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ABSTRACT: Spatial and temporal closures of fish nursery areas to fishing have recently been
recognized as useful tools for efficient fisheries management, as they preserve the reproductive
potential of populations and increase the recruitment of target species. In order to identify and
locate potential nursery areas for spatio-temporal closures, a solid understanding of species—
environment relationships is needed, as well as spatial identification of fish nurseries through the
application of robust analyses. One way to achieve knowledge of fish nurseries is to analyse the
persistence of recruitment hotspots. In this study, we propose the comparison of different spatio-
temporal model structures to assess the persistence of a spatial process. In particular, we apply our
approach to a 2-stage Bayesian hierarchical spatio-temporal model that describes both the occur-
rence and the abundance of European hake Merluccius merluccius recruits in the western Medi-
terranean Sea. Results clearly show areas of high occurrence and abundance, mainly along the
shelf break and the upper slope of the Spanish Mediterranean coast. Understanding the distribu-
tional patterns associated with key life stages such as recruitment is essential for appropriate
spatial management, including the implementation of Fisheries Restricted Areas and/or Marine
Protected Areas that improve the management of fishery resources.
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INTRODUCTION

The study of species distribution is of great inter-
est to fisheries science and marine ecology. Models
that describe the spatial distribution of populations
and its links with environmental features have
been long debated (Planque et al. 2011). Under-
standing the spatial pattern of the distribution of
recruits has been the subject of many scientific arti-
cles because this is a critical stage for fish stocks,
and therefore reducing the fishing effort of unse-
lective gears in recruitment areas will help avoid
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recruitment overfishing (Caddy et al. 2000). One of
the fundamental objectives of an Ecosystem Ap-
proach to Fisheries Management (EAFM) frame-
work is to ensure the long-term sustainability of the
fishery by protecting key life cycle habitats such as
spawning, breeding, or recruitment areas. Within
this framework, a recommended management tool
is the establishment of a network of Fisheries Re-
stricted Areas (FRA) in regions where target
species are known to aggregate in critical phases of
their life cycle (e.g. recruits and/or juveniles)
(Garofalo et al. 2011).
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The definition of a nursery ground has been a mat-
ter of debate during the last decade (Beck et al. 2001,
Dahlgren et al. 2006). These definitions generally rely
on direct measurements of the movement of juveniles
from nursery habitats to the adult population (Beck et
al. 2001, Gillanders et al. 2003). Unfortunately, direct
measurements are not feasible for deep-water spe-
cies, whose nursery grounds tend to be located in
deeper waters as well. European hake Merluccius
merluccius is one such species, whose recruits tend to
inhabit the continental shelf and the upper slope
(Orsi-Relini et al. 1989, Recasens et al. 1998, Maynou
et al. 2003). As a result, Colloca et al. (2009) sugges-
ted using the persistence of abundance hotspots over
time to identify nursery areas by means of Bayesian
kriging and geostatistical aggregation curves.

Geostatistical methods in fisheries have been con-
strained to a spectrum of relatively simple models
due to the restricted capabilities of the available
packages in the frequentist statistical approach, and
the expensive computational costs of Markov Chain
Monte Carlo methods (Blangiardo et al. 2013) in the
Bayesian counterpart. This becomes even more rele-
vant when the interest is focused on spatio-temporal
geostatistical modelling, the main reason being the
higher level of complexity of such models. The Inte-
grated Nested Laplace Approximation (INLA; Rue et
al. 2009) avoids such computational issues by means
of a user-friendly R package (Rue et al. 2013) that
provides accurate numerical approximations to the
posterior distributions of the parameters involved in
the model.

