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A new algorithm is derived for rain rate (RR) estimation from Advanced Microwave Sounding Radiometer 2 (AMSR2)
measurements taken at 6.9, 7.3, and 10.65 GHz. The algorithm is based on the numerical simulation of brightness temperatures (T})
for AMSR2 lower frequency channels, using a simplified radiation transfer model. Simultaneous meteorological and hydrological
observations, supplemented with modeled values of cloud liquid water content and rain rate values, are used for the calculation
of an ensemble of AMSR2 Tys and RRs. Ice clouds are not taken into account. AMSR2 brightness temperature differences at C-
and X-band channels are then used as inputs to train a neural network (NN) function for RR retrieval. Validation is performed
against Tropical Rain Measurement Mission (TRMM) Microwave Instrument (TMI) RR products. For colocated AMSR2-TMI
measurements, obtained within 10 min intervals, errors are about 1 mm/h. The new algorithm is applicable for RR estimation up to
20 mm/h. For RR < 2 mm/h the retrieval error is 0.3 mm/h. For RR > 10 mm/h the algorithm significantly underestimates TMI

RR.

1. Introduction

Rain gauges and meteorological radars still remain to be
the most precise tools for precipitation measurements, but
their coverage is obviously insufficient for climate studies
and to understand changes in the global hydrological cycle
[1]. In turn, satellite instruments are the most appropri-
ate means to measure precipitation over the ocean where
in situ data are scarce. Effective in terms of global and
regular coverage, satellite measurements typically provide
precipitation estimates at low spatial resolution with often
questionable accuracy. Over land, estimates are based on
ice scattering at high microwave frequencies, whereas over
oceans microwave emission of hydrometeors at lower fre-
quencies is mostly used [2, 3]. Some studies describe the
use of infrared (IR) sensors to estimate precipitation [4,
5]. Most are based on statistical methods, using regression
between passive microwave estimates and coincident IR pixel
data. Geostationary satellites can provide this high temporal
and relatively high spatial resolution but are reported to

be inaccurate in warm rains [6]. Moreover, IR data are
limited to cloud-top information, and precise rain rate (RR)
estimation from these data is not feasible. Nowadays, the most
direct precipitation measurements from space are provided
by precipitation radars. Since 1997 Precipitation Radar (PR)
aboard the Tropical Rainfall Measuring Mission (TRMM)
performed advanced retrievals of RRs over tropics [7]. Since
2006 the Cloud Profiling Radar (CPR) aboard CloudSat
satellite expanded radar capabilities to sense very light rains
[8]. Further progresses in precipitation measurement science
are associated with combined precipitation products, making
use of different sensors [6, 9-12], with the analysis of
inherent instrument errors [13]. At last, the launch of the
new Global Precipitation Mission (GPM) in February 2014,
similar to TRMM in combining passive microwave instru-
ment, GPM Microwave Imager (GMI), and microwave radar,
Dual-Frequency Precipitation Radar (DPR), but with an
extended (~+65) latitude coverage, opens new possibilities
for calibration and combined use of active and pas-
sive microwave instruments for advanced precipitation
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studies [14]. GPM global observations will expand the data
records started with previous precipitation missions and
improve precipitation estimates around the globe.

In spite of low spatial resolution and limitations com-
pared with precipitation radars, satellite passive microwave
measurements remain valuable regular source of global infor-
mation on precipitation. Ability to infer accurate precipita-
tion estimates from these measurements has been repeatedly
proven in numerous studies [1, 2, 15-17]. High quality pre-
cipitation measurements by polar orbiting passive microwave
instruments started with the launch of the first Special Sensor
Microwave Imager (SSM/I) in 1987. Since then, many efforts
have been undertaken for the development of algorithms for
precipitation parameter retrievals. Most of the studies relate
to RR retrievals over the oceans. High land emission and its
great inhomogeneity complicate RR retrievals over the land
[3]. Though, recent studies devoted to the estimation of land
emissivities without a need for ancillary data [18] can help to
improve these retrievals. Satellite passive microwave sensors
allowing emission-based RR retrievals over the ocean include
SSM/I and Special Sensor Microwave Imager and Sounder
(SSMIS), TRMM Microwave Instrument (TMI), Advanced
Microwave Scanning Radiometer-Earth (AMSR-E) Observ-
ing System and its successor AMSR2, and Polarimetric
Radiometer WindSat. A number of methods to derive differ-
ent precipitation parameters (rain rate, precipitation vertical
structure) from these instruments have been developed [3,15,
19-22], including the Goddard Profiling algorithm (GPROF)
[23], the Unified Microwave Ocean Retrieval Algorithm
(UMORA) [17, 24], and the NOAA/NESDIS algorithm [25].
The longest-available passive microwave rain rate product,
produced operationally by Remote Sensing Systems (RSS)
based on SSM/I (SSMIS) data, is derived using an ocean-only
RR retrieval with UMORA algorithm. Large efforts have been
made by RSS for satellite intercalibration to cover almost 3
decades, and discontinuities in the product are minimized
[26].

