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Abstract : 
 
The input of iron to the Arctic Ocean plays a critical role in the productivity of aquatic ecosystems and is 
potentially impacted by climate change. We examine Fe isotope systematics of dissolved and colloidal 
Fe from several Arctic and sub-Arctic rivers in northern Eurasia and Alaska. We demonstrate that the Fe 
isotopic (δ56Fe) composition of large rivers, such as the Ob’ and Lena, has a restricted range of δ56Fe 
values ca.–0.11 ± 0.13‰, with minimal seasonal variability, in stark contrast to smaller organic-rich 
rivers with an overall δ56Fe range from–1.7 to + 1.6‰. The preferential enrichment with heavy Fe 
isotopes observed in low molecular weight colloidal fraction and during the high-flow period is consistent 
with the role of organic complexation of Fe. The light Fe isotope signatures of smaller rivers and 
meltwater reflect active redox cycling. Data synthesis reveals that small organic-rich rivers and 
meltwater in Arctic environments may contribute disproportionately to the input of labile Fe in the Arctic 
Ocean, while bearing contrasting Fe isotope compositions compared to larger rivers. 
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 54 

1. Introduction 55 

 56 

The boreal zone of the Russian Arctic and glacierized systems of Greenland and Alaska are 57 

systems that are currently experiencing rapid environmental change associated with climate 58 

change. The observed warming in the arctic is much greater than the global average (IPCC, 59 

2007) and on-going permafrost thaw is considered to induce large perturbations on the global 60 

water discharge and organic carbon inventory in arctic rivers (Dittmar and Kattner, 2003, 61 

Holmes et al., 2012) as well as the flux and speciation of trace elements input into the Arctic 62 

Ocean (Pokrovsky and Schott, 2002, Pokrovsky et al., 2012, Pokrovsky et al., 2010). The 63 

Arctic Ocean receives about 10% of the global river discharge, yet it has the highest input of 64 

continental freshwater per basin surface area compared to all other world’s oceans. In 65 

addition, the three largest arctic rivers, the Yenisey, Lena, and Ob' are each comparable in 66 

watershed area and annual discharge to the Mississippi River (Holmes et al., 2012).  67 

 68 

Riverine iron (Fe) plays a critical role in regulating the concentration and bioavailability for a 69 

variety of chemical elements in aquatic ecosystems, including nutrients and pollutants. In 70 

general, the behavior of Fe and its partitioning between dissolved, colloidal, and suspended 71 

sediment loads is controlled by local hydrogeochemical and biogeochemical environments 72 

which are themselves likely to be affected by climate change (Allard et al., 2004, Schroth et 73 

al., 2009). Likewise, glacial weathering has been recently recognized as a primary source of 74 

Fe and other nutrients (phosphate, dissolved organic matter) to the highly productive coastal 75 

ecosystems of the Gulf of Alaska (Crusius et al., 2011, Schroth et al., 2011) and enhanced 76 

iron input has been observed during high run-off periods of snowmelt in spring and glacial 77 

melt in the summer. Understanding the mechanisms and external forcing of Fe delivery into 78 

the Arctic Ocean therefore requires: (1) time-series-based analyses of arctic and subarctic 79 

river biogeochemistry to assess climatic and seasonnally-driven variations, (2) assessment of 80 

the speciation and mobility of Fe in high-latitude watershed, (3) determination of the potential 81 

impact of glacier or permafrost thaw on the speciation, timing and provenance of Fe input to 82 

the high- lattitude oceans.  83 

 84 

A growing number of studies have reported Fe isotope composition of bulk rivers, as well as 85 

particulate, dissolved and colloids Fe pools in rivers (Bergquist and Boyle, 2006, Escoube et 86 

al., 2009, Fantle and DePaolo, 2004, Ilina et al., 2013, Ingri et al., 2006, Pinheiro et al., 2014, 87 
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Pinheiro et al., 2013, Poitrasson et al., 2014, Schroth et al., 2011, Chen et al, 2014).  Results 88 

showed significant variability in Fe isotopes which have been attributed to a range of 89 

processes and parameters, including hydrology, climate and anthropogenic influences, as well 90 

as bedrock geology, topography, and soil-plant interactions. To date, only two studies have 91 

reported the isotope composition of dissolved Fe in arctic/subarctic environments (i.e. 92 

referred as δ
56

FeDFe, with DFe for dissolved Fe < 0.45 or < 0.22 µm) that yielded one of the 93 

largest range observed in river systems, between -1.2 and 1.8 ‰ (Ilina et al., 2013, Schroth et 94 

al., 2011). Lightest δ
56

FeDFe values were reported for organic-rich rivers and streams draining 95 

area with the largest vegetal cover in Alaska (Schroth et al., 2011) while heaviest values were 96 

measured in colloidal and dissolved fractions of boreal and temperate organic-rich rivers in 97 

Karelia (Ilina et al., 2013).  98 

 99 

Here, we investigate Fe isotope systematics in northern European and Siberian rivers (Figure 100 

1), including (1) a time-series of δ
56

FeDFe of two of the largest rivers draining arctic 101 

watersheds (the Ob' and Lena) focusing on the peak flow that provides a first order 102 

assessment of the annual Fe budgets; and (2) δ
56

Fe values of colloidal and suspended pools 103 

(ranging from 1 kDa to 1.2 m) of smaller northern European rivers, including the Severnaya 104 

Dvina River to assess the influence of Fe-rich colloids on the Fe isotopic composition of 105 

freshwater sources in the Arctic. We further compare the results with our previously reported 106 

Fe isotope composition of Alaskan rivers (Schroth et al., 2011) to determine how Fe isotope 107 

signatures may vary among high-latitude watersheds. Without such characterization of the 108 

present state of the system, future changes in the response of these river systems to global 109 

change cannot be properly evaluated. 110 

 111 

2. Materials 112 

 113 

Field sampling of the Ob' and Lena have been performed by the Arctic Great Rivers 114 

Observatory during the 2007 baseflow to high flow transition as reported by Holmes et al. 115 

(2012). Sampling sites were located the nearest to the river mouths at Salekhard for Ob’ and 116 

Zhigansk for Lena. With a discharge of 427 km
3
/yr and 588 km

3
/yr respectively, the Ob’ and 117 

Lena represent 18 and 25 % of riverine freshwater inputs to the Arctic Ocean (Holmes et al., 118 

2012). 119 

 120 
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Rivers draining into the White Sea (between latitudes 67°N and 63°N and longitudes 30°E 121 

and 36°E) were sampled in the boreal and subarctic region of the European Russia. This 122 

region typically experiences a very large range of temperature varying from -50°C to 30°C 123 

between winter and summer. The mean annual river discharge in the White Sea is 231 km
3
/yr; 124 

from whose 47% correspond to the Severnaya Dvina watershed (Pokrovsky et al., 2010). 125 

Sampled sites are on unpopulated area and represent a diverse collection of geochemical 126 

environments with bedrock lithologies ranging from granites, basalts, ultramafic rocks, and 127 

carbonate-rich sediments (Table S1, Supplementary Material) and hydrological settings (soil 128 

depression, river, bog and meltwater). Based on geographic location, we divided the studied 129 

area into three zones: (i) Yukova watershed, including the Yukova, Ladreka and Ruiga Rivers 130 

and stagnant waters; (ii) Peschanaya River and pit water; and (iii) the Severnaya Dvina, 131 

including its tributaries Pinega River and Sotkas River as well as local bog water. 132 