Our objective in this study is twofold. First, we
present a refinement of the methodology proposed
by Colloca et al. (2009) to identify nursery areas. We
assess the persistence of the spatial pattern by
comparing alternative Bayesian hierarchical spatio-
temporal models rather than by applying aggrega-
tion curves to the predictive posterior distributions.
Moreover, we apply this approach using a 2-stage
model (Maravelias 1999) in which we model both the
presence/absence and the abundance conditional to
presence. This not only allows us to identify high oc-
currence areas but also to highlight abundance hot-
spots in the same spatial scale. Each model allows us
to incorporate different spatial, temporal or spatio-
temporal effects along with information about envi-
ronmental and geographical factors, the latter 2 as
covariates. The inferential process for both models
provides information about the final structure of our
data; in other words, it shows the best model that
adapts to our data, allowing us to differentiate
whether there is a unique spatial process, or instead

if the spatial structure varies over time. The predic-
tion process (also known as Bayesian kriging; Diggle
& Ribeiro 2007) in which we predict the occurrence
and the abundance in unsampled areas enables us to
identify recruitment hotspots and possible nursery
areas.

Our second aim is to estimate the distribution of
hake nursery grounds on the Iberian Mediterranean
coast. European hake is among the most important
commercial species in the Mediterranean Sea, suffer-
ing from high fishing pressure (Lleonart 2005). In
fact, in many Mediterranean countries there is still a
considerable illegal market in small hake (Bellido et
al. 2014). As a result, the juvenile fraction is particu-
larly vulnerable, especially to the trawl fishery after
the bottom settlement stage, when they aggregate
over nursery grounds. A good understanding of the
distributional patterns of this important life stage is
essential for an appropriate EAFM (FAO 2008). A
wide range of methodologies has been used to
characterise hake nursery grounds in the Mediter-
ranean (Abella et al. 2008, Colloca et al. 2009), but
none have been applied to the Iberian coast, nor
have environmental, geographical and temporal data
been included in the models.

MATERIALS AND METHODS

Data on hake recruits were collected during the
EU-funded MEDIterranean Trawl Survey (MEDITS)
(Bertrand et al. 2002) project, carried out from spring
to early summer (April to June) between 2000 and
2012. The MEDITS project used a stratified sampling
design based on depth (5 bathymetric strata: 10 to 50,
51 to 100, 101 to 200, 201 to 500 and 501 to 700 m)
and geographical sub-area (GSA). Sampling stations
were placed randomly within each bathymetric stra-
tum at the beginning of the project. Sampling was
performed in similar geographical locations in all
subsequent years. This study concerns the trawlable
grounds of GSA 06, which bordered the northern
Iberian Mediterranean coast. Around 80 hauls di-
vided into the 5 bathymetric strata were performed
every year in this zone, comprising 1048 hauls in
total. Only hake recruits were considered, defined as
those individuals <15 cm in total length (Bartolino et
al. 2008, Druon et al. 2015).

Total weight of recruits (kg) per 30 min of trawling
was used as the catch per unit effort (CPUE) unit. A
hake recruit presence/absence variable was created
for each haul, with presence being CPUE values >0
and absence, CPUE equal to 0. Fig. 1 shows a map of
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as random variables (Banerjee et al.
2003). They also allow the spatial com-
&7 ponent to be incorporated as a ran-
dom-effect term in a natural way,
thereby reducing its influence on esti-
mates of the effects of geographical
variables (Gelfand et al. 2006). Specif-
ically, by treating the spatial effect as a
variable of interest, Bayesian hierar-
chical spatial models can suggest the
identity of additional covariates that
may improve model fit, or the exis-
tence of area effects that may affect
recruit density.

This study implements Bayesian
hierarchical spatial models by using
the INLA methodology (Rue et al.
2009) and software (see www.r-inla.
org for more information). INLA pro-
vides accurate numerical approxima-
tions to the posterior marginal distri-

butions of a large class of hierarchical

Fig. 1. Study area and expected distribution of the samples each year. Bathy-
metric contours are shown up to the 800 m depth strata according to the
MEDIterranean Trawl Survey (MEDITS) sampling range

the study area and the approximate locations sam-
pled every year.

