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Abstract : 
 
Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for 
spawning. However, what triggers and drives the geographic shift of the population remains unclear and 
poorly understood. An individual-based fish model has been implemented to explore the potential 
mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two 
fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish 
response to its dynamic environment. A bioenergetics model was used to represent individual growth and 
reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was 
provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to 
actualize a series of simulations using different cues and computational assumptions. The gradient detection 
behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution 
under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested 
that southward movement occurred more actively from early April to middle May following favorably the 
spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who 
ended up in the southern part of the bay presented better condition based on energy content, proposing the 
resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a 
moderate performance, producing distribution pattern with the highest spread. Finally, model performance 
was not significantly affected by changes on the starting date, initial fish distribution and number of particles 
used in the simulations, whereas it was drastically influenced by the adopted cues. 
 

Highlights 

► Both temperature and food are needed to perform anchovy spawning migration in Biscay. ► Gradient 
search works better than kinesis in our regional fish movement model. ► The model proposes timing for 
migration, consistent with changes in the environment. ► The model verifies that southward migration is 
profitable for fish bioenergetics. 
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1. Introduction

Small  pelagic  fish  undergo  migrations  between  distinct  habitats  to  support  their  feeding  and

reproduction requirements. These migrations represent an efficient strategy for the maximization of

fitness at individual and population scale and are highly driven by seasonal environmental variations

(Checkley et al., 2009; Giannoulaki et al., 2014). Moreover, geographic shifts of fish distributions to

their  spawning  grounds  are  indispensable  to  ensure  the  survival  of  offsprings  and  consequently,

recruitment success (Fréon et al., 2010; Ward et al., 2003). Identifying the conditions that define the

temporal coincidence between fish physiological needs and these displacements to suitable areas is

crucial  for  understanding  fish  migration  dynamics  (Chen  et  al.,  2010;  Lo  et  al.,  2010)  and

investigate their response to future climate changes (Okunishi et al., 2012a) . 

Adult anchovies in the Bay of Biscay (BoB) exhibit seasonal movements and their distribution patterns

have been documented in ICES (2010, Chap. 8). Spawning primarily occurs over spring to summer in

highly productive areas such as river plumes, shelf break fronts, and oceanic eddies mostly found in the

southeast corner of the bay where large anchovy aggregations are observed (Motos et al., 1996, Kout-

sikopoulos and Le Cann, 1996). After spawning, dispersal to the north, especially for larger fish, has

been confirmed by the analysis of fishing activity (Uriarte et al., 1996) and reanalysis of anchovy pres-

ence data derived from PELGAS surveys (Petitgas et al., 2011). However, the exact mechanisms, as

well as what triggers the starting and ending period of these geographic shifts remain uncertain and

poorly understood (Petitgas et al., 2013). As anchovy fishery in the BoB interacts strongly with an-

chovy distribution (ICES, 2014; Uriarte et al., 1996), and given that management strategy evaluation is

strongly sensitive to fish seasonal distribution (Lehuta et al, 2013), understanding migration ecology  is

key in proposing adequate spatio-temporal management strategies.

Simulating fish movement through spatially explicit individual-based models (IBMs) has been proven

an efficient approach for exploring the link between fish migration dynamics and their living condi-

tions. Indeed, IBMs have been successfully used to identify spawning migration routes (Barbaro et al.,

2009; Okunishi et al., 2009), predict recruitment (Okunishi et al., 2012b; Xu et al., 2013), study the in-

fluence of physical environment on fish biomass interannual variability (Politikos et al., 2014; Rose et

al., 2015) and investigate the impacts of climate change on fish growth and distribution patterns (Huse

and Ellingsen, 2008; Ito et al., 2013). 
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The ultimate goal of the paper is to identify the key environmental drivers that control BoB anchovy’s

southward movement for spawning.  To this  end, we developed a horizontal  two-dimensional  IBM

model through which we tested a series of hypotheses. Under different rules of swimming, we simu-

lated fish movement following conceptually two behavioral approaches, i.e. the gradient area search