Samples from the Yukova (zone 1) were collected from small streams or rivers and stagnant 133 

water (e.g. ice, pit water). The Peschanaya (zone 2) is a pristine river draining to the Kuloy 134 

estuary of the White Sea. Water samples were collected during August 2006 and are affected 135 

by the input of peat bogs and swamps. The Severnaya Dvina (zone 3) was sampled in 2007 136 

during 3 contrasted hydrological regimes: at the end of February, representing the baseflow 137 

winter conditions; in the beginning of May when most of the thawing occurred; and the 138 

middle of June, at the beginning of summer baseflow conditions (Pokrovsky et al., 2010). In 139 

general, the spring flood (snow melt) lasts from 30 to 50 days and contributes to about 60% of 140 

the annual water flux. 141 

 142 

Additional river, stream and meltwater samples from Alaska were analysed as part of the 143 

sample set previously reported by Schroth et al. (2011) (Table S2, Supplementary Material). 144 

Four broad classes of tributaries representative of main landscape of the Copper River 145 

watershed were sampled in August and October 2008, and include: (1) Glacial tributaries that 146 

are milky brown in appearance, indicative of extremely high suspended sediment loads 147 

corresponding to the contribution of glacial meltwater; (2) Proglacial tributaries fed by lake 148 

developed at the terminus of the glacier; (3) Boreal forested montane streams that are not 149 

glacierized and have relatively low suspended sediment loads; (4) Boreal forested 150 

‘blackwater’ tributaries draining large lowland areas in the Copper River basin and delta,  151 

with high concentrations of organic compounds. All samples from glacierized catchments 152 

were collected under peak glacial melt in August of 2008, while forested catchments were 153 
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sampled concurrently, but under summer baseflow conditions due to the lack of input from 154 

glacial ice in those systems.  155 

 156 

3. Methods 157 

 158 

The full description of the sampling and filtration methods and the geochemical data for the 159 

Ob', Lena, White Sea area and Alaska rivers are presented in the supplementary online 160 

materials. Fe isotopes and elemental analyses were performed on a range of suspended, 161 

dissolved and colloidal fractions filtered through 2.5 m to < 1kDa. 162 

 163 

4. Results 164 

 165 

4.1. Comparison of ultrafiltration systems 166 

 167 

It is well-recognized that ultrafiltration techniques may induce analytical artifacts due to 168 

charge separation, diffusion and clogging of the filter membrane (Dupré et al., 1999, Viers et 169 

al., 1997). Potential Fe isotope fractionation artefacts have been already discussed in previous 170 

studies (Ilina et al., 2013). As shown in Figure 2, colloid sizes < 10 kD and < 1 kD separated 171 

using pressure ultrafiltration (UF) show an enrichment in heavy Fe isotopes by 0.26 to 0.37‰ 172 

compared with colloid sized separated through dialysis membrane (Dial) (Spectra Por 7) via 173 

passive diffusion. Hence, it is possible that separation by dialysis enriches the filtrate solution 174 

in light Fe isotopes, which is expected during diffusion mechanisms. However, this difference 175 

is  of second order importance when compared to the overall range of δ
56

Fe observed between 176 

dissolved Fe (< 0.2 m) and colloidal Fe in most samples (e.g. #23, Y-3, Y-1, Y-5). In 177 

addition, because of the differences of techniques and potential filter clogging effects, dialysis 178 

and pressure ultrafiltration may not separate the same types of colloids.  179 

 180 

4.2. Fe isotope composition of waters from White Sea area 181 

 182 

In the Yukovo system, winter δ
56

FeDFe values show systematically positive values from 183 

0.24‰ for sample Y-3 to 0.79‰ for sample Y-1 (Figure 2). Colloidal (<100 kDa and <10 184 

kDa) and truly dissolved or soluble (i.e. low molecular weight) fractions (<1 kDa) of samples 185 

Y-1 and Y-3 also show systematic enrichment in heavy Fe isotopes relative to DFe (increase 186 

by up to 0.79‰ for Y-1 and 0.62‰ for Y-3). The enrichment in heavy isotopes is also 187 
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associated with a drastic decrease of Fe concentration between DFe and soluble fraction (from 188 

535 to 25 µg/L for Y-1 and 1117 to 46 µg/L for Y-3). Stagnant water (sample Y-4) and 189 

meltwater (sample Y-5) show lighter δ
56

Fe values for colloidal fractions, with δ
56

FeFeD values 190 

as low as -1.29‰ and -0.83‰ respectively (Figure 2). It is important to note that Y-4, which 191 

corresponds to stagnant water trapped between two ice layers, also yields the highest Fe and 192 

Mn concentration and the most negative δ
56

Fe values for both suspended and dissolved pools 193 

(Table S4). Other samples from the same area (Ruiga #23 and Ladreka #9) recovered in the 194 

summer show a similar trend toward heavier δ
56

Fe values for smaller colloidal pools, 195 

although lighter 
56

Fe values (down to -0.07‰) are observed for <1kDa fraction in the Ruiga 196 

(Figure 2).  The Peschanaya waters (zone 2) yield δ
56

FeDFe values between -0.3 and -0.24‰ 197 

(samples s-32 and s-40 respectively), with slightly heavier value measured for truly dissolved 198 

Fe (δ
56

Fe = -0.07‰, Table S4).  199 

The Severnaya Dvina (zone 3) was sampled over contrasting hydrological conditions. In 200 

general, this river is characterized by lower DOC contents showing a significant increase 201 

during the spring period, consistent with the release of organic-rich materials during high 202 

flow. In contrast, Fe concentrations appear unrelated to changes of hydraulic regimes. 203 


56

FeDFe yield near-zero values during baseflow (i.e. -0.01‰ for samples A-3 and A-28) while 204 

heavier 
56

FeDFe value up to 0.55‰ (sample A-18) is obtained during high flow. Similar 205 

increases in 
56

FeDFe values during high flow period are also observed for the Pinega River, 206 

while identical values were obtained between high and base flow in the Sotka River. Colloidal 207 

fractions in rivers (A-3, A-18, A7) generally show a trend toward heavy Fe isotope 208 

enrichment in smaller size colloids (Figure 2).  209 

 210 

4.3. Alaska Rivers 211 

 212 

Preliminary 
56

FeDFe values of rivers from the Copper River watershed have been previously 213 

presented in Schroth et al. (2011). Additional values reported here include 
56

FeDFe measured 214 

on a larger set of rivers and for different filtration pore size (i.e. 0.45 and 0.02 m filters) 215 

(Figure 3).  In glacial and proglacial lake-fed tributary systems, the Fe isotopic signatures are 216 

similar to crustal values defined as 0.09‰ (±0.1‰) (Beard et al., 2003, Dauphas and Rouxel, 217 

2006). In contrast, the boreal-forested systems display much lighter δ
56

Fe values down to -218 

1.73‰, which also correspond to higher concentrations of DOC (Schroth et al., 2011). 219 

 220 
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4.4. Fe isotope composition of large arctic rivers 221 

Time series samples of the Ob' and Lena rivers were collected to capture the transition 222 

between baseflow and high flow (Figure 4). In arctic environment, the water discharge peak 223 

lasted a few hours to days, leading to an extremely small sampling window. For the Lena 224 

River, sampling started just before the peak of discharge while for the Ob' River, discharge 225 

rates remained essentially constant, suggesting that the system return rapidly to low flow 226 

conditions. Average 
56

FeDFe values of both rivers are essentially identical within uncertainty, 227 

yielding δ
56

FeDFe = -0.11  0.13‰ (2sd, n=15 for the Lena, and n=20 for the Ob'). The total 228 

range of δ
56

FeDFe is restricted to 0.23‰ for Lena River and 0.30‰ for Ob' River, showing a 229 

lack of relationships between Fe isotope composition and discharge evolution. For the Ob' 230 