As mentioned previously, bathymetry is a very
important explanatory variable in the distribution of
hake (Orsi-Relini et al. 1989, Recasens et al. 1998,
Maynou et al. 2003), but we also included the type of
substratum, the sea surface temperature and the
chl a concentration as potentially relevant environ-
mental variables. Bathymetry and substratum maps
were obtained as shapefiles from the IEO geoportal,
accessible through the website of the Spanish In-
stitute of Oceanography (www.ieo.es). Yearly and
monthly sea surface temperature and chl a con-
centration maps were downloaded from the Gio-
vanni online data system (http://disc.sci.gsfc.nasa.
gov/giovanni) (Acker & Leptoukh 2007).

Bayesian framework

Bayesian methods have several advantages over
traditional methods of analysis and are increasingly
used in fisheries research (Colloca et al. 2009, Munoz
et al. 2013, Pennino et al. 2014). Bayesian methods
provide a more realistic and accurate estimation of
uncertainty because they allow the use of both the

models known as latent Gaussian
Markov Random Field (GMRF) models
(Rue & Held 2004). Even for complex
models, the clever exploitation of
the Markov property makes the computations re-
markably fast.

In particular, for geostatistical problems where
inference and prediction are relevant continuously in
space, INLA implements the stochastic partial differ-
ential equations (SPDE) approach (Lindgren et al.
2011). This involves the approximation of a continu-
ously indexed Gaussian Field (GF) with Matérn
covariance function by a GMRF, which fits well into
the INLA framework.

Modelling nursery areas

Point-referenced spatial models (Cressie 1993) are
highly suitable for situations where observations are
made within a defined continuous spatial domain.
The final aim of these models is to predict quantities
of interest at unsampled locations based on informa-
tion gathered at sampled locations. However, accu-
racy is not always easy to achieve because there is
often a large amount of variability surrounding the
measurement of variables, and traditional prediction
methods do not account for an attribute with more
than one level of uncertainty. This variability leads
to uncertain predictions, and consequently to unin-
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formed decision making. This can be avoided using
the Bayesian framework. Point-referenced spatial
models can be seen as Bayesian hierarchical mod-
els (Banerjee et al. 2003), in which (as mentioned
above) it is conceptually easy to incorporate para-
meter uncertainty into the prediction process while
including covariates, temporal effects and different
likelihoods.

At each location, we had different information
about the qualitative and quantitative spatial distri-
bution of recruits: presence/absence and abundance
at those places where they were present. As a result,
we propose the use of different Bayesian hierarchical
spatio-temporal models for each situation. While the
presence/absence model provides an idea of the rela-
tive occurrence of recruits, the abundance model
gives an approximation of the absolute abundance. In
the first situation, when Yj; represents the occurrence
(1 being yes; 0 being no) of hake recruits for each
haul at location iin year j, then it can be modeled as:

Y1»1»~Ber(7t1»j), i= 1,...,nj;j= 1,...,q
loglt(TCl]) = XIB + Ujj (1)
Bi~ N(Hp, Pp,)

where 7 is the probability of hake presence at loca-
tion iin year j; X;B represents the fixed effects of the
linear predictor whose hyperparameters g, and pg,
represent the mean and the precision, respectively;
u; represents different spatio-temporal structures of
random effects; the relationship between 7; and the
covariates of interest and both random effects is the
usual logit link; Ber is Bernoulli and N is normal
or Gaussian distribution. Specifically, we propose 2
different spatio-temporal structures, the first one
consisting of decomposing u;; as:
u; = Wi+ v
w ~ N(0, Q(k, 1))
2 log k ~ N(li pi) (2)
log T~ N(K po)
N(O, py)

where w = (wyy, ..., quq) represents a unique spatial
random effect with parameters k and t, which are
linked to the range and the total variance of the effect
(see Lindgren et al. 2011). The structure matrix Q is
computed internally by the SPDE approach and rep-
resents the GMRF approximation to the continuous
GF. v; represents an independent random -effect
which has been included to allow possible differ-
ences between years. The different p and p hyperpa-
rameters represent the corresponding mean and pre-
cision of the different prior Gaussian distributions,
respectively.

The second spatio-temporal structure is based on
decomposing uy as:

u; = wy
w; ~ N(0, Q(k, 1))
21og k ~ N(ix, py) ©)
log t ~ N(Uq, po)

where w; = (wy;, ..., Wpj) NOwW represents a spatial
random effect for each specific year j, and the re-
maining parameters are similar to those in Eq. (2).
Note that w; are different realizations of the same
model, with the same parameters k and T.

