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Abstract
Since the 1990s, massive use of drifting Fish Aggregating Devices (dFADs) to aggregate

tropical tunas has strongly modified global purse-seine fisheries. For the first time, a large

data set of GPS positions from buoys deployed by French purse-seiners to monitor dFADs

is analysed to provide information on spatio-temporal patterns of dFAD use in the Atlantic

and Indian Oceans during 2007-2011. First, we select among four classification methods

the model that best separates “at sea” from “on board” buoy positions. A random forest

model had the best performance, both in terms of the rate of false “at sea” predictions and

the amount of over-segmentation of “at sea” trajectories (i.e., artificial division of trajectories

into multiple, shorter pieces due to misclassification). Performance is improved via post-pro-

cessing removing unrealistically short “at sea” trajectories. Results derived from the select-

ed model enable us to identify the main areas and seasons of dFAD deployment and the

spatial extent of their drift. We find that dFADs drift at sea on average for 39.5 days, with

time at sea being shorter and distance travelled longer in the Indian than in the Atlantic

Ocean. 9.9% of all trajectories end with a beaching event, suggesting that 1,500-2,000 may

be lost onshore each year, potentially impacting sensitive habitat areas, such as the coral

reefs of the Maldives, the Chagos Archipelago, and the Seychelles.

Introduction
It has been known for millennia that objects drifting at the surface of the ocean, hereafter re-
ferred to as drifting Fish Aggregating Devices (dFADs), attract various species of fish, though
the reasons for this behaviour remain poorly understood [1,2]. Fishers have used dFADs for
centuries as indicators of higher abundance, better catchability, increased fish school size and
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ultimately to facilitate the capture of fish [1,3]. Originally, dFADs were either natural marine
objects, such as algae or marine mammals, or terrestrial wooden debris, e.g. entering the ocean
through river mouths [4]. Since the late 1980s, however, the use of man-made dFADs by pelag-
ic purse-seine fleets has become widespread. They generally consist of a bamboo raft covered
with old pieces of purse seine netting and vertical filaments also made of netting hanging down
beneath the raft serving as a subsurface drogue (up to 100 m) [5–8]. In tropical tuna fisheries,
artificial dFADs have become increasingly important over time and annual global purse seine
tuna catches on dFADs reached more than 1.5 million tons in the last decade [9,10]. The mas-
sive development of the dFAD-associated fishery has introduced major changes to the efficien-
cy and selectivity of purse seiners that are not well reflected in traditional indices of fishing
effort, such as time-at-sea or search-time. This has hindered the use of purse-seine catch rates
for the estimation of tuna abundances needed for stock assessment [10,11]. In addition, the ex-
tensive use of dFADs has raised serious concerns regarding increased bycatch and juvenile
catch, reductions in tuna survival and fitness, and changes in ecosystem functioning [10,12–
14]. Despite these concerns, little information has previously been available on dFAD use
worldwide. Such information is crucial to monitoring and management of the impacts of
dFADs on pelagic ecosystems. As a result, Tuna Regional Fisheries Management Organisations
(T-RFMOs) have recently called for dFAD management plans, including data collection on
deployment and use of dFADs by purse seiners and supply vessels (e.g. Resolution 12/08 of the
IOTC, [15]).

Here, we present the first detailed, spatially-extensive treatment and analysis of the use of
dFADs by purse-seiners in the Indian and Atlantic Oceans. We focus on the French compo-
nent of the fishery, representing an annual catch of about 125,000 t, more than 20% of the total
catch on dFADs in these oceans [16,17]. French tuna purse seiners began to build and deploy
artificial drifting bamboo rafts equipped with radio-range transmitters in the late 1980s [18].
Detailed records of the positions of floating objects only became available with the emergence
of GPS-equipped, satellite-linked buoys in the late 1990s which were coupled to a GIS software
system onboard the vessels to monitor dFAD positions in near real-time. However, despite the
intensification of dFAD fishing, information on buoy positions has remained highly confiden-
tial until recently. Under an agreement with the French purse seine fleet, we have obtained de-
tailed dFAD tracking information for the period 2007–2011 from the 3 French purse seine
fishing companies operating in the Atlantic and Indian Oceans.

Our objectives here are (1) to develop the baseline methodology for treatment and analysis
of dFAD GPS positions and (2) to carry out an initial examination of dFAD spatio-temporal
use and potential impacts. As dFADs data contain both positions while the dFAD was onboard
the purse-seine vessel and positions while the dFAD was drifting at sea, four discriminative
classification methods are compared for their ability to correctly identify dFAD drift phases on
a subset of the data with known state. The classification method with the highest performance
is then applied to the full dataset and used to describe the spatio-temporal patterns of dFAD
use by a major component of the tropical tuna purse seine fishery in the Atlantic and Indian
Oceans. Classified data serve as a basis (i) to identify dFAD density hotspots and measure time
and distance at sea, all essential to understanding the impacts of an array of floating objects on
tuna stocks and pelagic ecosystems, (ii) to detect dFAD beaching events and their correspond-
ing deployment positions so as to evaluate potential damage to fragile coastal ecosystems and
propose management strategies, and (iii) to identify “ineffective” or “ghost” dFAD fishing ef-
fort as characterized by dFADs moving out of established fishing areas.
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Material and Methods

Fisheries data and FAD use overview
Data on catch and effort of French purse seiners have been collected by the ‘Institut de Recher-
che pour le Développement’ (IRD) since the development of the fishery in the Atlantic and In-
dian oceans in the early 1970s and 1980s, respectively. For the present study, fine-scale
operational data based on skipper logbooks were available for the period 2007–2011. They de-
scribe the activities of purse seiners, the association type of tuna schools detected (i.e. free
swimming or dFAD-associated school), the positions of purse seine fishing sets, as well as the
tonnage and commercial size categories of tuna catches. Similar catch and effort data are avail-
able for other components of the purse-seine fishery, notably the Spanish fleet, on a 1° lon-lat
grid. In addition, French purse seiners have been equipped with Vessel Monitoring Systems
(VMS) since the early 2000s as part of the monitoring, control, and surveillance program of the
European Union. The GPS position of each vessel is recorded on an hourly basis, enabling con-
struction of vessel-specific trajectories over their typical 4–6 week fishing trips. This data can
be used as a complement to buoy position data, in particular to help identify time periods
when buoys were not in the ocean.