Most of the listed rain retrieval algorithms are physically
based, exploring the sensitivity of microwave brightness
temperatures to the changes in cloud and rain microphysical
properties [27-29]. Little, if any, study, related to rain,
concerned C- or X-band. These bands are typically used for
the ocean parameter retrievals as the atmosphere is almost
transparent for the radiation at such microwave frequencies,
even under heavy clouds and light rains (up to 2mm/h)
[30]. At the rain rate of 2mm/h, the optical depth of the
atmosphere, with the total atmospheric water vapor content
of 26 kg/m?, total liquid water content of 0.26 kg/m?, and rain
layer thickness of 1.35km, is about ~0.025 at 6.9 GHz and
~0.027 at 10.65 GHz.

Microwave brightness temperature simulation further
shows that the brightness temperature (1) increases towards
a maximum and then drops off as rainfall rates increase
further [31]. Figurel shows the results of the numeri-
cal calculations of Ty of the atmosphere-ocean system
with fixed hydrological and meteorological parameters for
horizontally polarized AMSR2 channels at 6.9 and 10.65 GHz
for different values of rain rates. These calculations have been
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FIGURE 1: Simulated horizontally polarized brightness temperature
as a function of rain rate for 6.9 GHz (upper curve) and for
10.65 GHz (lower curve). All the other meteorological and hydro-
logical parameters are fixed. Total atmospheric water vapor content
is 26 kg/m”, total cloud liquid water content is 0.26 kg/m”, rain layer
thickness is 1.35 km, sea surface wind speed is 5 m/s, and sea surface
temperature is 10°C.

performed with limitations discussed later. For rain retrieval
methods, the most important difference between microwave
radiometer channel frequencies is the range of the rain rates
for which Ty increases (emission range) and the range for
which Ty decreases (scattering range). Ty at low frequencies
including C- and X-bands tends to increase over most of the
rainfall range, thus enabling the use of emission-only type
schemes. T} at higher frequencies saturates quickly and then
decreases for most of the rainfall range [31]. The higher the
channel frequency, the more important the vertical structure
of precipitation in Tz modeling, in particular the height of the
freezing level and the hydrometeor size and form distribu-
tions along the height [32]. Therefore, RR retrievals at higher
frequencies need a priori knowledge of hydrometeor profile.
Separation between atmospheric scattering and emission
presents another problem which is solved in some studies
using polarization sensitivity of measurements [17, 21]. But
in the case of strongly polarized signals from the ocean
surface, hard to be theoretically modeled [33], especially for
high winds, the radiative transfer equation simplifications
discussed in these studies can lead to errors.

C- and X-band Ty measurements are far from RR satura-
tion range and thus attractive for RR algorithm development.

In May 2012, the new Japan passive microwave radiome-
ter AMSR2 was launched on GCOM-W1 satellite. Starting
from August 2012 calibrated Level 1B brightness tempera-
tures are available for the scientific community. This unique
instrument replaced the similar AMSR-E on Aqua satellite
which stopped its performance in October 2011 after about 9
years of successful functioning. The new AMSR2 has not only
improved calibration and spatial resolution compared with
its predecessor but also includes two new channels working
in C-band [34]. These channels are specifically intended
for the detection of pixels contaminated by radio frequency
interference (RFI). In this study, the measurements at these
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additional channels in C-band are suggested to be used for
rain rate estimation, exploring similar dependence of T at
C- and X-band frequencies on such oceanic parameters as
sea surface temperature and sea surface wind speed. The
algorithm for RR retrievals from AMSR2 C- and X-band
channel measurements is based on the physical modeling of
brightness temperatures over the oceans with their following
inversion using neural networks (NNs). The validation of the
algorithm for AMSR2 Level 1B data is done against TRMM
rain rate product based on TMI measurements provided by
RSS.

Numerical simulation of the brightness temperatures of
the ocean-atmosphere system is done using the parameteri-
zation of [35] to calculate the atmospheric attenuation due to
liquid water. The attenuation of rain is parameterized by Liebe
and Layton in [35] using Mie formulas. Simplification of the
radiation transfer equation is done using the attenuation coef-
ficient instead of the absorption one. Such a simplification
allows accounting for the negative effect of scattering but
underestimates its positive effect due to scattering forward
[36]. One of the essential simplifications of the current study
is to dismiss ice particles in the model. Ice water interacts with
microwave radiation essentially via scattering process [37].
Though low frequency passive microwave measurements are
insensitive to some ice clouds [38], heavy rains are often
associated with strong convection and large ice particles in
clouds and precipitation in the form of hail and graupel. The
size of such frozen water particles easily reaches the values
comparable with the wavelengths of low frequency AMSR2
channels.