This latter decomposition is more flexible in the
sense that it makes it possible to capture different
structures of occurrence for each year. In fact, it
would be a good description of those situations in
which high abundance or high occurrence probabil-
ity areas are in different zones every year (that is,
they change over time). For those cases in which high
presence areas persist over time, Eq. (2) would be the
best description.

Once we had a description about the presence
areas, our interest was to study the absolute abun-
dance of recruits in those places where the species
was present. Note that this is a particularly suitable
approach for dealing with high numbers of real zero
observations (Martin et al. 2005), because the model
deals with (and consequently predicts) the recruit
abundance and the occurrence of recruits separately
(see Quiroz et al. 2014 for an application in fisheries).

In particular, to study the abundance of recruits, we
used a hierarchical Bayesian spatio-temporal modelling
similar to that in Eq. (1). Continuous species abundance
indices, such as CPUEs, have typically been modelled
using lognormal or gamma distributions (Lande et al.
2003, Maunder & Punt 2004). In our case the lognormal
distribution was dismissed because it resulted in a lin-
ear negative relationship between the log-CPUEs and
the bathymetry, which contradicts hake ecology (Orsi-
Relini et al. 1989, Recasens et al. 1998, Maynou et al.
2003). Therefore, we modelled the raw CPUE values
Z; observed at location i and year j via the following
Gamma model:

Z;;~ Gal(ay, by), i=1,...pj=1 ..., q
log(uy) = XiB + uy (4)
Bi ~ Nk, pp,)

where p; = a;/by;, X;B represents the linear predictor
and uy represents different spatio-temporal struc-
tures of random effects. We propose the same decom-
positions in Eqgs. (2) & (3) for uy. Nevertheless, it
must be taken into account that although models in
Eqgs. (1) & (4) share most of the notation, the para-
meters involved are different.
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Following Bayesian reasoning, the parameters are
treated as random variables, and prior knowledge is
incorporated via prior distributions. In order to ex-
press our lack of a priori information about the para-
meters, we adopted an objective Bayesian approach,
an attempt to unify frequentist and Bayesian statis-
tics (Bayarri & Berger 2004). This approach can be
very useful in scenarios where choosing a prior for
the parameters is difficult or even infeasible. In our
case, we adopted the default vague prior distribu-
tions in INLA, and performed visual validation by
subsequently verifying that the posterior distribu-
tions concentrated well within the support of the
priors. Nevertheless, a greater effort should be made
to introduce available prior information in the infer-
ential process. All the information from past experi-
ments and observations, performed by ourselves or
by others, is of great value, and it is our task to make
the best possible use of this information (Martinez-
Abrain et al. 2014). Posterior distributions of the
parameters are the final result of this process. Of par-
ticular interest are the posterior mean and standard
deviation of the spatial component, which can be
used to detect hidden spatial patterns.

A model selection approach was used to select
among the different structures in both modellings.
Specifically, the Deviance Information Criterion (DIC)
(Spiegelhalter et al. 2002) was used as a measure for
goodness-of-fit, while the Log-Conditional Predictive
Ordinates (LCPO) (Roos & Held 2011) measures the
predictive quality of the models. The smaller the
DIC and LCPO values, the better the compromise
between fit, parsimony and predictive quality.

Bayesian kriging

Kriging is the most common prediction technique
applied in geostatistics. A widespread method for
making a prediction applying Bayesian kriging is
to take observations and construct a regular lattice
over them. Alternatively, the INLA SPDE module in-
cludes a more flexible approach to covering the study
area, based on Delaunay triangulations (Lindgren et
al. 2011). As opposed to a regular grid, a triangulation
is a partition of the region into triangles, satisfying a
number of pre-selected constraints that condition the
size, shape and density of the triangles in order to en-
sure smooth transitions between large and small ones.
One additional benefit of the SPDE approach is that it
provides the posterior conditional distribution for all
the nodes in a mesh covering the whole region. It is
then possible to obtain an immediate prediction for

the latent model, or the response variable at any loca-
tion in the area, simply by considering the unobserved
nodes as missing data.