(Politikos et al., 2014; Tu et al., 2012) and kinesis (Okunishi et al., 2009; Rose et al., 2015). The bioen-

ergetic model developed in Huret et al. (submitted) was used to depict individual growth and reproduc-

tion along anchovy’s trajectory and define behavioral cues based on fish physiological needs. Sea water

temperature and zooplankton fields were extracted from a three dimensional lower trophic model and

then used as environmental forcing to trigger anchovy’s response to its dynamic spatial environment.

The IBM model was implemented for adult stage. Its skill was examined by comparing model results

with distribution maps derived from seasonally acquired survey data. A reference run and ten additional

experiments were performed to compare the simulated fish spatial patterns under several behavioral

and computational assumptions. In the discussion section, we analyze the implications of simulation

outputs and document the model limitations. 

2. Materials and Methods

2.1 Anchovy bioenergetics

The configuration of the bioenergetic model developed in Huret et al. (submitted) was used to simulate

anchovy’s growth and spawning activity.  It is based on the Dynamic Energy Budget (DEB) theory

(Kooijman, 2010) which tracks the energy fluxes within the fish organism through the physiological

processes of assimilation, maintenance, maturation, growth and reproduction. For the analysis of our

results, we used the model products which describe fish length, fish wet weight, fish energy and the

energy allocated to reproduction (Huret et al., submitted). The main inputs of the bioenergetic model

are:  food density  and temperature,  which  were  provided  by the  forcing  environment  described  in

section 2.2. 

2.2 Forcing environment 
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ECO-MARS3D (Lazure and Dumas, 2008) is a coupled physical-biogeochemical model which de-

scribes the general patterns of hydrodynamics and lower trophic dynamics at the seasonal and multi-

decadal scale in the BoB (Huret et al., 2013). The current configuration has a numerical grid of 4x4 km

resolution in the horizontal and 30 sigma layers in the vertical and it provides the living conditions of

anchovy. Hence, three day climatology of temperature fields during 1982-2007 and a weekly climatol-

ogy of  two zooplankton groups (micro-  and mesozooplankton) averaged over  2001-2005 were ex-

tracted and used as the forcing inputs for the IBM model. Zooplankton and temperature fields define

the fish consumption rates and metabolic requirements in the DEB model, as well as the movement de-

cision rules (see section 2.3).   

2.3 Movement

Individual fish behaviour is controlled by a diversity of external (environmental cues, density depen-

dent processes, inter-specific relations) and internal factors (physiology, sociability, age) (Planque et

al., 2011). Furthermore, bigger fish, conversely to early life stages, can also actively direct their own

locomotion and shift their geographical distributions in order to reach optimum habitat conditions (Lett

et al., 2009). These complexities and uncertainties on how individuals discern and react to their envi-

ronment have led in the development of different approaches for representing behavioral movement

within numerical models, like restricted area search, kinesis, event-based and run and tumble (Watkins

and Rose, 2013). In terms of mathematical structure, these approaches are considered as biased corre-

lated random walk, where the change in fish direction may depend on various cues such as currents,

prey availability, temperature, salinity and fish condition (Humston et al., 2004; Okunishi et al., 2009;

Xu et al., 2013). In this section, we identify the potential cues for our case study and describe the

adopted movement algorithms. 

2.3.1 Potential cues

In autumn, adult anchovy is distributed in northern BoB for feeding while in spring the major spawning

grounds are located in the south (ICES, 2010). The shift of the population from north to south is sup-

posedly driven by the search of optimum oceanographic conditions and high productivity areas in an

effort to cover the physiological needs of a multiple batch spawner and the survival of offsprings (Petit-
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gas et al., 2013). However, the exact drivers and timing are uncertain. Thus, possible cues were consid-

ered based on existing hypothesis. 