River, lighter δ
56

FeDFe values (from -0.29 to -0.10‰) are measured at the beginning of the 231 

sampling period when discharge rate is slightly higher (from 3.2 to 3.0 km
3
/d), but this trend 232 

is not observed for the Lena River where changes of discharge rates are larger (from 2.1 to 9.5 233 

km
3
/d).  234 

 235 

5. Discussion  236 

 237 

Variable δ
56

FeDFe values have been already reported in rivers from temperate and tropical 238 

environments, with a total range from -0.7 to 0.8‰ (see Figure S1, supplementary material). 239 

Although early studies proposed that dissolved Fe in rivers had δ
56

FeDFe values lighter than 240 

bulk continental crust (Bergquist and Boyle, 2006, Fantle and DePaolo, 2004), more recent 241 

studies have identified ubiquitous heavy δ
56

FeDFe in organic-rich rivers of temperate region 242 

and in the Arctic (Escoube et al., 2009, Ilina et al., 2013). Analysis of our new dataset 243 

supports the recent study of Ilina et al. (2013), confirming that DFe and colloidal Fe in arctic 244 

rivers display an extreme range of δ
56

FeDFe from -1.4‰ to 2‰. This suggests that a dynamic 245 

and complex partitioning of Fe isotopes between particulate, colloidal and ‘dissolved’ 246 

fractions, which may be unique to high latitude river networks.  247 

 248 

In the Copper River watershed in Alaska, systematically lighter δ
56

FeDFe values are commonly 249 

observed in organic carbon- and Fe-rich boreal rivers, while glacial rivers do not show 250 

significant fractionation relative to bulk crust (Figure 3 and 5). An important exception 251 

includes a small river draining montane boreal forest (i.e. Tractor creek) showing heavier 252 

values up to 0.68‰ (Figure 3). Glacial rivers characterized by near crustal δ
56

Fe should 253 

mainly reflect the contribution of particles and colloids derived from physical erosion, where 254 
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the mechanical transport of lithogenic materials should proceed with minimal Fe isotope 255 

fractionation. In this case, the slight enrichment in heavy isotopes observed in some glacial 256 

rivers could be attributed to the alteration of specific lithologies, such as shales recognized as 257 

potential source of heavy Fe (Yesavage et al., 2012) or isotopically heavy crystalline rocks 258 

such as granite (Poitrasson and Freydier, 2005).  259 

The lighter δ
56

FeDFe values of boreal forested rivers has been previously interpreted to reflect 260 

either the contribution of groundwater and/or soil water-derived Fe with DOC derived from 261 

organic matter decomposition (Schroth et al., 2011).  It has been experimentally demonstrated 262 

that equilibrium Fe-organic complexation would favor heavy Fe isotopes in organically-263 

bound Fe (Dideriksen et al., 2008) while kinetic mineral dissolution in the presence of Fe 264 

chelating organic ligands would favor the release of light Fe into solution (Brantley et al., 265 

2001, Kiczka et al., 2010a). Plant uptake may also favour light Fe isotopes that may be 266 

released to rivers after the decomposition of soil organic matter (Kiczka et al., 2010b). 267 

Additional constraints on the origin of isotopically light Fe in organic-rich rivers may be 268 

derived from our new data from ice meltwater and time-series, as discussed below. 269 

 270 

Several lines of evidence suggest that dissolved Fe in ice meltwater is enriched in light 271 

isotope. In the Alaska system, glacial meltwater (sample #St32) shows δ
56

FeDFe = -0.81‰, 272 

while labile  (< 10 kDa) and fine particulate Fe (< 2.5 µm) from water trapped in ice from the 273 

White Sea area (sample Y-4) show δ
56

Fe ranging from -1.04 to -1.28‰. Light δ
56

FeDFe values 274 

have been also reported in Antarctic sea ice particulate matter and dissolved Fe, with values 275 

probably lower than -1.5‰ (de Jong et al., 2007). These light values have been interpreted as 276 

reflecting the presence of heterotrophs in the upper layers with predominantly flagellates and 277 

bacteria. Here, we propose instead that the generally light δ
56

Fe in meltwater is mainly the 278 

result of redox effects rather than biological uptake. The overall enrichments in Fe and Mn in 279 

sample Y-4, associated with the lightest δ
56

Fe values (Table S4), suggest the contribution of 280 

anoxic to suboxic water. Sample Y-4 is trapped between two ice layers and is therefore 281 

isolated from the atmosphere allowing reducing conditions to build up, promoting the release 282 

of labile Mn(II) and Fe(II) during the degradation of particulate organic matter by 283 

heterotrophic organisms. Considering the ca. 3‰ fractionation factors between Fe
II
 and Fe

III 
284 

(Welch et al., 2003, Wu et al., 2011), Fe(II) is expected to be enriched in light isotopes 285 

relative to Fe(III) remaining in the suspended particles. Similar processes involving Fe redox 286 

cycling have been well identified during diagenetic reactions in marine sediments and 287 

porewater (Homoky et al., 2009, Rouxel et al., 2008, Severmann et al., 2006) as well as 288 
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during redox-controlled release of Fe in soils (Schuth et al., 2015), which also likely occurs 289 

during the formation of meltwater (Bhatia et al., 2013).  290 

It has been recently shown that glacial runoff may provide a significant source of bioavailable 291 

iron to surrounding coastal oceans as a result of ice melting (Bhatia et al., 2013). Two 292 

mechanisms have been proposed to explain the increase of dissolved Fe concentration in 293 

runoff meltwater, including the contribution of Fe-rich hypoxic or anoxic water in the 294 

subglacial drainage system or an increase of DOC concentrations. Based on our results, it 295 

seems that Fe isotope systematics may provide means to distinguish between these two 296 

mechanisms. When Fe is bound to organic ligands (i.e. DOC), it should be enriched in heavy 297 

isotopes (e.g. Dideriksen et al., 2008). In contrast, when Fe is released from oxygen-depleted 298 

meltwater, it should be enriched in light isotopes.  299 

 300 

The small organic-rich rivers from the White Sea watershed (Severnaya and Pinega Rivers) 301 

show heavier Fe isotope values during high discharge periods and for small-size colloids 302 

(Figure 2, Table S4). Differences in δ
56

FeDFe of up to 0.6‰ and 0.7‰ have been reported for 303 

Severnaya and Pinega Rivers between low- and high- flow. Soluble fractions (<1kDa) also 304 

show systematic enrichment in heavy Fe isotopes relative to DFe (e.g. increase by up to 305 

0.79‰ for sample Y-1). As discussed previously (Ilina et al., 2013), heavier δ
56

Fe values in 306 

small arctic rivers should mainly reflect a larger contribution of organic-rich small colloids 307 

that undergo seasonal recycling and mixing between different colloidal sources. Heavier δ
56