As a result of this process, we obtained a predictive
posterior distribution of recruit occurrence and den-
sity for each node in the triangulation (see Lindgren
et al. 2011 for a more detailed description of the
method, and Munoz et al. 2013 for its application to
fisheries). Once the prediction was performed in the
vertices of the triangulation, we linearly interpolated
the results to the whole area using the ‘inla.mesh.
projector’ and ‘levelplot’ functions (see www.r-inla.
org and manuals for further details).

RESULTS
Model selection

All models obtained by combining environmental
variables with the different decompositions of the
spatio-temporal structure (Eqgs. 2 & 3) were fitted and
compared. All models including the quadratic term
for bathymetry had better DIC and LCPO values than
those including only a linear relationship. Similarly,
the different combinations of models including chl a
and sea surface temperature variables had higher
DIC and LCPO scores (data not shown). The type of
substratum was discarded from the model because
estimates of all level categories were centred on zero
and had very high standard deviations.

Table 1 shows the goodness-of-fit and predictive
quality measures for the Occurrence and Abundance

Table 1. Model comparison for occurrence and abundance

of Merluccius merluccius recruits in the western Mediter-

ranean. Deviance Information Criterion (DIC) scores meas-

ure goodness-of-fit and Log-Conditional Predictive Ordi-

nates (LCPO) measure the predictive behavior of the model.
In both cases, smaller scores represent better models

Model DIC LCPO
Occurrence

Only depth 638.38 0.31
Common spatial effect only 618.42 0.40
Depth + common spatial effect + 493.89 0.23

random noise effect for year

Depth + yearly spatial effect 627.07 0.30

Abundance

Only depth

Common spatial effect only

Depth + common spatial effect +
random noise effect for year

Depth + yearly spatial effect

1849.26 1.23
1573.87 1.21
1470.26 1.02

1491.67 1.46
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Fig. 2. (A) Spatio-temporal occurrence model output for Merluccius merluccius recruits in the western Mediterranean showing
average posterior mean estimates of the probability of presence. (B) Standard deviation during the study time window. Pale
contours correspond to low values; dark contours indicate high probability estimates and standard deviations

models. Following the principle of parsimony, the
selected models for both occurrence and abundance
were the models with the spatio-temporal decompo-
sition in Eq. (2), which share a common spatial effect
for all observations and a random noise effect for
year in addition to the bathymetric effect. In other
words, the selected models are those suggesting per-
sistence of the spatial pattern.

Hake recruit occurrence

The selected model for the occurrence of recruits
revealed the highest probability of presence along
the continental shelf and the upper slope (Fig. 2).
Accordingly, hake recruitment showed an occur-
rence peak at between 40 and 180 m depth (Fig. 3).
However, the model also identified some low proba-
bility patterns along the continental shelf, especially
off the Mar Menor, in the waters off Barcelona and
the Palamoés Canyon.

It is worth noting the importance of the spatial
effect in the peak occurrence estimates. This effect
identified the spatial pattern of recruitment at similar
depths throughout the study area. In those areas
where the spatial effect was high, the probability of
occurrence also tended to be high and vice versa
(Figs. 2 & 4). For instance, the spatial effect around
the Balearic Islands (Fig. 4A) was almost negligible
(we had no observations there) and the predicted
probability map (Fig. 2A) is thus extremely smooth,

very close to the estimate provided by the environ-
mental covariate alone. With regard to the scale of
the temporal unstructured term, its variance was
around 3 orders of magnitude below that of the spa-
tial random effect (see the x-axes in Fig. 5).