Before discussing dFAD position data, it is important to understand how dFADs are used
by fishers. When leaving the port, purse seiners bring on board GPS buoys, bamboo rafts and/
or the necessary material to build them. These will be used to maintain an array of dFADs be-
longing to the vessel. This can be done either by deploying new dFADs equipped with GPS
buoys, equipping natural floating objects with GPS buoys or appropriating a floating object
owned by another vessel by replacing its GPS buoy. Activities related to dFADs and buoys can
also be conducted by auxiliary vessels that generally collaborate with 1–2 purse seiners [19].
GPS buoys are turned on before being deployed on a floating object to assure they are function-
ing correctly. During this period, which can last from a few hours to a few weeks, the GPS sig-
nal, transmitted via satellite through systems such as Inmarsat D+ or Iridium, is a sequence of
“on board” positions that are similar to VMS positions of the fishing vessel. GPS buoys are
then deployed on dFADs for a period of days to months during which time tuna may aggregate
under the dFAD. When the level of aggregation is acceptable, a fishing set may be undertaken,
either by the deploying vessel, or any vessel that has detected the tuna school. During the fish-
ing set, the dFAD and/or GPS buoy may be retrieved or left at sea. GPS buoy tracks are there-
fore a succession of “on board” and “at sea” positions. Whereas GPS buoys belong to a single
vessel, they may be moved from one floating object to another several times over their life-
cycle, be retrieved and changed by foreign vessels operating in the same zone, and the objects
they are attached to may be used by multiple vessels.

All these activities occur on fishing grounds that are common to European (mainly France
and Spain) and Asian purse seine fleets, either in the open ocean or in Economic Exclusive
Zones (EEZ) through fishing licenses. In the Indian Ocean, purse-seine fishing is highly sea-
sonal with a primary peak of activity on floating objects during the third quarter of the year
when the fleet concentrates off the coast of Somalia and a secondary peak fromMarch to May
when the fleets concentrates in the Mozambique Channel [20]. In the Atlantic Ocean, the sea-
sonality in dFAD activities is less important but a low season occurs from June to August [6].

Once deployed, dFADs share many characteristics with typical Lagrangian drifters used in
oceanographic studies, but differ in several important ways. First, the drogue beneath the
dFAD is longer than what is typically used in oceanographic studies (up to 100 m). This gener-
ally slows the movement of dFADs with respect to surface currents, which is considered desir-
able by fishers for successful aggregation of tunas. Second, the technology of dFAD tracking
buoys is somewhat different, including the use of electronic protection keys to prevent use of
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the buoys by non-owner vessels, solar panels to increase the buoy battery lifetime, and two-way
satellite communications so that the frequency of emission of the GPS signal can be remotely
controlled by the owning vessel [2,9,21].

dFAD GPS buoy data and pre-processing
dFAD GPS buoy raw data provided by the 3 French fishing companies consist of GPS positions
described by latitude and longitude, time of acquisition of the GPS signal (date and hour, with
no information on the minute of acquisition of the signal), a vessel identifier and surface water
temperature (°C). Timesteps between consecutive data points are irregular (i.e., 1 h, 6 h, 12 h,
1 d or more) depending on the intended use of the dFAD at a given time (e.g.when a fishing
vessel intends to visit a given dFAD, it reduces the time between two emissions of a GPS buoy
to 1 hour). Several vessels can monitor the same buoy during the same hour, resulting in re-
peated space-time positions. Furthermore, because time was only recorded to hours (i.e., min-
utes and seconds were not recorded) in the raw data, a similar time of emission can refer to
several different positions during the same hour. We eliminated duplicate timesteps by calcu-
lating a unique position as the geographic midpoint of the different positions available for a
given hour. Rare records without a valid latitude or longitude were eliminated. Buoys also occa-
sionally erroneously produce two consecutive identical positions separated by a finite period of
time. These “doubled” positions can produce inconsistent, extremely-high perceived speeds
(reaching sometimes 100 m.s-1) between the second repeated position and the position imme-
diately after it. We eliminated such repeated positions, keeping only the first of the two identi-
cal positions. The resulting dataset is stored in a PostGreSQL 9.1.9/PostGIS 2.0.1 database, and
includes approximately 1,741,000 positions from 9,289 buoys used by 29 purse seiners operat-
ing in the Atlantic and Indian Oceans during the period 2007–2011 (Fig 1). The fraction of
purse seiners and auxiliary vessels that have provided GPS buoy positions varies between years
and fishing companies, with a gradual increase towards 100% coverage of French fishing ves-
sels in recent years (Table 1).

Fig 1. Location of raw GPS buoy positions in the Atlantic (a) and Indian (b) Oceans from January 2007 to December 2011.

doi:10.1371/journal.pone.0128023.g001
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Given the complex utilisation of dFADs and GPS buoys described in the previous section, it
is useful to define specific terminology for different parts of the dFADs positions dataset. Posi-
tion data are referred to as “GPS buoy positions”. The term “GPS buoy track” is used to refer to
the ensemble of positions belonging to a single GPS buoy. Tracks are broken down into “on
board” and “at sea” trajectories, consisting of sequences of positions classified as having a con-
sistent state. “At sea” trajectories are also referred to as “dFAD trajectories” or “dFAD posi-
tions” as these correspond to periods the GPS buoy is generally attached to a dFAD.

Construction of the learning dataset
The true state of a subset of the GPS positions available was manually determined using comple-
mentary fishery data. Vessels trajectories were inferred from VMS position measurements and su-
perimposed in space and time on GPS buoy trajectories to detect shared pieces of tracks (Fig 2).

Table 1. Yearly proportion of vessels of the French purse seine fishing fleet for which information on
GPS buoys was available during 2007–2011 in the Atlantic Ocean (AO) and Indian Ocean (IO).