Fe 308 

values are therefore consistent with the complexation of Fe(III) with strong organic chelates 309 

as confirmed experimentally by Dideriksen et al. (2008), although sedimentary rock 310 

weathering (e.g. shale) may also provide an alternate source of isotopically heavy colloidal Fe 311 

in rivers due to incongruent dissolution mechanisms (Yesavage et al., 2012). The later 312 

hypothesis may also explain the significant fractionation of Fe vs Al between different colloid 313 

sizes. The overall decrease of Fe/Al ratios for smaller colloid size with a concomitant increase 314 

in δ
56

Fe (Figure 2) suggests the existence of Fe-depleted and isotopically heavy reservoir 315 

generated by multiple alteration stages. This hypothesis is also consistent with the lack of 316 

inverse correlation between δ
56

Fe and DOC (or DOC/Fe) (Figure 5), suggesting rather a large 317 

range of δ
56

Fe values in organic-rich colloids from the White Sea watershed). 318 

 319 

By comparison, the relatively constant δ
56

Fe values of the Lena and Ob' Rivers over time 320 

(δ
56

Fe = -0.11 ± 0.13‰) contrast with the large variability observed in smaller river systems, 321 

either from temperate, tropical or boreal regions. Considering that Ob' and Lena samples 322 
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show similar or even higher enrichment in DOC (10 to 20 mg C/L) than organic-rich rivers 323 

from boreal-forested rivers (Schroth et al., 2011) (Figure 5) and even tropical rivers 324 

(Bergquist and Boyle, 2006), the small Fe isotope fractionation of ca. -0.2‰ relative to bulk 325 

crust is surprising. Presumably, the release of Fe-rich colloids during the peak discharge does 326 

not allow significant particulate-dissolved isotope exchange as observed in smaller organic-327 

rich riverine systems. This suggests the absence of a significant contribution of fractionated 328 

reservoir in larger arctic rivers derived from anoxic swamps and meltwater or from plant litter 329 

decay in summer. Alternatively, this could be also interpreted as an integrated signal from 330 

these fractionated reservoirs whose relative contributions stay similar throughout the 331 

hydrologic year. This contrasts with smaller rivers where shorter flowpaths would produce 332 

variable mixing ratios of these sources and therefore more variable Fe isotopic compositions. 333 

Alaskan rivers also support this hypothesis since the Copper River shows homogeneous δ
56

Fe 334 

values despite the variable δ
56

Fe values measured in its tributaries.. 335 

 336 

The variations of dissolved and particulate δ
56

Fe values have been generally attributed to 337 

distinct weathering processes and environmental parameters (Pinheiro et al., 2014, Pinheiro et 338 

al., 2013, Poitrasson et al., 2014, Song et al., 2011). It has been also proposed that Fe isotope 339 

composition of suspended particulate matter is possibly linked to climatic conditions, with 340 

high latitude rivers exhibiting mostly positive δ
56

Fe values, while tropical rivers showing 341 

strongly negative Fe isotopic signatures (Pinheiro et al., 2014). Our new data suggest that this 342 

model does not necessarily apply to large rivers such as the Ob' and Lena. Isotopically light 343 

organic-rich rivers may also occur in subarctic climate as those reported in the Copper River 344 

watershed in Alaska.  345 

 346 

6. Concluding perspectives on the global flux of Fe isotopes in arctic environments 347 

 348 

The impact of global warming on permafrost degradation in the Arctic has received 349 

considerable attention (Dittmar and Kattner, 2003, Frey and McClelland, 2009, O'Donnell et 350 

al., 2012, Romanovsky et al., 2010). Permafrost-driven changes in watershed hydrology have 351 

been accounted for the increased flux of dissolved organic carbon from terrestrial to aquatic 352 

and marine ecosystems, in relation to basin-wide permafrost thaw and an increase in 353 

groundwater contribution in base flow. An important feature of all boreal catchments is 354 

the large flux of dissolved and particulate matter and especially organic carbon occurring 355 
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during relatively short high-flow period of snowmelt (Holmes et al., 2012, Pokrovsky et al., 356 

2010).  357 

 358 

Considering the combined annual water discharge of the Ob' and Lena of 1015 km
3
/yr 359 

(Holmes et al., 2012), corresponding to ca. 40% of the global riverine flux in the Arctic 360 

Ocean, our study allows the first estimation of the Fe isotope composition of riverine 361 

dissolved Fe flux in the Arctic Ocean. To our knowledge, the annual fluxes of Fe from the Ob' 362 

and Lena have not been reported in previous studies. Hence, at a first approximation, we 363 

consider that Fe flux is proportional to DOC flux, with relationships of Fe/DOC = 21 ± 6 364 

(g/kg) for Lena river and 61 ± 8 (g/kg) for Ob' river (Table S3). Although Fe enrichment in 365 

rivers is often associated with organic or humic-rich colloids (Allard et al., 2004), the long-366 

term relationship between DOC and Fe in these rivers should be however used with caution. 367 

Using the annual DOC fluxes determined in previous studies (Holmes et al., 2012), we 368 

determine a total annual flux of  dissolved Fe of 84 ± 25 (10
9
 g/yr) for Lena river and 252 ± 369 

34 (10
9
 g/yr).  By normalizing δ

56
FeDFe to Fe fluxes, we further determine the annual 370 

discharge of Fe having δ
56

FeDFe = -0.110‰ for Lena river and δ
56

FeDFe = -0.112‰ for Ob' 371 

river. These values suggest that large rivers, contributing to the largest input of freshwater 372 

into the Arctic Ocean, have very homogeneous δ
56

FeDFe values, slightly enriched in light 373 

isotopes by 0.2‰ relative to bulk continental crust. The similarities of average δ
56

FeDFe 374 

between these two large rivers is interesting considering their contrasted permafrost coverage, 375 

totalling 4% for Ob' river and 90% for Lena river (Holmes et al., 2012). Although spring flow 376 

period is not the most affected by permafrost thaw, our results argue against significant 377 

influence of permafrost degradation on Fe isotope composition of DFe in subarctic rivers. 378 

 379 

In contrast, smaller arctic river systems show much larger spread in δ
56

FeDFe values, with a 380 

marked enrichment in heavy Fe isotopes up to 0.55‰ during spring flood period and for small 381 

colloids. The Severnaya Dvina is the largest European subarctic river, contributing to 4% of 382 

the total water discharge to the Arctic Ocean (e.g. Pokrovsky et al., 2010). The estimated total 383 

annual DFe flux from the Severnaya Dvina has been previously determined to 53 ± 16 10
9
 384 

g/yr (Pokrovsky et al., 2010), which is more than 50% the total Fe flux of the Lena. Hence, 385 

smaller arctic rivers may contribute disproportionately to the input of DFe in the Arctic 386 

Ocean, while showing strongly fractionated (i.e. heavier) Fe isotope values. Since the 387 

Severnaya Dvina drains both silicate-bearing and carbonate rocks, similar source of heavy 388 

DFe may be commonly observed in other remote rivers of the Arctic. It has been also recently 389 
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demonstrated that the most labile Fe fraction (i.e. <1kDa) in arctic rivers increases its 390 

concentration by a factor of 5 during estuarine mixing (Pokrovsky et al., 2014). Hence, the 391 

labile and potentially bioavailable Fe in small organic-rich arctic and subarctic rivers may 392 

provide an important source of both isotopically light and heavy Fe to the Arctic Ocean, with 393 

δ
56

Fe values as high as 2.7 ‰ (Ilina et al., 2013) and as low as -1.7‰. 394 

 395 

We interpret the striking contrast of Fe isotope signatures between large vs. smaller organic-396 

rich arctic rivers to be influenced by the fact that smaller rivers tend to have more northerly 397 

watersheds, therefore integrating a smaller number of Fe sources. Hence, element source and 398 

biogeochemical cycling may be considerably different than for the larger rivers, such as Ob' 399 

and Lena whose watersheds extending much further south. Seasonal measurements of Fe and 400 

other element concentrations and speciation reveal the presence of two main sources of Fe 401 

that are preferentially mobilized and disproportionaltely influence riverine Fe loads under 402 

different conditions during the high-latitude hydrologic year  (Pokrovsky et al., 2010): 1) deep 403 

groundwaters poor in organic matter and 2) colloids and organic-rich surficial soil waters. 404 