Computer simulations of the brightness temperatures are
carried out for the dataset of meteorological and hydrological
data measurements, complemented by modeled liquid water
content and rain parameter data. The dataset, used for Ty
calculations, is described in detail in Section 2. The geophys-
ical model, establishing the relationship between the total
brightness temperature and the atmospheric and oceanic
parameters, is described in Section 3.1. After T calculation,
NN inversion algorithm has been trained on the ensemble
of simulated Ty values and rain rates. Four differences in
AMSR2 measurements at six lower frequency channels in
C- and X-bands have been used as NNs inputs, and only
one parameter, RR, as an NNs output. At 10.65GHz T} is
far from saturation even for tropical atmospheres with high
values of atmospheric water vapor content, cloud liquid water
content, and rain layer thickness up to 20 mm/h rain rates
(RR). So we limited the data by the maximum RR value
of 20 mm/h. NNs configuration is described in Section 3.2.
After having been trained, the algorithm has been applied
to actual AMSR2 measurements for the period of 2012-
2013 and validated against the Tropical Rain Measurement
Mission (TRMM) Microwave Instrument (TMI) rain rate
product downloaded from the Remote Sensing System Data
Center. The validation procedure is described in Section 4.
The algorithm performance relative to TMI RR product was
also compared with the consistency of AMSR2-TMI RSS RR
products. The validation results are discussed in Section 5,
followed with conclusions in Section 6.

2. Data for Numerical Simulation

Radiosonde (r/s), meteorological, wind speed, forms,
and amount of clouds (percentage of cloud cover), and
hydrophysical (seasurface temperature and salinity)
simultaneous measurements were used for brightness
temperature calculations. High latitude part of this dataset
was used, for example, in [39] for the development of the
regional Arctic algorithms for total atmospheric water
vapor content (Q) and total cloud liquid water content (W)
retrievals from SSM/I and AMSR-E data. The dataset was
significantly extended by addition of measurements in tropics
and subtropics. The measurements were taken by the research
vessels of the Far Eastern Research Hydrometeorological
Institute (USSR/Russia) during the period of 1966-1993. The
dataset included about 3000 radiosondes with simultaneous
seasurface temperature and salinity measurements. Wind
speed data, as they are not correlated with the other
geophysical parameters, were added artificially, randomly
varying from 0 up to 50 m/s.

R/s profiles of air temperature, humidity, and pressure
were complimented by cloud liquid water content (w) pro-
files, modeled in accordance with [40]. Forms and amount
of clouds were determined by experienced meteorologists
during the radiosonde launch. Relative humidity is the
variable which governs the physical processes in the atmo-
sphere relating to different phases of water. Upper and
lower boundaries of cloudiness were estimated using relative
humidity and temperature profiles. Uniform liquid water
content profiles were taken for the clouds with thickness less
than 1km with typical liquid water content values of 0.05-
0.10 g/m’. For clouds with thickness greater than 1km, w
profiles were described by triangle function. In this case w
maximum was located at the one-third of thickness below
the upper boundary of cloudiness. This maximum increases
with the increase of the cloud thickness. A linear relation
was assumed between w and the cloud amount. The decrease
of liquid water content values with the decrease of cloud
temperature for the observed form of clouds was also taken
into account, based on the statistical data, describing liquid
water content distribution in the clouds of different forms and
temperatures. Precipitation originates as a statistical event
within the clouds suspended in saturated air [35]. Its vertical
distribution is separated into two regions by the height of
the 0°C isotherm which can vary between 6km and the
ground level seasonally and regionally dependent. The lower
part is mostly liquid drops, and the upper part consists of
frozen particles with occasional supercooled droplets. For
those data, where modeled total liquid water content did not
exceed 0.3kg/m?, the absence of rain drops was imposed.
For those cloudy data, where the total liquid water content
exceeded 0.3 kg/m?, uniformly distributing point rain rates
were added randomly with RR from 0 up to 20 mm/h
within the rain depth of 0.5-4.5km dependently on the
humidity and temperature profiles. No ice modeling was
carried out. The resulting dataset consisted of about 25000
data with different values of geophysical parameters govern-
ing microwave brightness temperature of the atmosphere—
open ocean system—atmospheric water vapor content, cloud



liquid water content, rain rate, sea surface wind speed, sea
surface salinity, and sea surface temperature.