Anchovy spawning to the southern part of the bay seems to be triggered by the warming of surface wa-

ter  (Koutsikopoulos  and Le Cann, 1996) following the progression of the associated stratification,

which starts in April in the south and extends progressively to the north (Motos et al., 1996). Mean-

while, planktonic spring production increases reaching its highest biomass values during late spring

and summer (Poulet et al., 1996). Based on the aforementioned information and following our hypothe-

sis testing strategy, zooplankton and sea surface temperature were tested as potential cues to induce

north to south movement of anchovy. 

Ultimately, searching for areas which maximize fish physiological response has also been proposed to

be very effective at reproducing observed distributions. For instance, the growth rate was considered as

the key driver of fish behavior in order to simulate the migration and growth patterns of sardine in the

western North Pacific (Okunishi et al., 2012) and investigate the influence of physical and plankton

variability on Peruvian anchovy recruitment (Xu et al., 2013). In our study, the component of the DEB

model which calculates the remaining energy that goes for somatic growth after covering maintenance

costs (Huret et al., submitted) represented the index of optimum habitat search, as it integrates concur-

rently the effects of food, temperature and physiological requirements.  

 

2.3.2 Movement Algorithms

The movement algorithms were built using the Lagrangian approach which permits the individual fish

tracking in the continuous space of a grid (Okunishi et al., 2012b; Watkins and Rose, 2013). The posi-

tion of each individual  1 1,k kx y   at time 1k  , which was at ( , )k kx y at time k , is updated following

the equations:  

1

1

( )

+ ( )
k k

k k

k k x x

k k y y

x x D R t

y y D R t





    

   
(1)

where  ,
k kx yD D  define the oriented movement in ,x y dimensions,  ,

k kx yR R denote the random com-

ponent and t  is the time step.
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Gradient Area Search (GAS)

The GAS algorithm is based on gradient detection (Tu et al., 2012). Hence, from the current fish loca-

tion, individuals are able to detect the environment in neighbor cells both in  ,x y directions and then

move towards the cell with the highest quality at a specified velocity. The orientated part in Eq. (1) is

calculated as,

SS SS,x x y yD F G D F G    , (2)

where base
SS SS SSF F E    is the maximum sustainable fish swimming speed (ms-1), base

SSF is the baseline

swimming speed expressed in body length per unit time (1.3 body length s-1),  base
SS SS0.1E F   is the

added degree of random noise and   is a uniform random number between -1 and 1. The ,x yG G  are

unit vectors, which define the fish direction as follows:

,
MG MG

yx
x y

CC
G G  , (3)

where  ,x yC C  are the cue gradients in  ,x y  dimensions and  2 2MG x yC C  is the corresponding

magnitude. Assuming a combined effect of the mean zooplankton (Z) over 0-40m and sea surface tem-

perature (SST), the cue gradients ( , )x yC C  were determined by the weighted sum:

RA RA RA

RA RA

Z (1 ) SST , 0 1

Z (1 ) SST ,   

n n
x x x

n n
y x y

C a a a

C a a

      

    
(4)

where (Z ,Z )n n
x x , (SST ,SST )n n

x y  are the normalized gradients of Z and SST cues respectively and RAa  is

the term which parameterizes their interplay. The term RAa  was calibrated to provide the best possible

agreement of anchovy distribution with the available observed data. Randomness ( ,x yR R ) was set pro-

portional to fish size (0.5 body length s-1) assuming that a bigger fish can have a more active random

activity in searching, while the random direction was produced from a uniform distribution.
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The value of RAa  was initially set to 0.8, considering that individuals are mainly driven by food condi-

tions during the winter period. However, it was redefined based on the information that spawning is

closely related to the onset of thermocline formation (Planque et al., 2007). This formation was quanti-

fied in the model by calculating the temperature difference between the upper (0-10m) and lower layers

(30-100m) at the current position of each particle. A threshold of 1.2oC was imposed to trigger the

dominance of SST gradient, which implied a switch of RAa  from 0.8 to 0.3. 