These sources should have contrasted δ
56

FeDFe values, with isotopically light δ
56

FeDFe values 405 

for groundwater-derived Fe on the one hand, and isotopically heavy δ
56

FeDFe values for soil-406 

derived organic-rich colloids on the other hand. The impact of climate change in the Arctic  407 

may therefore differ among these classes of rivers and Fe sources, producing contrasted and 408 

evolving Fe isotope composition for global Fe delivery in the Arctic Ocean.  409 

 410 

  411 
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Figure captions: 555 

 556 

Figure 1: Map showing the watersheds of the major rivers discharging in the Arctic Ocean 557 

and adapted from (Holmes et al., 2012). Red dots show sampling locations of the Ob' and 558 

Lena, Copper River and its tributaries, as well as rivers draining into the White Sea.  The Ob', 559 

Lena and Severnaya Dvina contribute respectively to 18%, 25% and 4.6% of the total riverine 560 

water flux in the Arctic Ocean. 561 

 562 

Figure 2: δ
56

Fe and Fe/Al (g/g) ratios as a function of pore size in filtrates of the White Sea 563 

river system for zone 1 (Ruiga #9 and Ladreka #23 and Yukovo area Y-1 to Y-5) and zone 2 564 

(Severnaya Dvina A-3, A-18, A-19 and Pinega A-7). Location and additional data on the 565 

samples is given in Table S1 and S4.  566 

 567 

Figure 3: δ
56

Fe and Fe concentrations for dissolved (< 0.45 and 0.22 m) and soluble (< 568 

0.02m) fractions from different tributaries of the Copper River watershed, including glacial, 569 

proglacial lake fed, boreal blackwater, and boreal montane. Location and additional data on 570 

the samples is given in Table S1 and S5. 571 

 572 

Figure 4: Daily discharge measured at Salekhard and Kyusyur stations for Ob' and Lena 573 

respectively, δ
56

Fe values of the Ob' and Lena filtered water collected as part of the Student 574 

Partners Project. 575 

 576 

Figure 5: δ
56

Fe values and DOC concentrations of soluble and colloidal fractions from 577 

studied Arctic and sub-Arctic watersheds.  578 
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 580 
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Table S1: List of sampled waters from the White Sea watershed and their main characteristics

River Water 
ID Lat Long

Sampling 
date 

(d/m/yr)
Type Flow Comments Bedrock Lithology / Tributary type

Zone 1
Ruiga 9 63°45'43''N 35°47'13''E 25.07.2004 II BF Upper reaches
Ladreka 23 64°17'02''N 35°18'52''E 06.08.2004 II BF 100 m above the bridge, freshwater
Yukovo Y-1 64°22'58"N 35°36'36"E 15.02.2006 III BF Stagnant surface water under 20 cm of ice
Yukovo Y-3 64°21'31"N 35°40'51"E 16.02.2006 III BF Stream from wetland zone, under ice 5-7 cm
Yukovo Y-2 64°21'19"N 35°40'44"E 15.02.2006 IV BF Groundwater (pit)
Yukovo Y-4 64°21'39"N 35°40'50"E 16.02.2006 IV BF Water lenses trapped in the ice at the tidal zone 

(connected to Y3)
Yukovo Y-5 64°21'37"N 35°40'56"E 16.02.2006 IV BF Superficial flow frozen in form of stalactites 
Zone 2
Peschanaya S-32 66°12'03"N 43°40'12"E 23.08.2006 III BF Small stream (200-300 m length) from coastal 

wetland zone
Peschanaya S-40 66°12'00"N 43°32'12"E 24.08.2006 IV BF Soil pit water in the coastal bog discharging to 

the sea
Zone 3
Severnaya Dvina A-3 F 64°40'24"N 40°33'11"E 28.02.2007 I BF Ekonomiya monitoring point (13h20)
Severnaya Dvina A-18 64°27'04"N 40°40'54"E 6.05.2007 I HF Surface, above the city (M-12 Volodia)
Severnaya Dvina A-28 64°00'00"N 41°09'17"E 18.06.2007 I BF Above the bridge (Arkhangelsk), left bank
Ilasskoe Bog A-19 64°19'40"N 40°36'41"E 7.05.2007 IV HF Ombotrophic bog 
Ilasskoe Creek A-20 64°19'57"N 40°37'35"E 7.05.2007 III HF Creek from Ilasskoe bog near the railway
Pinega A-7 64°54'56"N 43°27'08"E 2.03.2007 I BF Mainstream
Pinega A-27 64°54'56"N 43°27'08"E 23.05.2007 I HF Mainstream (Golubino)
Sotka A-8 64°07'34"N 43°03'54"E 3.03.2007 I BF Mainstream
Sotka A-25 64°07'34"N 43°03'54"E 22.05.2007 I HF Mainstream
Type I: Large rivers 100 - 500,000 km², Type II: Small rivers , S < 50 km²; Type III: Semi-permanent streams (1 - 10 km²)
Type IV: Stagnant (soil, wetland) water, soil pits close to coast high DOC
BF: Base flow, HF: High Flow

Carbonate P), gypsum (P1), clays 
(Q), sand (Q)

Archean Granite, Marine deposits 
(sand, clay) and peat

Ombrotrophic bog (peat deposits) on 
limestones (K)

 Glacial morens (sand) and peat)

Carbonate P, K; clays (Q), sand (Q), 
claystone and sandstone (J, T)

Carbonate P, K, gypsum; less 
amount of clays (Q), sand (Q), 

Supplementary Tables



River Water 
ID Lat Long Type Sample ID Filtration pH Fe 

(ug/L)
DOC 

(mg/L) δ56Fe 2SD δ57Fe 2SD Note

Copper River (CR)
CR above Chitina river 8 61.529 144.408 GL AK-07 <0.2um 7.9 600.0 0.09 0.09 0.14 0.40
CR below Chitina river 10 61.482 144.452 GL A22 <0.45um 7.8 530.0 0.07 0.06 0.10 0.13 *
CR delta channel 26 60.445 145.08 GL A25 <0.45um 7.9 800.0 0.45 0.09 0.06 0.15 0.13 *

AK-09 <0.2um 7.9 798.9 0.07 0.06 0.14 0.31
CR above childs glacier 33 60.673 144.755 GL A14 <0.45um 8.1 460.0 0.03 0.06 0.20 0.13 *
Copper River tributaries and local waters
College Creek 13 63.227 145.485 GL A20 <0.45um 7.9 0.01 0.06 0.00 0.13 *
Ibeck Creek 27 60.508 145.541 GL A23 <0.45um 7.5 720.0 0.13 0.06 0.24 0.13 *
Kotsina River 9 61.581 144.408 GL A21 <0.45um 7.7 500.0 0.00 0.06 0.02 0.13 *
Kuskulana River 12 61.556 144.022 GL A17 <0.45um 8 200.0 0.06 0.06 0.06 0.13 *
McCarthy Creek 23 61.431 142.926 GL A16 <0.45um 8 30.0 0.34 0.06 0.26 0.13 *
Meterasbe River 35 GL AK-08 <0.2um 3.0 0.05 0.17 0.10 0.86
Knik River 34 GL AK-11 <0.2um 3.0 -0.01 0.22 -0.13 0.30