3. Methods

3.1. Geophysical Model for Brightness Temperature Calculation.
The geophysical model relates geophysical parameters to
observed brightness temperatures. An accurate specification
of the geophysical model is the crucial step in develop-
ing geophysical parameter retrieval algorithms. A detailed
description of the cloud-free part of the model, including
recently developed ocean emission model with an advanced
emissivity dependence on sea surface wind speed, is given in
[41]. This model consists of the ocean emission model and
the atmospheric absorption model, accounting for molecular
water vapor and oxygen absorption. The study, carried out in
[41], made it possible not only to establish the oceanic and
clear-sky constituents of the microwave radiation but also to
derive constant calibration additions to transform modeled
brightness temperature into measured ones.

Under clear-sky conditions, the atmospheric constituents
of the total microwave radiation are the functions of the
vertical profiles of air pressure, temperature, and humidity.
These functions are evaluated using widely used and inten-
sively validated models, [35] for molecular oxygen and [42]
for water vapor absorption. The ocean microwave radiation
is governed by the ocean emissivity (depending on the
polarization state) which for calm sea conditions is a function
of frequency, incidence angle, sea surface temperature, and
salinity. Modeling of the wind induced component of the
ocean emissivity has undergone significant changes during
the last several years [33]. The most important outcome of the
findings is that the wind induced emissivity is almost twice
larger as compared with the one used previously. Moreover,
the sensitivity of the oceanic T to the wind speed increases
rapidly starting from some threshold value, and this is proba-
bly associated with the foam property changes. The use of the
new wind induced emissivity model allowed developing an
AMSR2 SWS retrieval algorithm, highly accurate even under
extreme wind conditions [43].

The complex dielectric permittivity of water, used in the
model both in the sea surface emissivity and reflectivity
formulation and in the emissivity of the cloud droplet fresh
water, was parameterized using model [44], since this model
is extensively validated and valid for the frequencies up to
at least 90 GHz for fresh water in the temperature range of
—20°C + +40°C including supercooled water and for sea water
in the temperature range of —2°C + +29°C.

Liquid water content absorption and rain rate attenuation
were calculated using [35]. The last was parameterized by
Liebe and Layton in [35] using a regression fit over the
drop shape and size distributions of Laws and Parsons
[45]. This parameterization resulted into simple frequency
dependent formulation of the rain attenuation coefficient:
a = 0.182:f-a-RR” (dB/km), where a = 2.31107*f"*; b =
0.851-f*1% for 6.9 GHz; b = 1.41-f " for 10.65 GHz; f is
frequency in GHz, and RR is rain rate in mm/h.

After all the models for the microwave radiation inter-
action with the atmosphere-ocean system were defined, the
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brightness temperatures for frequencies, polarization, and
angles of incidence of AMSR2 instrument were calculated
for the dataset, described in Section 2. Normally distributed
radiometric noise with 0.5K equivalent temperature was
added to the resulting T values. The whole matched up
dataset of geophysical parameters and AMSR2 Ty served
as a base for the inverse problem solution, for RR retrieval
algorithm development.

3.2. Neural Network-Based Inversion. A neural network (NN)
was trained to invert the simulated AMSR2 brightness tem-
peratures back to the rain rates. Supposing that T’ differences
at C- and X-band AMSR2 channel are less dependent on sea
surface emission than Tz values, we used 4 NN inputs for RR
retrievals: ATg" ;¢ = Tor" —Thos "> ATg" 107 = Tio" —Tro7 »
ATBH7,6 = Tpor — Tpos > and ATBHlo,7 = Tpio' — Thor' >
where Tgos"s Tros > o7 > Tror > Tiio "> and Ty ~-AMSR2
brightness temperatures measured at 6.9, 7.3 and 10.65 GHz at
vertical and horizontal polarizations correspondingly.

The main advantage of a neural network as an inversion
function is that it does not require the a priori knowledge
of a transfer function, which is nonlinear and not known
in advance. NN was trained using randomly selected half of
the dataset of the simulated brightness temperatures and the
corresponding rain rates. Then it was tested using the other
half to which NN algorithm was applied. This was done to
avoid overtraining NN, meaning the loss of generalization
features.

Standard neural network of multilayer perceptron (MLP)
type with feedforward backpropagation of errors was used
to connect the simulated brightness temperature differences
with the RRs. MLP neural network is a processing block in
which input parameters of the task (in our case four ATjy)
relate to its output parameter (RR) through the system of
neurons at hidden layers [46]. The MLP configuration with
a single hidden layer was used since in the tasks of the best
approximation any continuous on a finite interval function
can be approximated by a neural network of MLP type with
one hidden layer. The numerical experiments with other
configurations confirmed that including additional layers led
to rapid loss of the generalization capabilities, especially for
noisy data [47].