Hake recruit abundance

In the second situation, the highest abundance
areas were also located along the continental shelf
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Fig. 3. Mean of the fitted values at the prediction nodes of
the occurrence model. Each boxplot corresponds to a 20 m
interval
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Fig. 4. (A) Posterior mean of the spatial effect in the occurrence model; and (B) standard deviation. Pale contours correspond
to low values; dark contours indicate high increments in the linear predictor and high standard deviations

and upper slope (Fig. 6), coinciding with the esti-
mated effect of the bathymetry. The bathymetric
peak abundance was around the 80 to 180 m strata
derived from the predicted abundance estimates
(Fig. 7). However, these abundance hotspots were
much more localised than the occurrence (as ex-
pected). In fact, the sizes of these areas were around
10 km in diameter.

It is again important to note the influence of the
spatial effect on the localisation of the persistent high
density areas (see Figs. 6 & 8). The importance of the
spatial term was again very clear around the Balearic
Islands compared to the continental area. Around the
islands we had an almost negligible spatial effect due
to a lack of observations, and the estimates were

50

T T T T T T
7.25 7.26 7.27 7.28 7.29 7.30

Spatial effect variance

basically determined by the bathymetry. This re-
sulted in a very smooth spatial pattern (Fig. 8A), in
contrast to the continental zone. The scale of the vari-
ance of the fitted random noise effect for year was
smaller than that of the spatial random effect (see the
x-axes in Fig. 9).

Nursery grounds

At least 3 high abundance and occurrence areas
were identified. A small hotspot was located a few
kilometers off the city of Valencia, while the highest
abundance hotspot was located some kilometers to
the northeast, around the Columbretes Islands. This

150000

50000

0
T
0.003892

T
0.003898 0.003904

Year effect variance

Fig. 5. Estimated distribution of the variance for the spatial effect (left) and independent random effect for year (right) in the
occurrence model. Note the different scale in which the variance is measured
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Fig. 6. (A) Spatio-temporal abundance model output for Merluccius merluccius recruits in the western Mediterranean showing

average posterior mean abundance estimates in kg per 30 min tow using MEDIterranean Trawl Survey (MEDITS) gear; and

(B) standard deviation during the study time window. Pale contours correspond to low values; dark contours indicate high
abundance estimates and standard deviations
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Fig. 7. Mean of the fitted values at the prediction nodes of
the abundance model. Each boxplot corresponds to a 20 m
interval

hotspot extended transversally to the bathymetric
slope and connected through a moderate density
region to another high density area north of the Ebro
delta. These 2 highest abundance hotspots encom-
pass around 650 km? of the total 18000 km? area of
the 50 to 200 m depth strata in the GSA 06. The areas
close to the Palamés Canyon and Mar Menor showed
relatively high abundance estimates, while the esti-

mated occurrences were not that high. This behavior
suggests that the aggregation patterns are diffuse,
and hence these areas were not considered to be
important nursery grounds.

DISCUSSION

The implementation of an EAFM requires the spa-
tial characterisation of key life cycle habitats of ex-
ploited stocks (Crowder & Norse 2008, FAO 2008). In
this respect, the identification of nursery grounds has
attracted special interest among researchers because
of the impact that unselective gear could have on this
critical phase. Here, we propose a methodological
approach for the identification of fish nurseries based
on the spatio-temporal persistence of hotspots. This
may be particularly helpful in the absence of quanti-
tative data on the contribution of nursery habitats to
the adult population (Colloca et al. 2009).

The proposed methodology assesses the persist-
ence of a spatial process by comparing 2 spatio-tem-
poral structures, while density hotspots are identified
by combining occurrence and abundance informa-
tion (Maravelias 1999). Consequently, compared to
the methodology proposed by Colloca et al. (2009),
this approach not only reduces the number of steps
needed to assess the persistence of the spatial pro-
cess but also includes information on absence obser-
vations through the occurrence model, so as to better
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Fig. 8. (A) Posterior mean and (B) standard deviation of the spatial effect in the abundance model. Pale contours correspond
to low values; dark contours indicate high increments in the linear predictor and high standard deviations

characterise the spatial presence of hake recruits. In
fact, areas where high abundance estimates concur
with low occurrence estimates have not been high-
lighted as important nursery grounds. This method,
however, may not be applicable to those cases where
the spatial structure is not persistent. In such cases,
the methodology proposed by Colloca et al. (2009),
using geostatistical aggregation curves, could better
assess the importance of these areas.