A18 <0.45um 50.0 0.66 0.22 0.06 0.31 0.13 *
Strerler Creek 18 GL AK-04 <0.2um 4.0 0.34 0.15 0.44 0.26
Matanuska River Mat GL A15 <0.45um 180.0 0.06 0.15 0.12 0.32
Airport Creek 29 60.461 145.293 BB A11 <0.45um 7.3 230.0 3.2 -0.56 0.06 -0.87 0.13 *

AK-03 <0.2um 7.3 317.4 -0.83 0.05 -1.21 0.14
A10 <0.02um 7.3 110.0 -1.60 0.06 -2.37 0.13

Eyak River 28 60.529 145.64 BB A9 <0.45um 7.3 420.0 4.99 -1.17 0.06 -1.71 0.13 *
A19 <0.02um 7.3 300.0 -1.73 0.15 -2.58 0.32
AK-13 <0.2um 7.3 402.5 -1.12 0.08 -1.70 0.20

Gulkana River 16 62.27 145.385 BB A5 <0.45um 7.7 60.0 5.56 -0.21 0.12 -0.29 0.24 *
A2 <0.02um 7.7 15.0 -0.05 0.15 -0.13 0.32

Swampy Creek 31 60.435 145.214 BB A24 <0.45um 7.4 -0.03 0.06 -0.09 0.13 *
Tolsona Creek 17 62.101 145.969 BB A7 <0.45um 7.6 100.0 0.11 0.15 0.07 0.32 *

A6 <0.02um 7.6 40.0 -0.01 0.12 0.05 0.24
Willow Creek 4 61.817 145.216 BB A3 <0.45um 7.3 100.0 7.6 -0.40 0.15 -0.69 0.32 *

A8 <0.02um 7.3 70.0 -0.18 0.06 -0.32 0.13
Tractor Creek 25 61.388 143.197 BM A4 <0.45um 6.9 35.0 0.68 0.12 0.99 0.24
Klutina River 3 61.954 145.322 LK AK-06 <0.2um 7.4 7.5 0.16 0.06 0.23 0.16
Tazlina River 2 62.054 145.426 LK A12 <0.45um 7.4 140.0 0.35 0.36 0.06 0.51 0.13 *

AK-12 <0.2um 99.1 0.05 0.10 0.11 0.28
Tonsina River 6 61.663 145.183 LK A13 <0.45um 7.4 140.0 0.52 0.03 0.06 0.02 0.13 *
Clear Creek 24 MW AK-05 <0.2um 1.0 -0.12 0.19 -0.11 0.56
Glacial meltwater St32 MW AK-02 <0.2um 2.2 -0.81 0.23 -1.21 0.43
Sampling date between 8/19/2008 and 8/27/2008
Type "GL": glacial; Type "LK": proglacial lake fed; Type "BB": boreal blackwater; Type "BM": boreal montane, Type  "MW": meltwater
 (*) Reference from Schroth et al., 2011

Table S2: List of sampled waters from the Copper River watershed in Alaska and their main characteristics and chemical compositions



River Water 
ID

Date 
(m/d/yr)

Discharge 
(km3/d)

Water 
Temp (°C)

DOC 
(mg/L)

Ca 
(mg/L) Sr (ug/L) Ba 

(ug/L)
Al 

(ug/L)
Mn 

(ug/L)
Fe 

(ug/L) δ56Fe 2SD δ57Fe 2SD

SK1 5/26/2007 2.08 5.9 13.11 12.00 128.3 15.96 22.1 66.2 334 -0.05 0.02 0.02 0.07
SK2 5/27/2007 3.15 5.2 14.66 12.82 141.1 17.40 24.4 75.0 359 -0.10 0.02 -0.01 0.16
SK3 5/28/2007 4.94 5.4 14.97 12.48 129.2 17.07 23.2 76.6 363 -0.24 0.05 -0.32 0.13
SK4 5/29/2007 6.22 6.4 14.91 9.69 92.8 14.57 26.1 69.1 443 -0.16 0.06 -0.25 0.08
SK5 5/30/2007 7.01 7.4 15.59 9.15 86.8 14.23 27.7 66.6 459 -0.01 0.09 0.14 0.13
SK6 5/31/2007 7.78 8.9 17.05 9.53 89.9 14.51 29.2 62.6 457 -0.20 0.07 -0.16 0.10
SK7 6/1/2007 8.64 9.7 16.73 9.12 83.2 14.19 29.3 43.8 377 -0.12 0.04 -0.09 0.11
SK8 6/2/2007 8.50 13.1 16.20 8.29 83.6 12.57 29.2 33.5 345 -0.07 0.04 0.15 0.08
SK9 6/4/2007 8.03 13.7 16.25 9.19 91.9 13.82 29.9 30.9 324 -0.04 0.04 -0.04 0.08
SK10 6/5/2007 9.50 9.7 18.22 7.67 70.9 12.61 30.1 24.6 301 -0.07 0.03 -0.04 0.10
SK11 6/6/2007 8.99 11.1 20.66 8.96 89.4 13.50 28.6 23.7 287 -0.10 0.02 -0.20 0.02
SK12 6/8/2007 7.67 11.1 16.31 9.15 80.0 11.79 29.4 15.5 249 -0.18 0.09 -0.24 0.09
SK13 6/9/2007 7.49 9.2 17.00 9.01 75.4 11.83 25.7 14.9 228 -0.05 0.16 -0.04 0.06
SK14 6/10/2007 7.38 17.46 7.86 71.1 11.01 25.4 13.7 217 -0.14 0.08 0.03 0.19
SK15 6/11/2007 7.23 16.64 9.36 76.5 11.82 21.9 14.6 225 -0.11 0.04 -0.07 0.02

SK1 5/29/2007 3.21 6.0 9.37 3.95 27.4 5.12 27.2 90.7 592 -0.29 0.12 -0.32 0.13
SK2 5/30/2007 3.20 6.0 9.86 3.72 24.6 4.60 31.4 118.3 663 -0.25 0.05 -0.28 0.07
SK3 5/31/2007 3.14 7.0 10.79 2.67 18.8 3.78 41.2 95.6 764 -0.11 0.06 -0.18 0.08
SK4 6/1/2007 3.14 7.0 11.19 2.80 17.8 3.78 49.2 74.3 746 -0.09 0.05 -0.10 0.07
SK5 6/2/2007 3.13 7.0 10.89 2.46 15.5 4.72 36.4 33.3 653 -0.12 0.04 -0.20 0.04
SK6 6/3/2007 3.11 5.0 11.16 2.00 13.3 3.54 53.7 41.2 736 -0.12 0.04 -0.13 0.10
SK7 6/4/2007 3.08 5.0 10.65 2.15 14.3 5.22 54.1 45.0 843 -0.13 0.04 -0.11 0.10
SK8 6/5/2007 3.03 8.0 10.65 1.91 11.8 4.88 50.2 35.2 692 -0.12 0.04 -0.13 0.10
SK9 6/6/2007 3.02 9.0 10.70 2.03 12.4 3.48 51.6 27.4 690 -0.11 0.04 -0.28 0.04
SK10 6/7/2007 3.02 10.0 10.16 2.42 15.3 3.68 50.8 33.9 657 -0.07 0.09 -0.11 0.14
SK11 6/8/2007 3.02 11.0 9.88 2.05 13.5 4.46 54.7 38.9 637 -0.03 0.05 -0.01 0.15
SK12 6/9/2007 3.01 9.0 9.94 2.28 15.8 5.13 55.1 36.3 678 0.01 0.04 -0.10 0.09
SK13 6/10/2007 3.00 9.8 10.51 3.68 29.0 7.02 33.4 33.5 533 -0.05 0.06 0.10 0.05
SK14 6/11/2007 3.00 10.0 10.48 3.02 21.6 6.15 29.4 18.7 573 -0.08 0.02 -0.13 0.05
SK15 6/12/2007 3.01 10.0 11.20 2.07 11.6 3.08 45.2 13.3 667 -0.13 0.02 -0.03 0.04
SK16 6/13/2007 3.01 10.0 11.47 2.39 15.5 4.46 39.8 11.1 598 -0.08 0.01 -0.07 0.01
SK17 6/14/2007 3.01 11.0 11.48 2.20 14.4 3.59 48.3 15.1 717 -0.13 0.11 -0.13 0.08
SK18 6/15/2007 3.08 11.0 10.90 1.99 12.9 3.26 43.1 12.9 486 -0.06 0.04 -0.05 0.14
SK19 6/16/2007 3.10 11.5 11.27 3.33 23.5 4.86 39.1 18.3 566 -0.10 0.07 -0.21 0.08
SK20 6/17/2007 3.11 11.5 11.21 2.72 18.0 3.96 43.4 19.2 597 -0.15 0.03 -0.12 0.01