Year AO IO Coverage (%)

2007 3/5 16/19 79.2%

2008 5/7 16/19 87.5%

2009 7/10 14/18 75%

2010 10/10 13/13 100%

2011 9/9 13/13 100%

Note that 100% coverage means that 100% of the fishing vessels have provided data but not that they

have provided data for the totality of their GPS buoys.

doi:10.1371/journal.pone.0128023.t001

Fig 2. Example of vessel (blue line) and buoy (red line) trajectories inferred from VMS and buoy GPS
positions, respectively. After leaving the port of Abidjan (black square) the boat heads to the East in the
direction of the Gulf of Guinea, before heading to theWest in the direction of Dakar and conducting a series of
fishing sets (grey dots). The overlap of the buoy and vessel trajectories indicates that the vessel turned on
this particular buoy (1) before entering the port of Dakar. The buoy was likely deployed after leaving the port,
shortly after performing a fishing set (2).

doi:10.1371/journal.pone.0128023.g002
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VMS tracks possessing positions close in space (<5 km) and time (<1 d) to GPS buoy positions
were initially selected for closer comparison. These “nearby”VMS trajectories were interpolated
at the emission times of GPS buoys, and distances between buoys and fishing vessels at identical
times were calculated. Original buoy tracks and nearby VMS tracks, spatial separations between
the two, buoy speeds, and locations of fishing sets were simultaneously visualized using Matlab
[22]. Points of bifurcation between GPS buoy and VMS tracks, as well as the nature of the GPS
buoy track preceding and following these bifurcations (e.g., consistently low or high speeds, and
sinuous versus straightline tracks), were used to assign “on board” (B) or “at sea” (S) states to indi-
vidual buoy positions. Geographic locations of the principal tuna landing ports were used to clas-
sify positions less than 5 km from a port as “on board” positions. Buoy positions too distant in
time (>1 d) and space (>5 km) from any VMS or fishing set data and having speeds that were
consistently too large (> 1.5 m.s-1) to be considered “at sea” (possible if the buoy was recuperated
by a non-French purse-seiner for which we do not have VMS data) were not assigned a class. Var-
iables such as buoy speed or distance to the nearest port, that were used later to build the classifi-
cation models, were only used as a complementary source of information. For example, it was
sometimes difficult to visually determine a transition from “on board” to “at sea”. In such cases, if
buoy speed decreased between time t and t+1, then position at time t was assigned a class “on
board” and “at sea” at t+1. A total of 19,927 points corresponding to 207 different buoy trajecto-
ries were classified using this method (2.3% of the buoy dataset). The majority of this learning
dataset consisted of “at sea” positions, with 13.8% of the learning dataset classified as “on
board” positions.

Classification model selection
Four binary classification methods were compared for their ability to correctly predict the “at
sea” (S) or “on board” (B) state of each dFAD position based on a set of predictor variables
characterizing buoy speed, acceleration, time step, water temperature, etc. at each position
(Table 2). The intended, long-term use of classification models is to optimally classify new
dFAD position data received from the fishing companies on a quarterly basis. As the resulting
large dFAD dataset will be used by multiple individuals having disparate levels of statistical ex-
pertise, it is desirable to identify the simplest, most-computationally-efficient classification
method that can accurately predict buoy state. Therefore, although one would expect that more
sophisticated classification methods (e.g., random forests) will perform best, simpler methods

Table 2. List of predictor variables considered in the classification models. t-1, t and t+1 represent 3
consecutive positions of buoys over time.

Variable Formula

Time interval (s) timet+1—timet
Time interval before (s) timet—timet-1
Time interval change (s) timet+1—timet-1
Speed (m.s-1) Distancet,t+1/time intervalt,t+1
Speed before (m.s-1) Distancet-1,t/time intervalt-1,t
Acceleration (m.s-2) 2(velocityt,t+1-velocityt-1,t)/time intervalt,t+1
Heading change (rad) |heading|t,t+1-|heading|t-1,t
Min distance from a major port (km) linear distancet-Port
Water temperature (°C) temperaturet
Water temperature before (°C) temperaturet-1
Water temperature change (°C) temperaturet- temperaturet-1
Water temp. change / interval (°C.s-1) (tempt- tempt-1)/time intervalt-1,t

doi:10.1371/journal.pone.0128023.t002
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were also tested to assess trade-offs in terms of accuracy and computational time associated
with different levels of model complexity.

The methods tested were: a speed filter (VEL), multiple logistic regression (MLR), artificial
neural networks (ANN) and random forests (RF). These methods range from fairly intuitive ap-
proaches (VEL, MLR; [23,24]) to sophisticated, ‘black-box’models (ANN, RF) capable of repre-
senting complex interactions between variables without making assumptions regarding the
distribution of the classification variables (ANN, RF;[25,26]), and of coping with noisy data and
correlated classification variables (RF; [25,27]). In the case of the RF method, often described as
robust to correlation among predictors [27], these may however induce a biased interpretation of
the contribution of such variables to the model [28–30]. As our objective was not to build a good
explanatory model but a good classifier of GPS buoy positions, we chose to include all available
classification variables, regardless of their possible correlation. This is further discussed in S2 File.

Configuration of classification models
The performance of the best model configuration for each of the 4 classification models was
evaluated using cross-validation. The learning dataset was randomly split 100 times into a
training dataset (used for model calibration) and a validation dataset (used to evaluate model
performance) each containing 50% of the learning trajectories. During the calibration phase,
each of the 100 training datasets was used to build an optimal version of the MLR, ANN, and
RF models.

The full list of predictor variables can be found in Table 2. With the exception of the VEL
model, which was manually calibrated based on the maximum “at sea” speed observed in the
learning dataset, all model calibrations and predictions were carried out using R version R.2.14
[31] with the caret package (version 5.15–023, [32]) and its train function. The train function
uses a bootstrap approach, with 200 iterations, to determine an optimal set of model configura-
tion parameters (i.e., parameters that affect model structure and complexity, such as the num-
ber of hidden neurons in the ANNmodel; Table 3). For each of the 100 training datasets
described above, 200 different random subsets are generated by resampling with replacement
the training dataset, and then each given classification method is calibrated for each subset
using all possible combinations of model-configuration parameter values. For each subset, the
accuracy rate (fraction of correct predictions) and the Kappa statistic (which measures to what
degree the prediction will be repeatable and reproducible) are computed using the remaining,
unused part of the original training dataset. The set of configuration parameter values that
maximizes the mean accuracy and mean Kappa among the 200 bootstraps is used to calibrate
the given classification model to the entire training dataset. In the end, this procedure produces
100 optimized predictive classification models, one for each training dataset. The train func-
tion internally calls a different model for each classification method: the MLR and ANN

Table 3. Classification methods used in to separate ‘at sea’ and ‘onboard’ positions of the buoys.

Method Features of interest References Parameters

Multiple Logistic Regression
(MLR)

intuitive, white-box Dreiseitl and Ohno-Machado
2002

Weight decay w

Artificial Neural Network
(ANN)

no assumption, complex non-linear relationships Dreiseitl and Ohno-Machado
2002

Weight decay w

Size s
Joo et al. 2011

Random Forest (RF) no assumption, complex non-linear relationships,
robustness to overfitting

Breiman et al. 2001 Randomly chosen variables
mtryCutler et al. 2007

doi:10.1371/journal.pone.0128023.t003
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method of the nnet package (version version 7.3–1, [33]), and the RF method of the Random-
Forest package (version 4.6–6, [34]).