Our results suggest that the distribution of hake
recruits in the western Mediterranean Sea is persist-
ent over the years, helping us to identify at least
3 nursery grounds. The waters surrounding the
Columbretes Islands show both high abundance and

Density
w
1

T T T T
0.5 0.6 0.7 0.8

Spatial effect variance

occurrence estimates. These islands have been a
Marine Protected Area since 1989, and thus provide
a stable, high quality ecosystem to stocks that could
be exporting hake adults and recruits to adjacent
areas, as has been reported with other species (Sto-
bart et al. 2009). A meso-scale study of the effect of
the Columbretes MPA on the hake population could
confirm this hypothesis. Another nursery ground is
located north of the Ebro delta. High run-off areas
like this are well known for boosting primary produc-
tion, and consequently larvae survival rate (Sutcliffe
1973, Thoérdardéttir 1986); thus, protecting this sort
of environment could be especially beneficial to the
first stages of recruits (Nagelkerken et al. 2013).

T T T T T T T
0.2 0.6 1.0 14

Year effect variance

Fig. 9. Estimated distribution of the variance for the spatial effect (left) and independent random effect for year (right) in the
abundance model
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Complementary studies (e.g. setting a smaller cut-off
length) could assess the importance of these areas for
those early stages using a similar methodology. A
third smaller nursery area is estimated to be a few
kilometers off Valencia. This hotspot has smaller total
abundance estimates than the other 2, probably as a
consequence of high fishing pressure originating
from the fishing fleets based at Valencia and nearby
ports. Fishing effort data could confirm such a
hypothesis.

The effect of bathymetry on the distribution of
hake recruits is well known, and accordingly, we
determined peak abundance to occur at approxi-
mately the 80 to 180 m depth strata. Similar results
have been reported by other authors in other areas of
the Mediterranean (Orsi-Relini et al. 1989, Recasens
et al. 1998, Maynou et al. 2003). However, the esti-
mated effect of bathymetry in this study shows
slightly different optimum values for abundance and
for occurrence, likely because each model omits part
of the data. The remaining variables included in the
analysis (i.e. the type of substratum, sea surface tem-
perature and chl a concentration) added no relevant
information to the distribution of hake recruits.

The relatively small size of the identified peak
abundance areas of hake recruits compares favor-
ably with the results of Colloca et al. (2009) and
Garofalo et al. (2011). The relatively small distances
between them may also suggest the implementation
of a network of interconnected reserves (Roberts
et al. 2003) for an effective marine spatial planning
(MSP) in the western Mediterranean Sea. Moreover,
the small size of the hotspots could be a key feature
that eases communication with the fisheries sector
in the implementation of EAFM directives, since it
would presumably have a relatively small impact on
fishermen. Indeed, such an impact could be assessed
using fishing effort information to minimize impact
versus protection. An effective MSP should include
the spatio-temporal dynamism of species over the full
year (Crowder & Norse 2008); however, the MEDITS
survey used in this study covered only a short period
of time from late spring to early summer in this area.
Consequently, the fitted models can only reflect a
snapshot view of the expected relationships and
distribution. Hake reproduce actively throughout
the year in the Mediterranean (Recasens et al. 1998,
2008), so future studies should investigate their
spatial distribution during the remaining months of
the year, and include other sources of information
such as fishery-dependent data in order to complete
this framework. If such studies suggest a persistent
pattern over the full year, the planning of permanent

hake nursery fisheries restricted areas (FRAs) could
be suggested. Otherwise, more flexible spatial plan-
ning would be needed.

Results such as these, expanded to incorporate
multiple species and life stages, and combined with
information on the distribution of fishing activity
could be a good approach to implementing an effec-
tive ecosystem-based MSP that embraces the EAFM
requirements. In this respect, the INLA package for R
(Rue et al. 2013) might be a key geostatistical tool
due to its notable flexibility in fitting complex models
(Ilian et al. 2012, Blangiardo et al. 2013) and its com-
putational efficiency (Beguin et al. 2012).
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