Lena

Ob'

Table S3: List of sampled waters from the Lena and Ob and their main characteristics and chemical compositions



Table S4: Chemical composition and pH of sampled waters from the White Sea watershed for different filtration size

Zone River Type / Flow Water 
ID Filtration pH DOC 

(mg/L)
Ca 

(mg/L)
Mg 

(mg/L)
Na 

(mg/L) Sr (ug/L) Al 
(ug/L)

Mn 
(ug/L) Fe (ug/L) δ56Fe 2SD

<2.5um 5.92 34.4 1.84 2.93 2.23 13.3 749.8 131.5 2660.0 -0.09 0.09
<100kD/UF 6.67 32.8 1.84 2.91 2.29 12.8 717.0 149.4 1805.0 0.37 0.09
<10kD/UF 6.46 32.0 1.82 2.87 2.40 12.5 696.4 145.5 1290.0 0.42 0.12
<1kD/UF 6.75 13.0 1.27 2.36 2.48 8.3 240.8 106.5 219.0 -0.07 0.28
<2.5um 7.5 41.3 4.23 3.45 33.73 35.0 439.3 115.8 3279.0 0.14 0.06
<0.22um 7.5 39.8 3.93 3.29 34.99 32.1 235.6 118.2 1088.0 0.63 0.08
<100 kD UF 7.47 40.1 4.17 3.40 33.22 33.3 270.4 102.1 1453.0 0.58 0.08
<10kD UF 7.51 39.4 2.30 2.35 31.77 25.6 136.3 72.6 530.6 0.83 0.06
<2.5 um 6.14 91.2 2.68 6.20 46.86 47.0 1491.0 20.5 535.3 0.50 0.03
<0.2 um 78.9 2.27 4.45 40.15 38.4 1020.6 16.6 404.9 0.79 0.03
<10kD dial 15.4 1.35 3.67 39.02 26.4 370.0 10.2 63.1 1.31 0.10
<1kD dial 1.17 3.22 37.39 21.6 191.8 7.9 24.8 1.58 0.13

IV / BF Y-2 <0.22 um 7.44 4.0 22.97 8.40 13.22 112.1 1.7 439.6 603.5 0.37 0.10
<5um 6.04 31.3 3.70 3.12 11.89 34.9 480.2 129.3 1337.2 0.24 0.04
<0.22um 19.7 4.53 34.1 356.9 125.0 1117.3 0.24 0.12
<10kD dial 8.2 2.83 2.66 26.30 29.3 107.2 96.4 93.3 0.69 0.09
<1kD dial 5.1 3.73 28.2 68.1 93.4 46.3 0.86 0.14
<2.5 um 76.4 214.46 2983.6 2423.0 1474.5 9016.7 -1.04 0.16
<1.2 um 67.7 49.40 755.5 634.5 409.1 2757.3 -1.09 0.05
<10kD dial 50.3 60.19 740.3 235.1 317.5 416.0 -1.19 0.08
<10kD dial 50.3 60.19 740.3 235.1 317.5 416.0 -1.29 0.10
<1kD dial 46.7 59.00 720.5 170.6 306.1 279.9 -1.28 0.06
<0.22 um 3.92 47.6 2.15 0.97 6.68 12.5 890.4 45.3 1072.1 0.24 0.03
<10kD 21.5 1.30 8.9 417.8 32.7 479.6 -0.69 0.08
<1kD dial 17.0 1.07 0.63 5.24 7.7 302.1 28.1 392.8 -0.83 0.15

III / BF s32 <0.45um 4.18 32.5 0.93 0.88 4.07 7.3 192.2 39.1 816.7 -0.30 0.08
<0.45 um 4.43 63.2 0.85 1.15 5.49 8.9 99.6 4.4 350.2 -0.24 0.13
<1 kD UF 28.8 0.96 0.91 6.7 49.2 4.0 107.7 -0.07 0.08
<0.22um 7.17 14.9 37.36 8.62 14.03 375.5 112.3 44.2 372.8 -0.01 0.09
<10kD UF 6.7 37.25 8.44 14.26 390.3 58.8 44.3 62.8 0.24 0.07
<10kD dial 6.8 36.58 8.28 14.05 380.6 36.5 40.3 18.9 -0.02 0.03
<1kD UF 4.6 33.43 7.53 12.72 355.6 34.5 37.9 5.0 0.28 0.12
<1kD dial 9.6 35.86 8.13 13.76 375.1 34.8 40.1 16.3 -0.09 0.10
<0.22 um 7.66 18.6 11.60 2.81 1.75 106.6 268.8 36.6 564.7 0.55 0.09
<10kDa UF 14.1 11.11 2.63 1.69 103.0 57.9 12.5 89.0 0.89 0.10

I / BF A-28 <0.22 um 20.2 18.52 4.09 4.50 163.0 40.7 24.6 231.9 -0.01 0.08
<0.22 um 4.15 0.31 0.22 1.34 2.2 112.1 8.4 232.3 0.31 0.06
<100kDa UF 23.8 0.30 0.21 1.29 2.2 98.9 7.0 192.5 0.27 0.06
<10kDa UF 20.5 0.23 0.18 1.25 1.6 55.8 6.1 87.0 0.11 0.10

III / HF A-20 <0.22 um 4.22 21.2 0.29 0.19 1.09 2.0 110.9 10.2 226.8 0.01 0.08
<0.22 um 7.34 6.5 44.75 9.90 9.22 1041.4 17.2 22.4 137.8 -0.09 0.11
<10kD UF 3.8 43.96 9.74 9.18 1051.0 9.7 21.6 25.4 0.06 0.04
<1kD UF 2.2 39.46 8.78 8.60 953.7 17.0 18.9 12.8 -0.05 0.04

I / HF A-27 <0.22 um 17.1 11.11 2.36 1.37 166.4 116.5 4.1 150.2 0.64 0.21
I / BF A-8 <0.22 um 7.61 3.9 319.48 14.81 4.66 3797.5 6.3 16.8 36.3 0.34 0.06
I / HF A-25 <0.22 um 7.55 15.1 122.70 3.99 1.28 1099.0 87.8 22.1 231.2 0.31 0.17

Type I: Large rivers 100 - 500,000 km², Type II: Small rivers , S < 50 km²; Type III: Semi-permanent streams (1 - 10 km²)
Type IV: Stagnant (soil, wetland) water, soil pits close to coast high DOC
BF: Base flow, HF: High Flow
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Supplementary	  Materials	  
	  