As the learning dataset is imbalanced in favour of “at sea” positions (86.2%), we also consid-
ered two approaches for correcting for imbalanced data: (1) using an optimal threshold other
than 0.5 as the minimum probability required to declare a point “at sea” and (2) forcibly bal-
ancing the training dataset before model calibration. The first approach used maximization of
sensitivity plus specificity [35] to determine a threshold for all classification methods other
than VEL. The second approach was applied to the RF model as the RF algorithm used pos-
sesses an internal procedure to rebalance data. As neither of the two approaches improved
overall model classification performance, they are not discussed further here, but details can be
found in S1 file.

Comparison of classification methods
The validation phase consisted of using the models calibrated on the 100 training datasets to
predict the class of the positions in the corresponding 100 validation datasets. Classification
model performance was evaluated through a balance of 5 indicators of performance based on
minimization of the misclassification of “at sea” and “on board” positions (“position based” in-
dicators, Table 4) and based on the ability to minimize the incorrect segmentation of trajecto-
ries (when sequences “at sea”—“on board” or “on board”- “at sea” occur along a trajectory)
due to classification errors (“trajectory based” indicator, Table 4). 100 values of each indicator
were calculated over the cross-validation procedure to obtain a distribution of their values.
Pairwise comparisons of the performance of the models were then performed based on two
sided t-tests (α = 0.05) using the speed filter (VEL) as the reference method. During this com-
parison phase, we made sure that each single position was correctly assigned a class “at sea” or
“on board” through position based indicators such as the True and False Sea Rates (Table 4).
However, as our objective was not only to correctly classify each single position but also se-
quences of “at sea” and “on board” positions, we ensured that improving position based indica-
tor values was not inducing an over-segmentation problem. For this purpose, we put more
emphasis on decreasing the segmentation rate than on increasing the TSR or decreasing the
FSR as we considered less important to correctly classify a few isolated positions than to cor-
rectly capture a whole section of “at sea” or “on board” positions.

Trajectory post-processing
The classification methods described above do not take into account the temporal relationship
between successive buoy positions, but rather treat each position as independent of all others.

Table 4. Definition of position-based and trajectory-based indicators of performance for classification methods.

Type Indicator Formula Description

Position based Error rate FB + FS / Npositions Accuracy of the classifier (no distinction of class)

Precision TS/ Spredicted Repeatability and predictive power

True Sea Rate TS / Sobserved Sensitivity. Ability to detect S positions

False Sea Rate FS / Bobserved 1—Specificity. Ability to detect B positions

Trajectory based Segmentation rate Nsegments;pred � Nsegmen

Nsegments;obs

Inappropriate segmentation of the trajectories

S: at sea, B: on board, TB: True Boat; TS: True Sea; FB: False Boat, i.e., the number of positions incorrectly predicted to be on board; FS: False Sea, i.e.,

the number of positions incorrectly predicted to be at sea; Nsegments: number of segments over a GPS buoy trajectory; Npositions: number of GPS buoy

postions, obs: observed, pred: predicted

doi:10.1371/journal.pone.0128023.t004
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This assumption can result in incorrect sequences of “at sea” and “on board” classes inconsis-
tent with the fishing process. For instance, a sequence of the type ‘BSB’ is unrealistic as buoys
are unlikely to be left at sea for only a few hours. Hence, post-processing of the outputs from
the best classification model was performed to reclassify buoy positions in short “at sea” trajec-
tories as being “on board” positions. During this procedure, we varied the maximum number
of isolated, consecutive “at sea” positions to be reclassified as “on board” positions. For each
maximum length for reclassification, we recalculated performance indicators (Table 4). Results
with and without post-processing of predictions from the RF model were compared using a
two-sided t-test of the indicators of performance (α = 0.05).

Model application and data analysis
The best classification model including post-processing corrections was applied to the full
buoy position dataset, and “at sea” and “on board” predictions were made for each position.
Model predictions were then employed to detect potential fishing set positions assuming that
transitions from “at sea” to “on board” potentially correspond to the retrieval of a dFAD and
its buoy from the sea. Spatial patterns in fishing positions predicted by the model were com-
pared to observed fishing positions as declared in fishing vessel logbooks. Note that predicted
retrieval locations include some operations on floating objects that do not correspond to a fish-
ing set (e.g., maintenance, buoy displacement to a different location or foreign buoy replace-
ment), as well as buoys lost at sea due to the sinking of the attached floating object. 1-degree
gridded density maps of observed and predicted fishing positions were created, and qualitative
and quantitative comparisons between the two were carried out. These analyses were used both
as a validation of the classification method and as a means to identify zones where endpoints of
dFAD trajectories may not be related to fishing sets. Quantitative comparisons consisted of
computing the Spearman correlation coefficient of observed and predicted densities in all grid
cells containing at least one observed or predicted fishing set position.

Model results were then used to: (i) characterize dFAD trajectories (i.e. distance and time at
sea), (ii) describe the spatial distribution of dFADs (using 1-degree gridded density maps in the
Atlantic and Indian Oceans during 2007–2011), and (iii) calculate the fraction of time buoys
spend outside historical fishing grounds, presumably representing ineffective fishing effort. In
addition, possible dFAD beaching events were identified using the original, unclassified dataset
by series of repeated geographical positions. The unclassified dataset was used to avoid any
possible confusion in the classification algorithm between at port and beached positions. We
assumed that at least 3 repetitions of the same position were necessary to identify a possible
beaching event as occurrence of 2 repeated positions is known to be related to failures to cor-
rectly capture a GPS signal (see section Buoys positions data and pre-processing). Final results
were obtained using 2 successive filters on these potential beaching-event positions. First, we
eliminated positions located within 10 km of a port, assuming that these are likely to be simply
fishing vessel anchorage points. Second, we eliminated positions located more than 5 km from
land (accounting for 5.7% of all potential beaching events). These later “stopping points”may
represent real shoaling events on offshore, shallow-water areas, but were considered more like-
ly to be due to something other than shoaling, and, therefore, results were calculated with and
without these points.

