassing is positive, and up-

take is negativefice refers to the percent of ice cover within  pCOs atmwet = XCO2 atm - [ Patm surf — PH,0l, (A8)
a region derived fronRayner et al(2003. For the gas trans-
fer velocity (here calculated in cnTh) we decided to use the
formulation ofWanninkhof(1992 with the scaling factor of

Sweeney et al2007), i.e.

where Paimsurf IS the sea-level pressure from NCHRa(nay
etal, 1996, and Pn,0 describes the water vapour pressure.

Ky = 0.27- (S¢/660 2 - 12, (A7)

where Sc the dimensionless Schmidt number andthe
monthly mean CCMP wind speedtffas et al, 2017 at a
height of 10 m above the sea surface.
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A4 Accounting for spatial autocorrelation in flux platform ocean surface wind velocity product for meteorological
uncertainty analysis and oceanographic applications, B. Am. Meteorol. Soc., 92, 157—
174, 2011.

For each RECCAP/ocean inversion region (see Talfer Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin,
region borders), we first divide the residuals into 5 randomly = S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K.
chosen mutually exclusive ensembles, with the exception of M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl,
the subtropical North Atlantic, where we use 10 ensembles, ‘(]:h Barbe'rzo'PL"C E:]atesl'_ N'(':hE,‘OL.’“,”' N‘IJ ga'*,w'}'(‘]"dca;t'e' R|_'| D.,
due to the larger amount of data. For each ensemble, we com- havez, . P, Chen, L., Chierici, M., Currie, K., de Baar, H. J.

. . . . . W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B.,
pute the semi-variance of the residuals and their point-to-

. ine di . d then fi ial Hardman-Mountford, N., Hoppema, M., Huang, W.-J., Hunt, C.
point Haversine distance matrix, and then fit an exponentia W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones,

function of the form S. D., Jutterstrom, S., Kitidis, V., Kértzinger, A., Landschtzer, P.,
—X Lauvset, S. K., Lefévre, N., Manke, A. B., Mathis, J. T., Merlivat,
a+b-exp e (A9) L., Metzl, N., Murata, A., Newberger, T., Ono, T., Park, G.-H.,

. ] . ] . Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S.,
to the semi-variogram in order to estimate the correlation salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjel-
length (parameter) between the residuals. We find that the  van, I., Steinhoff, T., Sullivan, K., Sun, H., Sutton, A. J., Suzuki,
semi-variograms are very sensitive to extreme values of the T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van
residuals, forcing us to use Chauvenet's criterion to reject Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W.
them prior to the computation and the fit. By using several R., Wanninkhof, R., and Watson, A. J.: An update to the Sur-
different ensembles per region, we will account for the po- face Ocean C@Atlas (SOCAT version 2), Earth Syst. Sci. Data
tential biasing effect of their removal. 5 ?'SC”SNS'* g _46|5rE5r12r;:‘ml'519f/iﬁ§tdd'6;4?§'2o'mli; o

FigureAl shows the semi-variograms of all ensembles in ates, N. R.: Interannual variability of the oceanic £
the Atlantic O C lation | ths of th idual sink in the subtropical gyre of the North Atlantic Ocean

€ Allantic Dcean. Lorrelation lengins ot the residuals Vary over the last 2 decades, J. Geophys. Res., 112, C09013,
between 9 km, where the ensembles are well below the dis- doi10.1029/2006JC003752007.
tance between 2 neighbouring grid boxes, and 532 km. HoWgennington, V., McKinley, G. A., Dutkiewicz, S., and Ullman, D.:

ever, in all cases the semi-variogram shows a large lag O cor- what does chlorophyll variability tell us about export and air-sea
relation, (semi-variance at 0 distance varies between 20 and CO flux variability in the North Atlantic?, Global Biogeochem.
60 patn? within the different ensembles in the different re-  Cy., 23, GB3002, dot0.1029/2008GB003242009.

gions) indicating the residuals within one grid cell are cor- Carton, J. A. and Giesg, B. S.: A Reanalysis of Ocean Climate Using

related with each other, leading to a substantial reduction of Simple Ocean Data Assimilation (SODA), Mon. Weather Rev.,
the degrees of freedom. 136, 29993017, dci0.1175/2007MWR1978,008.
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