Training was carried out via supervised learning and
feedforward backpropagation of errors, starting from various
random initial weights to avoid getting local minima. The NN
configuration was complicated until the testing error started
to increase. It was found that a simple NN configuration
consisting of a single hidden layer of 15 neurons ensured the
least retrieval error of 1.5 mm/h both for training and testing
datasets. The scatterplot of retrieved RR values versus in situ
ones is presented in Figure 2. By saying “in situ” here we
mean not measured but modeled RRs used for the brightness
temperature simulation. The greatest error in the rain rate
retrievals is observed for low RR values: for RR < 2mm/h
the root mean square error oz = 2.5mm/h. The exclusion
of clear sky data from consideration leads to the increase
in the retrieval accuracy. Thus, when we used accurate
estimation of the atmospheric absorption at 10.65 GHz as
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FIGURE 2: Scatterplot of retrieved rain rate values versus modeled
rain rates for testing dataset.

a criterion to identify the rain pixels, we obtained oy of
0.7 mm/h.

Also it can be seen that the information from 4 brightness
temperature differences is not sufficient to properly resolve
the similarity between cloud liquid water and rain drop
influence upon the brightness temperature. Large scatter of
the retrieved rain rates from in situ ones for the whole
dataset is inherently caused by the geophysical model and
use of low microwave frequencies: all kinds of liquid drops
lead to brightness temperature increase. Since ice clouds
and ice precipitation in the form of snow, graupel, and
hail are not modeled, their presence will lead to additional
large rain rate retrieval errors. Nevertheless the use of low
frequency measurements for rain rate retrievals is not so
much influenced by ice and rain precipitation parameters as
the use of higher frequency passive microwave measurements
[27].

3.3. Radio Frequency Interference Handling. Before the algo-
rithm validation using AMSR2 measurement data, it was
necessary to exclude from the consideration the pixels con-
taminated by radio frequency interference (RFI). Low level
RFI contamination is difficult to be identified over oceans
[48]. At the same time for suggested algorithm application
it is absolutely imperative since some RFI types manifest
themselves identically to precipitation. Figure 3 illustrates
two simultaneous RFI in the field of ATBHIOJ, the differ-
ence in AMSR2 measurements at 10.65 GHz and 7.3 GHz,
horizontal polarization (H), on 3 September 2012 at ~3:20
UTC. Areas 1 and 2 indicate the observable increases of T
at 10.65 GHz relative to Ty at 7.3 GHz. The reasons of these
increases are different: area 1 corresponds to rain, whereas
area 2 corresponds to the RFI at 10.65 GHz on horizontal
polarization. There is one more type of RFI clearly observable
in area 3, RFI at 7.3 GHz on horizontal polarization. The
method to discriminate RFI contaminated pixels from rain

+60° 40

Difference in AMSR2 measurements at 10.65 GHz
and 7.3 GHz, horizontal polarization (

+40°
-20° 0°

FIGURE 3: Field of AT;" | _; difference in AMSR2 measurements at

10.65 GHz and 7.3 GHz, horizontal polarization (H), on 3 September

2012 3:20 UTC. 1, area of precipitation, 2, RFI at 10.65 GHz H, and 3,
RFI at 7.3 GHz H.

is based on the analysis of the modeled T} values and
their combinations. This analysis allowed suggesting several
functions of AMSR2 Tp at C- and X-band channels, the
threshold values of which could be the indicators of the
corresponding RFI. This method is planned to be published
and not described here since it goes beyond the scope of
this paper. Nevertheless during the validation it was applied
to AMSR2 measurement data to remove RFI contaminated
pixels from consideration.

4. Validation Procedure

The validation of the suggested algorithm was carried out
on the base of the comparison of the rain rates retrieved
from AMSR2 measurement data with TRMM Level 2RR
product downloaded from the Remote Sensing System (RSS)
web site (http://www.remss.com/missions/tmi), based on the
measurements of passive microwave instrument TMI. TMI
operates on the TRMM satellite in a semiequatorial orbit,
measuring microwave radiation in a wide swath of 850 km
and covering a global region from 40S to 40N at a pixel
resolution of 0.25 deg (~25 km). TMI products are produced
by RSS and sponsored by the NASA Earth Science MEa-
SUREs DISCOVER Project. RSS TMI data are provided as
daily gridded data, separated into ascending and descending
orbit segments. RSS rain rate products are derived using the
algorithm described in [17]. The unique highest quality of all
RSS products is ensured by permanent calibration and algo-
rithm upgrading taking into account the newest knowledge
and data available. The validation of the last (Version-7) rain
rate products is given in [49]. TMI rain rate estimates are also
considered to be mostly reliable since TRMM mission was
specifically planned for rain measurements. Beside TMI there
is also an active microwave instrument, precipitation radar,
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FIGURE 4: AMSR2 rain rates (mm/h), retrieved with the new
algorithm, collocated within 10-minute time difference with RSS
TRMM Microwave Imager rain rates. 25 August 2012.