‘Ineffective’ dFAD fishing effort was described through 1-degree gridded density maps of
buoys drifting outside historical dFAD fishing grounds, the proportion of fishing sets predicted
outside fishing grounds, and the fraction of time a given dFAD spent drifting outside fishing
grounds. Two definitions of historical fishing grounds were considered: the spatial distribution
of catch under floating objects between 2006 and 2012 based on (1) the French fleet only and
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(2) all operating fleets. Fishing grounds of the corresponding fleet(s) were defined as all one de-
gree grid cells containing at least one purse-seine fishing set.

Results

Classification model performance and selection
A speed threshold of 1.3 m.s-1 produces a classification of “at sea” positions with a True Sea
Rate (TSR; see Table 4 for definitions of model performance statistics) of 99.3%. However, the
False Sea Rate (FSR) of 43.3% indicates that almost half of the “on board” positions are classi-
fied as “at sea” (Table 5). Compared with the VEL model, True Sea Rate does not noticeably in-
crease or decrease for any of the classification models tested in this study. For the MLR, ANN
and RF (without and with post-processing of outputs) models, the error rate, the False Sea Rate
and the segmentation rate all decrease while the precision increases. Among these indicators,
the most important improvement is obtained for the False Sea Rate, which decreases to 24.2%,
17.8% and 12.3% in the MLR, ANN and RF (without post-processing) models, respectively.
The segmentation rate for these 3 models decreases from a 143% increase in state transitions
(i.e., predictions of ‘BS’ or ‘SB’ transitions relative to the true rate in the learning dataset) for
VEL to +90.8, 93.2%, 62% for MLR, ANN, RF models respectively. Though the MLR, ANN
and RF models produce similar values for True Sea Rate, all other indicators of performance in-
dicate that the RF model performs considerably better than the MLR and ANNmodels, espe-
cially with regards to False Sea Rate, precision and segmentation rate (Table 5). Because of its
superior performance, the RF model was chosen as the best classifier for dFAD trajectory data.

Replacing RF predicted classification sequences of the type BSSB (i.e. two, isolated points
classified as “at sea”) with BBBB considerably improves performance indicators. Error rate
drops from 2.6% to 2.2% on average for the 100 validation datasets (Fig 3). This correction also
significantly improves all other performance indicators (Table 5), notably reducing the seg-
mentation rate from 60% to 25%. Using the RF model with post-processing correction, we pre-
dict that 15.5% of the full dFAD trajectory dataset consists of “on board” positions, showing
the importance of separating “at sea” and “on board” positions before analysing patterns of
dFAD use.

Spatial patterns in dFADs
Overall patterns of potential dFAD fishing sets derived from the classified buoy data (i.e., end-
ing points of “at sea” trajectories) are similar to the spatial pattern of fishing sets derived from
vessel logbooks from French purse seiners over the period 2007–2011. The cross-correlation
Spearman coefficient between observed and predicted spatial patterns of fishing sets is 0.64

Table 5. Performance of the classification methods, as a mean of the indicator on the 100 cross-validation iterations for the VEL, MLR, ANN and
RFmethod.

Performance indicator VEL MLR ANN RF

Error rate (%) 6.6 3.8 [-2.8;-2.7] 3.4 [-3.3;-3.1] 2.6 [-4.1,-3.9]

Precision (%) 93.4 96.2 [2.7;2.9] 97.1 [3.7;3.8] 98.0 [4.5;4.7]

True Sea Rate (%) 99.3 99.5 [0.1, 0.18] 99.0 [-0.4;-0.3] 99.0 [-0.4;-0.2]

False Sea Rate (%) 43.4 24.2 [-19.6;-18.7] 17.8 [-25.9,-25.1] 12.3 [-31.2,-30.6]

Segmentation rate (%) 142.9 90.8 [-54;-49.9] 93.2 [-52,5;-46.5] 59.3 [-86.6;-80.2]

For the MLR, ANN and RF methods, 95% confidence intervals of the difference between the indicator for method and the VEL method are given in

square brackets.

doi:10.1371/journal.pone.0128023.t005

Spatio-Temporal Patterns of Fish Aggregating Devices

PLOS ONE | DOI:10.1371/journal.pone.0128023 May 26, 2015 10 / 21



(p< 0.001). More importantly, the main features and hotspots of the spatial distribution are
correctly identified (Fig 4). dFAD-associated fishing sets, as declared by the skippers, are main-
ly concentrated from the Senegalese to the Gabonese coasts in the Atlantic Ocean, while they
are mainly observed off Somalia and in the Mozambique Channel in the Indian Ocean. Pre-
dicted dFAD fishing grounds cover broader zones in the Indian and Atlantic Oceans than log-
book data, extending into the western Atlantic and eastern part of the Indian Ocean where few
fishing sets by French purse seiners occur. These differences may be attributable to deactivation

Fig 3. Mean error and segmentation rates over 100 cross-validation datasets for correcting between 1
and 5 isolated “at sea” positions.

doi:10.1371/journal.pone.0128023.g003

Fig 4. Smoothedmean densities of observed (as declared in logbooks, a) and predicted dFAD fishing
sets (as derived from the corrected RF outputs, b) for the period 2007–2011.Densities were calculated
on a 1° grid and smoothed using the two dimensional density estimation function kde2d of the MASS
package in R (bandwidth chosen according to the rule-of-thumb provided in the function bandwith.nrd).

doi:10.1371/journal.pone.0128023.g004
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of GPS buoys for dFADs that are drifting too far from fishing grounds, sinking of dFADs or
dFAD use by fishing fleets for whom data is not available (e.g., artisanal fleets). However, zones
of predicted fishing sets that are not observed in French purse seine logbook data generally
have low densities of predicted dFAD trajectory endpoints, and principal fishing zones pre-
dicted from dFAD trajectories are largely consistent with logbook fishing sets.