	  
Methods	  
	  
Sample	  filtration	  

In	  this	  study,	  we	  operationally	  defined	  “dissolved	  iron”,	  as	  the	  fraction	  passing	  through	  

0.45	  or	  0.22	  μm	  filter	  size.	  In	  some	  cases,	  we	  also	  used	  larger	  pore	  size	  filtration	  at	  5,	  3	  

and	  2.5	  μm	  to	  recover	   together	  small	  particles	  and	  dissolved	  Fe	   fraction.	  The	  colloidal	  

and	  truly	  dissolved	  fractions	  (i.e.	  <	  1	  kDa)	  are	  obtained	  using	  ultra	  filtration	  and	  dialysis	  

methods.	  For	  Lena	  and	  Ob'	  river	  waters,	   the	  samples	  were	  collected	  from	  a	  small	  boat	  

and	  immediately	  filtered	  through	  0.45	  µm	  filters.	  Filtered	  waters	  were	  stored	  in	  Nalgene	  

high-‐density	   polyethylene	   (HDPE)	   and	   frozen	   until	   further	   analysis	   as	   described	   in	  

(Holmes	   et	   al.,	   2012).	   Samples	   from	   Alaska	   were	   collected	   following	   the	   ultra	   clean	  

method	   of	   Shiller	   (2003)	   and	   further	   described	   in	   Schroth	   et	   al.	   (2011)	   where	   Fe	  

partitioning	  in	  river	  water	  is	  determined	  as	  soluble	  (<	  0.02	  µm)	  and	  colloidal	  (<	  0.45	  or	  

0.2	  µm)	  size	  fractions	  using	  trace	  metal	  clean	  syringe	  filtration	  of	  small	  volume	  samples	  

(~15	  mL	  to	  30	  mL)	  (Shiller,	  2003).	  

The	  White	  Sea	  samples	  were	  collected	  from	  the	  middle	  of	  the	  flow	  channel,	  using	  1	  liter	  

HDPE	   containers	   held	   out	   from	   the	   beach	   on	   a	   non-‐metallic	   stick.	   The	   samples	   were	  

collected	   and	  manipulated	   as	  described	   elsewhere	   (Ilina	   et	   al.,	   2013,	   Pokrovsky	   et	   al.,	  

2012,	  Pokrovsky	  et	  al.,	  2010,	  Vasyukova	  et	  al.,	  2010).	  Water	  samples	  were	  immediately	  

filtered	  on-‐site	  through	  sterile,	  single-‐use	  filter	  units	  (Sartorius,	  acetate	  cellulose	  filter)	  

with	   pore	   sizes	   of	   5,	   2.5,	   0.45	   and	   0.22	   μm.	   The	   first	   50	   ml	   of	   the	   filtrate	   was	  

systematically	  discarded	  before	   sampling.	  Two	   techniques	  of	  ultra-‐filtration	   (100	  kDa,	  

10	  kDa	  and	  1	  kDa)	  have	  been	  used:	  (1)	  frontal	  ultrafiltration	  (UF)	  was	  carried	  out	  using	  

a	   50-‐ml	   polycarbonate	   cell	   (Amicon)	   equipped	  with	   a	   suspended	  magnet	   stirring	   bar	  

located	  beneath	  the	  filter	  to	  prevent	  clogging	  during	  pressure	  filtration	  at	  3	  bars;	  (2)	  in-‐

situ	   dialysis	   filtration	   involved	   the	   use	   of	   trace-‐metal	   clean	   SpectraPor	   7®	   dialysis	  

membranes	   containing	   ultrapure	   MQ	   deionized	   water	   placed	   in	   flotation	   in	   natural	  

water	  during	  more	  than	  24h	  (Vasyukova	  et	  al.,	  2010).	  	  

	  

Analysis	  

Major	  and	  trace	  element	  analyses	  were	  all	  performed	  on	  samples	  acidified	  at	  pH	  2	  with	  

ultrapure	  double-‐distilled	  HNO3.	  Trace	  element	  analyses	  were	  measured	  by	  HR-‐ICP-‐MS	  
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either	  at	  LMTG	  (France)	  or	  WHOI	  (USA).	  The	  riverine	  water	  reference	  material	  SLRS-‐4	  

(National	   Research	   Council	   of	   Canada)	   was	   used	   to	   check	   the	   accuracy	   and	  

reproducibility	   of	   each	   analysis.	   Samples	   for	   dissolved	   organic	   carbon	   (DOC)	   analysis	  

were	  collected	  in	  pyrolyzed	  sterile	  Pyrex	  glass	  tubes	  after	  filtration	  trough	  0.45	  or	  0.22	  

μm	  and	  analyzed	  using	  a	  Total	  Carbon	  Analyzer	  (Shimadzu	  TOC	  5000).	  	  

	  

The	   procedure	   for	   Fe-‐isotope	   analysis	   follows	   previously	   described	   methods	   in	  

(Escoube	  et	  al.,	  2009)	   for	  riverine	  and	  brackish	  waters.	   In	  short,	  acidified	  samples	  are	  

evaporated	  to	  dryness	  at	  80°C	  with	  distilled	  HNO3	  and	  H2O2	  (ultrapure	  grade)	  on	  a	  hot	  

plate	  to	  release	  the	  iron	  from	  organic	  complexes.	  The	  samples	  are	  then	  purified	  through	  

anion	   exchange	   resin	   (AG1-‐X8,	   Bio-‐rad).	   Iron	   isotope	   compositions	   were	   determined	  

with	   a	   Neptune	   (Thermo-‐Scientific)	   multicollector	   inductively	   coupled	   plasma	   mass	  

spectrometry	   (MC-‐ICPMS)	   operating	   at	   WHOI	   and	   IFREMER	   using	   medium	   or	   high-‐

resolution	  mode.	   Instrumental	  mass	   bias	   is	   corrected	   using	   62Ni/60Ni	   isotope	   ratio	   as	  

internal	  standard	  simultaneously	  measured.	  	  All	  analyses	  are	  reported	  in	  delta	  notation	  

relative	  to	  the	  IRMM-‐014	  standard,	  expressed	  as	  δ56Fe,	  which	  represents	  the	  deviation	  

in	   per	  mil	   relative	   to	   the	   reference	  material.	   As	  δ56Fe	   and	  δ57Fe	   are	   on	   a	   single	  mass	  

fractionation	  line	  (r2=	  0.9956),	  only	  δ56Fe	  values	  are	  reported	  in	  this	  paper.	  
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Figure S1: Compilation of Fe isotope composition of rivers reported in the literature: (i) Arctic 
and subarctic environments including russian rivers, ponds and swamps of the White Sea basin, 
and Ob’ and Lena rivers (Illina et al, 2013; this study), and alaskan rivers (Schroth et al, 2011, this 
study). ; (ii) Temperate environments include the North River (USA; Escoube et al, 2009); Seine 
river (France; Chen et al, 2014); Aha lake and its in�owing rivers (China; Song et al, 2011); (iii) Tro-
pical environments including the Amazon River and tributaries (Bergquist and Boyle, 2006; Poi-
trasson et al, 2014 ; dos Santos Pinheiro et al, 2013, 2014) and Mendong (Cameroon; Akermann 
et al, 2014). Note that results from Ingri et al (2006) have not been included since they corres-
pond to saturated �lters collecting both particles and some class of colloids. SPM corresponds 
to suspended particulate matter retained on �lters of 0.22µm or 0.45µm pore size.

<0.22µm or <0.45µm
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