onboard the TRMM. It measures radar backscatter from rain
drops during pushbrooming instant measurements with high
accuracy and much higher resolution (~5 km) than that of the
radiometer in a narrower swath [7].

Since the TRMM has a nonsun synchronous orbit, TMI
data are mostly appropriate for the creation of global collo-
cated in time and space with AMSR2 measurements dataset.

Calibrated Level 1B brightness temperature data
from AMSR2 are available starting from August 2012
through GCOM-W1 Data Providing Service (https://gcom-
wl.jaxa.jp/). The spatial resolution depends on the channel
frequency but the pixel size for C- and X-band channel
measurements is the same (~10 km).

For the collocation with the gridded TRMM RR product,
AMSR?2 Level 1B swath measurement data for 2012-2014 were
gridded onto the same grid using Delaunay triangulation
and triangle-based linear interpolation [50]. Both ascending
and descending orbits were gridded within the geographical
region 40S + 40N at a pixel resolution of 0.25deg. After
gridding, time collocation was applied to select only those
pixels where AMSR2 and TMI measurement times were
within 10 minutes. Tight time collocation criterion was set
due to fast changing atmospheric state. TMI RR product daily
averaging did not present a problem since at higher latitudes
orbit segments overlap within local regions and within a short
measurement time. AMSR2 orbits do not overlap within 40S
+ 40N.

After the collocation the developed algorithm was applied
to AMSR2 measurement differences at C- and X-band chan-
nels. The last were calculated after the calibration additions
had been added to AMSR2 measurement data. These addi-
tions had been derived recently as a result of the comparison
between simulated brightness temperature values and mea-
sured Tgs [41]. They can be considered as a bridge between
modeled and measured AMSR2 Tys accounting jointly for
the geophysical model inconsistencies and the calibration
uncertainties. An example of daily coverage of the collocated
rain rates is shown in Figure 4. The strips of the collocated
pixels move from day to day, during several months filling in
the whole zone from 40S to 40N. Five-month coverage for
2012 is shown in Figure 5.

Following the results of the numerical experiment (low
performance of AMSR2 RR retrieval algorithm at low rain
rates), we did not validate the algorithm for RR = 0. For the
algorithm validation only those data were selected where RSS
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FIGURE 5: A 5-month AMSR2 rain rates (mm/h), retrieved with the
new algorithm, collocated within 10-minute time difference with
RSS TRMM Microwave Imager rain rates for 2012.
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FIGURE 6: Distribution of rain rates in the TMI validation dataset for
the time period of August 2012—April 2014.

RR were not equal to zero. The resulting datasets included
90432 data for the 5 months of 2012, 200521 data for the whole
year of 2013, and 73214 data for the first 4 months of 2014.
Totally 364167 data with nonzero rain rates comprised the
whole validation dataset.

The maximum value of the TMI RR in the validation
dataset was 23.5mm/h. 93.4% of all data were less than
5 mm/h and only remaining 6.6% exceeded 5 mm/h. TMI RR
distribution in the validation dataset is presented in Figure 6.

To compare the algorithm performance relative to TMI
RR product with another algorithm performance we vali-
dated also AMSR2 RSS RR product against the same TMI
dataset. It was expected that since all Remote Sensing Systems
passive microwave products had been accurately intercali-
brated the two different RSS RR products should demonstrate
high correlation. At the same time we supposed it was more
reasonable to use TMI RR product for the validation since this
product is being constantly calibrated with the precipitation
radar rain rates which can be considered as in situ RR data.

5. Results and Discussion

The results of the comparison of the RRs, retrieved from
AMSR?2 data, with TMI RRs for the whole RR range are
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presented in the scatter plot in Figure 7. Color in the Figure 7
denotes the number of the data contributing to the scatter
plots. The total retrieval error, calculated as a root mean
square difference for the whole match-up dataset, is 0 =
1 mm/h. The correlation coefficient Rc = 0.8; the equation of
the linear trend is y = 0.8x + 0.3.