dFAD time and distance at sea
Predicted “at sea” portions of dFAD trajectories are on average 39.5 days long (standard devia-
tion (SD) of 61.6, standard error (se) of 0.4), corresponding to a mean piecewise-linear drift
distance of 1225.8 km (SD 1829.3, se 12.05), with both statistics showing important differences
between oceans, years of release and months of recapture (Fig 5). In the Atlantic Ocean, both
interannual and seasonal variability in time and distance-traveled at sea are important. Mean
time at sea is 47.8 d (SD 69.6, se 0.89) with a minimum predicted time length of 1 hour and a
maximum of 825 d (i.e. more than 2 years). Atlantic interannual variation in time at sea is im-
portant, e.g. with an average time at sea of 72.4 d in 2009 (SD 80.1, se 2.73) and 34.6 d in 2011
(SD 57.8, se 1.16). From February to November, days spent at sea decrease from 81 d on aver-
age (SD 82.9, se 3.6) to 29.9 d (SD 54.2, se 2.36). These monthly times at sea were significantly
different (two-sided F test comparison of variances, α = 0.05: p-value<0.001). During the peri-
od September-November, distance at sea is the shortest of the year, with dFADs travelling
664.6 km (SD 1322.4, se 57.55) in November versus 1627.4 km (SD 1824.3, se 78.37) in Febru-
ary. Again, differences between months are significant (two-sided F test comparison of vari-
ances, α = 0.05: p-value<0.001). Note that the apparent high turnover rates of dFADs during
the period September-November may also be related to frequent transfers of GPS buoys (when
purse seiners replace a buoy found on a foreign dFAD with one of their own buoys).

In the Indian Ocean, time at sea (36.6 d, SD 58.2, se 0.44) is on average shorter than in the
Atlantic Ocean, although the distance travelled at sea (1285.5 km, SD 1897.1, se 14.58) is
higher. Variations also occur between years but with a lower magnitude than in the Atlantic
Ocean, ranging from 32.6 d (SD 51.6, se 0.89) in 2011 to 45.7 d (SD 53.3, se 0.92) in 2008.
dFADs retrieved in March-April and August-September generally spend less time at sea than
those retrieved from December to February, with the shortest time at sea obtained for the
month of April (28.4 d, SD 51.8, se 1.38) and the longest for the month of February (53.5 d, SD

Fig 5. Time (a) and distance (b) at sea per ocean (in d and km) as a function of recapture month.

doi:10.1371/journal.pone.0128023.g005
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73.0, se 2.43). These monthly times at sea were significantly different (two-sided F test compar-
ison of variances, α = 0.05: p-value<0.001).

Lost GPS buoys
Putative beaching events, identified by positions that repeat at least three times far from a port,
occur in 26.4% of the GPS buoy tracks, corresponding to 10.5% of the “at sea” trajectories in
the dataset (a lower percentage because GPS buoys have more than one “at sea” trajectory).
When distance to the coast is also taken into account, the percentage of beached at sea trajecto-
ries decreases to 9.9% (i.e., 5.7% of all putative beaching events occurred more than 5 km from
the coast). More potentially beached GPS buoys are detected in the Indian Ocean (1328) than
in the Atlantic Ocean (1128), in line with the larger number of dFADs deployed by the French
fleet in this ocean. In the Atlantic Ocean, potentially beached buoys tend to concentrate in the
Gulf of Guinea but some buoys also cross the entire ocean to strand on the Brazilian coast
(Fig 6A). These dFADs have been deployed “at sea” off Abidjan, Tema, in the Gulf of Guinea
and off Gabon (Fig 6A). In the Indian Ocean, beaching events occur over a wider set of zones,
with Somalia, the Seychelles, the Maldives and Sri Lanka being the most important. Beaching
events also occurred within the Marine Protected Area of the Chagos Archipelago (Fig 6B).
Their deployment positions are mainly located around the Seychelles, in the Mozambique
Channel and off Somalia (Fig 6B). As for the buoys found potentially stored at port (that are
not part of the previous numbers), 7.3% are found far from a major landing port (Abidjan,
Ivory Coast; Dakar, Senegal; Tema, Ghana; Victoria, Seychelles; Port Louis, Mauritius; Saint-
Denis, Reunion Island; Diego Suarez, Madagascar; or Mombasa, Kenya), with this proportion
being slightly higher in the Atlantic Ocean than in the Indian Ocean, consistent with the pres-
ence of more ports that are not used for tuna landings in the Atlantic Ocean. These “at port”
buoys may correspond to buoys found by vessels that do not belong to the French purse seine
fleet. Therefore, they could be considered as lost for the French fleet, as purse seiners rarely
have the possibility to retrieve buoys from such minor ports (when purse seiners from other

Fig 6. Smoothed densities of dFAD beaching events (b) and their corresponding deployments
positions (a). Black dots correspond to individual beaching positions.

doi:10.1371/journal.pone.0128023.g006

Spatio-Temporal Patterns of Fish Aggregating Devices

PLOS ONE | DOI:10.1371/journal.pone.0128023 May 26, 2015 13 / 21



major, industrial fleets find and replace French buoys with one of their own buoys, the French
buoy is generally returned to the docks of one of the major ports).

‘Ineffective’ dFAD effort
A total of 6,563 GPS buoys (i.e. 68.4% of the dataset) were found to be drifting outside French
fishing grounds (see Fig 4A for the location of French fishing sets on dFADs) at least once dur-
ing their whole “at sea” set of trajectories. By comparison, with fishing grounds based on all
fleets for the period 2006–2012 (Fig 7B), this number decreases to 5,420 (57% of the dataset).
Though the average fraction of total drift time spent outside fishing grounds is relatively small
(3.05% for French fishing grounds; 2.2% for all fishing grounds), for some buoys, the time
spent outside fishing grounds is extensive. For example, 20.6% of the drifting trajectories spent
less than 50% of the time inside French fishing grounds (8.5% if all fishing grounds are consid-
ered). Main zones of dFADs travelling outside French fishing grounds are the area around the
port of Tema (Ghana) and a large area east of the fishing ground in the Atlantic Ocean, as well
as the Maldives, the eastern coast of Sumatra and the area adjacent to the coast of Somalia in
the Indian Ocean (Fig 7).

Discussion
Our analyses of the spatio-temporal distribution of dFAD trajectories both complement exist-
ing data on tuna fishing activities, as well as provide new, previously-unavailable insights into
purse seine strategy and potential impacts of fishing. In particular, we provide for the first time
information on the principal characteristics of dFAD use (i.e. density, turn-over, travelled dis-
tance, time at sea, and variability in time and space), essential for improving the monitoring
and management of fishing effort exerted by purse seine fleets in the Atlantic and Indian
Oceans. Though our dFAD buoy positions are characterized by irregular time-steps, occasional
abherant data and mixing of “at sea” and “on board” states, the classification methodology de-
scribed here is able to reconstruct “at sea” trajectories with a relatively high level of accuracy.