Despite the random component of fish movement, the GAS approach did not prevent in several cases

the direct movement and local wandering of particles in optimal grid cells. As a result, the model gen-

erated unrealistic patchy patterns. Since a further increase of the randomness would produce high fish

swimming velocities, a distinction on the daily swimming behavior was included following the idea of

Kirby et al. (2003). Thus, the aforementioned cues were applied for a 12h period. The rest half day was

considered as a cruising period where individuals were moving exclusively randomly ( 0x yD D  ).

This assumption was considered acceptable under the rationale that fish does not search for better con-

ditions in the whole day in the horizontal since it exhibits also vertical movements. 

Kinesis algorithm

For comparison, we tested an alternative approach following the concept of kinesis (Okunishi et al.,

2012b; Rose et al., 2015). Contrary to the GAS algorithm, the kinesis behavior considers that individ-

ual’s response depends upon a habitat index which is defined on the current fish location (Humston et

al., 2000). Hence, individuals are able to compare the habitat quality between the current and previous

time steps and consequently maintain their fish swimming direction if conditions were improving; oth-

erwise a random search prevails. 

The  habitat  index ( )H ,  is  defined  as  the  weighted  geometric  mean  of  zooplankton  biomass  ( Z )

(interpolated horizontally and averaged vertically within 0-40m) and sea surface temperature (SST) ,

KIN KIN1
KINZ SST ,0 1   a aH a (5)
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to estimate the habitat condition of anchovy at its current position. The parameter  KINa  was tuned to

weight the interaction between Z and SST  (for  1/ 2a  , we get the standard geometric mean).  KINa

received  initially  the  value  0.7  and  after  the  increased  impact  of  SST,  it  switched  to  0.2.  The

temperature threshold for performing the switch was set to 0.7oC.

Practically, the kinesis algorithm was implemented daily for each individual as follows. At the initial

time step k=1  of a new day, we calculate the habitat index ( 1H ) at the current fish position and we

assume  a  random  search.  This  random  movement  defines  a  direction  
1 1,( )x yG G  such  that

1 1 1 1SS SS,x x y yR F G R F G    ,  whilst
1 1

0x yD D  .  Through  the Eq. (1),  the  fish  position  is  then

updated. For  2k  , we recalculate the habitat index kH  and we check whether the fish  moved to a

better  habitat i.e. 1k kH H  .  If  this  is  true,  then  the  new  directions  ,( )
k kx yD D  are  set

1 1
,

k k k kx x y yD R D R
 

  and  0
k kx yR R   for the rest  of the day.  This implies that  fish  maintains its

previous  direction.  Otherwise,  fish  continues  to  ambulate  exclusively randomly  (

k k k kx SS x y SS yR =F ×G ,R =F ×G ) until  it  finds a better  condition.  Fish is  slowing down ( SSF was halved)

when it is found in areas with high food availability, i.e. when the input energy to the organism ( f ) for

food concentration (X) and half saturation ( K ): f
X

X+K
=  (Huret et al., submitted) becomes very high

( 0.98f  ).

2.4. Design of simulations

2.4.1 Reference simulation

The reference simulation was run from 1-February to 15-June using the attributes of Sim0 (Table 1).

The time step was set  3t  hours.  10000 individuals were initially spread within a  grid of  35 30

cells (16km resolution, Fig. 1) following the probabilistic distribution of anchovy presence by length

during autumn observations (Petitgas et al., 2011). The initial length of particles was varied within the

length range 13-16cm following length-at-age-data of mature age-1+ data. The initial values of energy

in reserves (E=118000J) and in reproduction buffer (R=62840J) were extracted from the calibrated sim-

8



ulation of Huret et al. (submitted). Initial weight was calculated using the function which converts the

energy of structure, reserves and gametes into mass (Huret et al. submitted).