It can be seen that most of AMSR2 retrievals (94%) do
not scatter from TMI rain rates larger than +20. Only 6%
of all AMSR2 retrieved rain rates differ from those of TMI
by more than 2 mm/h. These large differences can be due to
many reasons. One of the most probable sources of the errors
is the difficulty for the algorithm to distinguish between high
total cloud liquid water contents and rain rates, following the
simplest parameterization of used liquid cloud, rain model
and the absence of any ancillary data. Another important
reason is not accounting for ice clouds. Some large errors can
also be caused by nonzero time difference between TMI and
AMSR2 measurements.

The error for the range of rain rates less than 5 mm/h is
0.6 mm/h, Rc = 0.6, and for those rains where RR < 2 (80%
of all data) o = 0.3 mm/h, Rc = 0.4; so for low rain rates the
algorithm performs worse (the relative error is larger) than
for the whole RR range. We suppose that an attempt can
be undertaken to overcome this inadequacy in the future by
means of the combined use of C- and X-band measurements
and higher frequency measurements at 22-37 GHz range
allowing accurate total cloud liquid water content retrievals
under light rains. Such a possibility yet needs to be studied
using more advanced forward modeling.

For the rain rates higher than 10 mm/h the retrieval error
is 2.3 mm/h. After the exclusion of large error rare cases (15%
of all data with RR > 10 mm/h with more than 2¢ deviation),
probably associated with fast changing atmospheric state and
nonzero time difference in measurements, the retrieval error
totaled 1.1 m/s.

High rain rate retrievals are the subject of special con-
sideration since the complexity of the precipitation modeling
under heavy rains definitely cannot be captured by the
simple parameterization used in this study. Nonuniform
hydrometeor parameter distribution, changing with height
and within a footprint, as well as ice clouds and precipita-
tion should be taken into account. Rain rate retrievals in
heavy rains, accompanying such extreme events as tropical
hurricanes, need to be studied separately since intensive rains
modify dramatically both the atmospheric properties and the
emissivity of the ocean surface. Under hurricane-force winds
the new object appears in the atmosphere close to the ocean
surface—the spray layer, generated by breaking waves. This
layer of large-scale salt hydrometeors significantly changes
the microwave radiation and its polarization state and its
influence should be modeled along with rain effect.

Moreover, heavy rains are associated with heavy convec-
tion, correlated with large cloud ice particles such as hail.
Under conditions of deep convection there may exist large
precipitation systems of the spatial scales from 40 to 500 km
or larger. Such mesoscale convective systems are long-lived,
cause intense precipitation, and with high probability pro-
duce hail [51]. The size of hail and graupel particles in such
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FIGURE 7: Scatter plot of rain rate, retrieved from GCOM-W1
AMSR2 using newly developed algorithm, versus TMI rain rate
(Remote Sensing Systems daily product) for the period of August
2012-April 2014. Time collocation is within 10 minutes.

precipitation systems reaches several centimeters [52] which
is much more than the wave lengths of low frequency AMSR2
channels. Radiative transfer model in this case cannot be used
in its simplified version and its solution requires full Mie
multiple scattering computations. In such a case not taking
into account ice scattering introduces nonnegligible errors in
numerical modeling and following algorithm development.

Analyzing satellite passive microwave rain rate fields we
need to have in mind that the highest rain rates occur over
the regions with comparatively small areas. Low resolution
passive microwave measurements are smoothed; high RR
values are averaged with low and zero RRs prevailing over
the most part of a pixel. Thus, actual rain rates can be
considerably larger than indicated by passive microwave
products. This important aspect of spatial smoothing also
needs to be considered in any validation studies which use
the measurements of different spatial scales.

Figure 8 illustrates this difference in rain rate estimates
by TRMM Microwave Imager (TMI RR) and by TRMM
Precipitation Radar (PR RR) for the hurricane Danas on
7 October 2013. The maximum TMI RR in the RR field
presented in Figure 8is 15.7 mm/h, whereas the maximum PR
RR for the same field, simultaneously measured in a narrower
PR swath, is 184.3 mm/h. PR data were downloaded from
NASAs Goddard Earth Sciences (GES) Data and Information
Services Center (DISC). This specific case is a rare case of
quasisynchronous imaging of the typhoon (associated with
heavy rain) by TMI and AMSR2 instruments. We built RR
fields both for TMI RR product and for AMSR2 RR estimated
with the algorithm, developed in this study. Figure 9 shows
both fields and the difference between them. Since the
difference in these satellite measurements is about 1 hour and
20 minutes, the direct pixel-to-pixel comparison is supposed
to be impossible. To calculate and build the difference, all
AMSR?2 data were spatially shifted so that the center of the
typhoon, observed by AMSR2, coincided with its center,
observed by TMI. This rather inaccurate procedure allowed
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FIGURE 8: TRMM rain rate fields (mm/h) for the typhoon Danas on 7 October 2013 ~18:40 UTC: (a) TMI RR product from Remote Sensing
Systems and (b) PR RR product from NASA/Goddard Space Flight Center.

nevertheless illustrating the underestimation of rain rates by
AMSR?2 newly developed algorithm compared with TMI rain
rates. Such an underestimation also results from the total
validation for high RR values.