Fig 7. Mean yearly dFAD density (a) and ineffective dFAD effort (b) for the period 2007–2011. Black
areas correspond to 1° grid cells where at least one French or Spanish fishing set occurred over the period
2006–2012.

doi:10.1371/journal.pone.0128023.g007
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The best classification methodology, consisting of a random forest binary-classification model
followed by post-processing to remove short “at sea” trajectories consisting of just one or two
“at sea” positions, has an error rate of just 2.2%. Nevertheless, 25% more “at sea” trajectories
are predicted than are observed, suggesting that improvements to reduce the trajectory seg-
mentation rate are still possible (see end of Discussion).

Seasonal variation in dFAD mean times at sea are consistent with known patterns of purse
seine fishing activity [16,17,20], though variability in trajectory time length is very high among
“at sea” trajectories. In both oceans, during periods when purse seiners concentrate on dFAD-
fishing, times at sea are shorter than during seasons when fishers mainly target free-swimming
tuna schools, suggesting higher rates of dFAD deployments and buoy transfers during these pe-
riods. Times at sea are shorter in the Indian Ocean than in the Atlantic, but the reverse is true
for distance travelled by dFADs. These results are potentially explained by the stronger ocean
currents and ocean variability in the Indian Ocean (e.g., in areas off Somalia), than in Atlantic
fishing grounds [36,37]. They may also be explained by differences in the design of dFADs be-
tween oceans, with the length of the net hanging down beneath the bamboo raft reaching up to
70-100m in the Atlantic Ocean compared to only 30-50m in the Indian Ocean [38]. The former
is considered to reduce distance travelled for Atlantic Ocean dFADs due to increased drag
from slow-moving water masses below the thermocline [9]. Finally, differences in time at sea
may be related to differences in concentration of purse seiners on fishing grounds that reduce
the probability of a raft to be stolen and its buoy to be transferred, thereby increasing “appar-
ent” time at sea in the Atlantic Ocean. High variability among “at sea” trajectories is consistent
with the unpredictable nature of dFAD use: dFADs may be rapidly stolen by other vessels, drift
for longer or shorter periods before aggregating tuna, or drift outside fishing zones but contin-
ue to be monitored for months by skippers.

These initial results on time and distance travelled at sea form a foundation that could be
used to model dFAD trajectories, understand the mechanisms underlying these spatio-tempo-
ral differences, and hopefully develop management strategies to limit negative impacts on pe-
lagic ecosystems. For example, if the time a given dFAD spends at sea results in changes in
catch, bycatch levels or higher probabibilities of ghost fishing (see below), restrictions such as a
minimal or a maximal time at sea could potentially be implemented. Distance at sea is also cru-
cial to test the efficacy of spatialized management tools. For example, if dFADs travel a long
distance from their deployment position, and tuna remain “trapped” in the array of moving
dFADs, they may be extracted from closed areas to be fished elsewhere. These results may also
be useful for assessing potential for dFADs to act as ecological traps for tuna, disturbing normal
tuna behaviors and leading to reduced survival or growth [13,14].

With the objective of identifying “ineffective” dFAD fishing effort, we measured the propor-
tion of time “at sea” trajectories occuring outside established fishing grounds. A large propor-
tion of dFADs travel outside fishing grounds during part or all of the time spent drifting at sea,
with only 32.3% spending 100% of the time inside French fishing grounds (45.2% if all fleets
are considered). Of the dFAD trajectories that are found to be always travelling outside French
fishing grounds, 27.9% are inside fishing grounds based on all fleets, and, therefore, this fishing
effort may eventually be exploited by non-French industrial fishing fleets. In some cases, such
as dFADs passing through the Somali EEZ, these dFADs may be recovered at a later date else-
where. In others, such as dFADs west of 30°W or east of 80°E, these floating objects are unlikely
to be recovered by purse seiners. In such cases, they may represent ineffective or lost fishing ef-
fort, or they may eventually be used by other tuna fisheries (e.g., artisanal fisheries of coastal
states) in the region. It is unknown what impact these drifting objects may have on the pelagic
environment, but some authors have hypothesized that they may represent an ecological trap
for tuna and other pelagic species, affecting fish condition, growth and mortality, and moving
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fish schools outside of prime habitat areas [13,14,39]. In addition, active or abandoned dFADs
could result in high ghost fishing mortality of turtles and sharks through entanglement in the
netting that hangs underneath the rafts [40–43]. Modifications in the design of dFADs to re-
duce risks of entanglement without decreasing their capacity to aggregate tunas have been pro-
posed and recently implemented for the European purse seine fleet [38,44]. Defining purse
seine dFAD-fishing effort as directly proportional to the density of dFADs is of course simplis-
tic, but provides a useful alternative to conventional measures of fishing effort, such as vessel
search time or number of fishing sets, which are not capable of estimating fishing impacts that
occur in the absence of fishers.

Another important question regarding the use of dFADs is what is the eventual fate of lost
buoys, and in particular, what impact beaching events may have on coastal environments via
their contribution to coastal marine debris. Given that dFADs generally include a significant
subsurface structure, including filaments up to 70m in length [38], this contribution may be
non-negligible. Our analyses indicate that a non-negligible fraction (9.9%) of dFAD deploy-
ments (inferred from “at sea” trajectories) do eventually end up beached. Given estimates of
about 15–20,000 total [45] dFADs annually deployed in the two oceans, this would suggest
around 1,500–2,000 beaching events per year, with significant portions of these beaching
events occurring in potentially sensitive habitat areas, such as the coral reefs of the Maldives
Seychelles, or the Chagos [46]. This number could be even higher, as we consider here only
dFADs close to coastlines, whereas dFADs may also be retained on offshore shallow areas
(though these are relatively rare in the Atlantic and Indian Oceans). Mitigating for these im-
pacts by avoiding deployment zones and time periods with a high probability of leading to a
beaching event may be possible. However, in the Indian Ocean, for example, this would greatly
impact fishing activities during one of the most important seasons for the tuna fishery, as bea-
ched dFADs are mainly those that are used to prepare for dFAD fishing off Somalia. In this
area, the absence of bilateral agreements allowing fishing in Somalia EEZ, the presence of pira-
cy, the strength of the currents and the intensity of dFAD fishing may explain the high number
dFADs lost onshore. This example serves as an illustration of how classified dFAD trajectory
data can be used to assess dFAD impacts on fragile marine ecosystems and derive appropriate
spatialized management tools based on dFAD deployment zones. Though preliminary, the re-
sults obtained could contribute to building a goal-based and transparent criterion for the regu-
lation of dFAD use in time and space.