Fig. 1. Initial distribution (in probabilities of presence) of individuals based on autumn observations.

For clarification, we mention that the environmental forcing and the corresponding cues were defined

by the horizontal resolution of ECO-MARS (i.e., 4km), while the initial distribution and the model

results were analyzed on 16km resolution. Additionally, the natural (other than starvation) and fishing

mortality rates were not considered since we do not intend to set a predictive model of population

dynamics, but we mainly focus on representing the migration routes. 

2.4.2 Experiment runs 

During the implementation of a fish movement model, several assumptions can affect its performance,

including time step (Humston et al., 2000), initial location of individuals (Humston et al., 2004), type

of movement (Watkins and Rose, 2012), adopted cues (Okunishi et al., 2012b; Xu et al., 2013) and

starting date  (Tu et  al.,  2012).  For the purpose of detecting the effect of model’s components,  we

performed ten additional  simulations and compare them with the reference run. The attributes of the

experiments are listed in Table 1.  
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Sim1 was performed using the kinesis algorithm described in 2.3.1. In Sim2 (Sim3), the time step was

set to one (five) hours, respectively. A variation on the number of particles to 5000 and 50000 was

examined by simulations Sim4 and Sim5.  A shift  of the starting date  one month earlier  (January)

compare to Sim0 was considered in Sim6, while in Sim7 a uniform initial release of particles was

adopted over the northern part of the continental self (<200m) between 45.25oN and 47.5oN. Using as a

single cue the zooplankton fields in Sim8, we explored the impact of food in the movement process.

Sim9 was performed using exclusively SST as driver of the fish behavior. Finally, in Sim10 we tested

the bioenergetic cue discussed in section 2.3.1. 

Simulations Time
step

Movement
type

Initial 
location

Initial
month

 # of particles Cues

Sim0 3h GAS Habitat February 10000 Food (0-40m)+SST
Sim1 Kinesis
Sim2 1h
Sim3 5h
Sim4 5000
Sim5 50000
Sim6 January
Sim7 Random
Sim8 Food (0-40m)
Sim9 SST

Sim10 Bioenergetics
Table 1. Attributes of simulations. Sim0 is considered as the reference run. The empty cells indicate the same

assumptions as in base-case simulation Sim0.

2.4.3 Model skill assessment and spatial indices 

The  effectiveness  of  the  model  at  reproducing  aggregations  similar  to  summer  observations  was

examined by plotting the anchovy distribution at the end of the simulation (15 June). To do that, we

considered a grid of 35 30 cells (16km resolution) on the model domain. The number of individuals in

each cell  was  counted  and divided  by the  total  number  of  particles,  so  that  fish  distribution  was

converted  to  a  continuous  concentration  field  used  in  the  calculation  of  spatial  indices.  Similar

probability data were derived from Petitgas et al. (2011) and interpolated on the same grid. 

In terms of bioenergetics outputs, spatial maps of anchovy’s weight and length change between the

starting and ending time of the run were computed to identify areas which overall supported better fish

growth. Also, the change in fish energy was mapped to identify areas supporting better fish condition,
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as an additional indicator since energy is not fully correlated to weight depending on the reserve accu-

mulation and water content (Huret et al., submitted). Simulated  spawning habitats were obtained by

summing spatially over the grid cells the energy of all eggs released by adults.

A Taylor diagram (Taylor,  2001) was used to  validate  the model’s skill  and detect the differences

between the experiment runs. It provides a concise statistical summary of how closely model outputs

match with observations and it is also suitable to track changes in performance of a model as it is

modified.  Simulated  and  observed  spatial  fields  were  compared  using  as  metrics  the  correlation

coefficient (R), the centered root-mean-square difference (RMS) and their standard deviations (SDs)

normalized to the observations’ SD.  Good performance of Taylor diagram implies high value  for R

(close to 1), small RMS (close to 0) and SD close to 1.