To support this validation study we also compared
independent AMSR?2 rain rate retrievals made by RSS [17]
with TMI RR product. Since the fundamentals for TMI and
AMSR?2 rain rates are the same, we suppose that it makes
sense. AMSR2 RSS rain rate product was not used for the
algorithm validation since TMI RR product was calibrated
against highly accurate precipitation radar measurements,
whereas AMSR2 was not. The corresponding scatter plot of
RSS AMSR?2 RR versus TMI RR is shown in Figure 10(a). In
Figure 10(b) the scatter plot of AMSR2 RR, retrieved with the
new algorithm, versus TMI RR is shown again to stress the
difference.

It can be seen that RSS AMSR?2 rain rates are unbiased
compared with TMI rain rates. No underestimation of high
RR values is observed. The total retrieval error for the whole
dataset is a little bit lower, 0.9 mm/h as compared to 1 mm/h,
ensured by the usage of the new algorithm. The correlation
coeflicient Rc = 0.8; the equation of the linear trend is y =
1x + 0.1. We found that for RSS AMSR2 product the root
mean square error for the range of rain rates less than 5 mm/h
was 0.8 mm/h, and for the rain rates less than 2mm/h o
was 0.6 mm/h, 2 times higher than with the usage of newly
developed AMSR2 algorithm. So, some advantage in the
range of low (<2mm/h) rain rates for the new algorithm
can be stated compared with the standard AMSR2 RSS RR
product. Though for both AMSR2 retrieved RR and RSS RR
product the correlation with TMI RR under light rains is far
from satisfactory.

6. Conclusions

The new algorithm for rain rate (RR) retrievals from the data
of Advanced Microwave Sounding Radiometer 2 (AMSR2)
onboard GCOM-WI1 is developed using 6 low frequency
channel measurements at 6.9, 7.3, and 10.65 GHz. The algo-
rithm is based on the numerical modeling of brightness
temperatures with their following inversion into RR using
neural network-based method. The general approximations
of forward modeling include a simplified form of the radiative
transfer equation, not taking into account ice clouds and
precipitation and a simple uniformly distributed rain profile.
The validation of the new algorithm is carried out through the
comparison of the results of its application to AMSR2 Level
1B brightness temperature data with Remote Sensing Systems
(RSS) rain rate product, based on Tropical Rain Measurement
Mission (TRMM) Microwave Imager (TMI) measurements
for the period of August 2012-April 2014. Spatial collocation
is ensured by gridding AMSR2 data onto TMI RR grid;
time collocation is within 10-minute interval. The root mean
square error o, calculated for the whole dataset, is about
~lmm/h which is 0.l mm/h greater than o for RSS AMSR2
product. RSS AMSR2 RR product is also validated against
the same TMI RR product for the comparison between the
performances of RSS and newly developed algorithms.

It is found that the new algorithm outperforms the RSS
algorithm for RR < 2 mm/h. For this low RR range the error
of the new algorithm is 0.3 mm/h compared to 0.6 mm/h
for RSS algorithm. At the same time the new algorithm
significantly underestimates rain rates for RR > 10 mm/h,
whereas RSS AMSR?2 rain rates are highly correlated and
unbiased compared with RSS TMI rain rates for the whole RR
range. This significant underestimation is obviously inherent
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FIGURE 9: (a) TMI gridded (10 km x 10 km) RR field (mm/h), 7 October 2013, 18:36 UTC; (b) AMSR2 derived gridded (10 km x 10 km) RR
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to the simplified radiation transfer model (RTM), starting to
differ from the full RTM at high rain rates, and not accounting
for different forms of ice in the atmosphere.

The new algorithm only needs AMSR2 brightness tem-
perature measurement data without any ancillary informa-
tion and can be used for RR retrievals up to 20 mm/h, with
a retrieval accuracy of 1 mm/h, degrading for RR higher than
10 mm/h to 2.3 mm/h.

Further work is needed for the algorithm improvement
both at very low and high rain rates. This work should include
accurate ice modeling and usage of the full RTM. This shall
improve the algorithm performance for RR > 10 mm/h and
expand the applicability of the algorithm for the estimation

of rain rates higher than 20 mm/h with reasonable retrieval
accuracy.
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