These results on dFAD spatio-temporal patterns and impacts are all derived from our classi-
fication methodology. This methodology is supported by a comparison of four methods to cor-
rectly identify “at sea” or “on board” states of dFAD buoys. Ideally, the correct prediction of
the class of a given GPS buoy position would have relied on a simple, transparent decision rule.
For instance, as purse seiners travel most of the time faster than ocean currents, a dFAD posi-
tion could be classified as “on board” using an appropriate speed threshold. Though such a
speed filter is among the most efficient methods to identify true “at sea” positions (TSR), the
false “at sea” detection rate (FSR) for this method is considerable: 43.3%. This high error rate
undoubtedly results from periods when the fishing vessel speed is low, for example during fish-
ing sets and potentially at night. Due to this lack of a clear separation between vessel and dFAD
drift speeds, more complex decision rules are necessary to classify dFAD positions.

By comparison, the Random Forest (RF) method produces the lowest mean error rate (2.6%
versus 6.6% for VEL), lowest False Sea Rate (12.3% versus 43.3% for VEL) and lowest segmen-
tation rate (59.3% versus 142.9% for VEL) of all methods considered, and maximizes the preci-
sion while maintaining a very high True Sea Rate. Though drift speed was consistently the
strongest predictor of buoy state, other variables, such as acceleration, heading change, water
temperature and distance to port, also contributed to the classification algorithm (Fig A in
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S2 File). Furthermore, the contribution of these variables to the classification algorithm is often
non-linear (Fig C in S2 File). This explains the significant improvement in performance statis-
tics for the more-sophisticated, non-linear algorithms integrating a full suite of predictor vari-
ables, such as ANN and RF. Multiple logistic regression (MLR) performances could have been
improved by considering higher-order and interaction terms. Adding such terms would un-
doubtedly improve performance measures for this method, but there is little a priori basis for
choosing the number and maximum order of such terms. Flexible, non-linear classification
methods, such as RF and ANN, provide a clear advantage in this sense.

Because of the properties of the four methods tested in this study, the higher performances
of the RF could have been anticipated. However, our aim was not only to identify the best clas-
sification method, but also to assess trade-offs in terms of model transparency and computa-
tional time. In this context, RF produces a non-negligible improvement in performance
indicators that justifies its use, though this comes at a computational cost (~3–4 hours compu-
tational time to classify all currently-available dFAD position data with RF, versus ~10 minutes
for MLR).

Overall, the False Sea Rate indicates that the RF model is highly efficient at identifying when
the buoy is drifting at sea. Nevertheless, erroneous splitting of “at sea” or “on board” trajectory
segments as a result of misclassifications remains important. For example, the RF model pre-
dicts 59.3% more trajectory pieces than observed in the training dataset. Though post-process-
ing to remove very short “at sea” trajectory segments reduces the segmentation rate from
59.3% to 25.2% and improves several other performance indicators, over-segmentation re-
mains non-negligible. Analyses of dFAD trajectories based on considering sequences of “at
sea” or “on board”, such as mean time at sea, drift displacement distances or “at sea” trajectory
start and end points, are probably biased in our results. This likely partially explains model pre-
dictions of very short “at sea” trajectories (e.g.,<1 d), as well as putative fishing sets outside of
purse seine fishing grounds. Though the correlation between observed and predicted fishing
maps is high and important hotspots for dFAD fishing are identified by the RF corrected
model, methodological improvements to reduce these biases are an important area for future
developments.

There are a number of methodological approaches that may improve our analyses of dFAD
spatio-temporal use patterns. One possibility is to use a learning dataset that is balanced in
terms of number of “at sea” versus “on board” positions. This approach was tested when devel-
oping our classification model, but did not improve results (see S1 File). A balanced learning
dataset is generally desirable in cases where either one prefers to err in favour of the minority
class (e.g., when prediction the species distribution of a rare, endangered species) or one be-
lieves that the true prevalence of the minority class is higher than what is observed in the learn-
ing dataset [47,48]. Neither of these is the case for our dataset. Furthermore, balancing the
learning dataset does not contribute to taking into account the temporal relationship between
successive observations (see following paragraph).

Performance indicator improvements due to post-processing corrections to the RF model
outputs suggest that the sequence of “on board” and “at sea” states in buoy trajectories is infor-
mative. Classification methods used here take into account the temporal relationship between
position measurements only partially, via several variables (e.g., speed, acceleration, heading
change, etc.) that are computed using information at previous and succeeding time steps. If the
temporal correlation between the successive positions of a GPS buoy could be measured, inte-
gration of these correlations in the classification model may eliminate many extremely short
dFAD “at sea” trajectories because such short deployments would be unlikely. Applying stan-
dard methods that integrate this type of information for classification purposes, such as Hidden
Markov and Hidden Semi-Markov Models (HMM and HSMM), could be an alternative to the
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RF post-processing solution adopted in this study [49]. Similar to the discriminative methods
examined here, these approaches model the relationship between the probability of being “on
board” or “at sea” based on observations, such as the speed and the acceleration at given time.
In addition, they consider that the probability of being in a given state at a given time depends
on the past states. HSMM, in particular, considers the probability of being in a given state as a
function of the time already spent in this state [49]. The use of HSMMs is not trivial in our case
due to the highly irregular timesteps of dFAD trajectories and the high computational costs in-
volved in applying these methods to large datasets. Furthermore, when fishing vessels concen-
trate in the same area, the probability of a dFAD to be found and its buoy to be transferred
after a short drift is higher. Short “at sea” sections of trajectory during periods of intense dFAD
fishing may, therefore, be real events and applications of HSMM to these data must take this
seasonality into account.

The simplest and most direct solution to these issues would be to increase availability to in-
formation on deployment and recovery events of individual dFADs. Though classification
schemes like the ones presented here are likely to remain valuable as checks of reported infor-
mation and as corrections for missing data (e.g., GPS buoy transfers between different national
fleets) or data limitations, analytical power would be significantly increased by direct access to
data on these dFAD-related fishing activities. Information on dFAD transfers, visits, etc. has
been recently added to logbooks of French purse seiners (since January 2013), and therefore it
may soon be possible to use these data in combination with the classification and analysis ap-
proaches presented here to develop a suite of indicators of spatio-temporal intensity of dFAD
use. In this context, the analyses of dFAD use presented here represent a necessary first step to
designing effective management strategies for dFAD fishing.
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