In addition, the following spatial indices were used to compare the fish distribution maps between the

experiment runs: the longitude and latitude of Center of Gravity (CG), the inertia, the global index of

collocation (GIC), and the ratio of the positive to the spreading area (PA/SA) (Table 2). The inertia

informs on the dispersion of distribution around its CG and in particular, Principal Component Analysis

applied on particle positions defines the major axes of orientation and elongation of the distribution.

The GIC informs on the degree of overlap between two distributions and varies between 0 (no overlap)

and 1 (complete overlap). Here, the GIC compared simulation runs to observations. The spreading area

(SA) informs on the degree of aggregation: the more aggregated the population the smaller its SA and

for an evenly distributed population SA is equal to PA. More details on these indices can be found in

Woillez et al. (2007). 

Metrics Description
Center of Gravity (CG) Mean location of the distribution (lon, lat)
Inertia (I) Dispersion of the distribution around the CG. 
Global  index  of  collocation
(GIC)

It measures how geographically distinct two
distributions are (value between 0 and 1)

Positive area (PA) Sum of area units containing at least one particle
(square kms)

Spreading area (SA) Measure of how the distribution of fish particles
is aggregated (square kms)

Table 2. List of spatial indices used to summarize the spatial distributions of particles (Woillez et al., 2007).

3. Results
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3.1 Reference simulation 

The snapshot of simulated anchovy distribution at the end of the simulation is compared to observed

distribution map in Fig. 2. Higher fish aggregation was noticed below 45.5oN for both model and data.

Given that initially 9% of individuals were located southerly at 45.5oN, the percentage was increased

after all to 56.3%. Contrary to in situ data, the reference simulation did not create high concentrations

inshore (<50m) in front of the Gironde river (Fig. 2a). Instead, a number of individuals moved further

offshore between 45.5-46oN occupying areas with bathymetry between 50-100m. 

Fig. 2. a) Simulated map of anchovy distribution  against b) observations calculated as probability of presence. 

The daily overlap of simulated and observed distributions through the GIC index is shown in Fig. 3a.

GIC starts at 0.38 and gradually increases to 0.91, indicating a good overlap between the two spatial

patterns. The average movement route of particles was extracted by plotting the geographic positions

(lon,  lat)  of CGs (dashed line of Fig.  3b).  It  can be summarized as follows: starting from (2.8oW,

46.3oN) the CG performs a downward shift and at the same time towards inshore from February till

early April. Afterwards, under the continuous effect of food and the increasing effect of SST gradient,

the CG starts to move slightly offshore and concurrently more actively to the south. The principal axes

of inertia of the particle distribution (Fig. 3b) at the end of the simulation (black axis) show an along-

shelf orientation with the final CG located in (2.2oW, 45.4oN).  Grey axes show the initial inertia while
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the blue axis corresponds to the inertia of the data. 

Fig. 3. a) Time series of GIC index. b) The dashed line represents the trajectory of the CGs. Crosses show the

principal axes of inertia around the CGs, which are positioned at the mid-point of the axes. 

The total changes of anchovy’s bioenergetics as regards to length, weight, fish energy and cumulated

energy spend on reproduction are mapped in Fig. 4. Over the whole bay, the mean weight change was

9.4% (Fig. 4a), the mean length change 6.6% (Fig. 4b) and fish energy change 8.3% (Fig. 4c). Drawing

a latitudinal limit at 46°N, individual fish that ended up south of 46oN showed changes in mean weight

change  of  11.1%,  mean  length  change  of  6.9%  and  mean  energy  of  11.2%.  In  contrast,  the

corresponding values for particles remaining north of 46oN were 4%, 5.5% and -0.7%. The weight

change was low mainly for individuals remaining north of 46oN and offshore. Interestingly, the change

in fish energy was negative for the majority of individuals which remained north of 46oN, meaning that

they grew at the cost of reserve diminution. Concerning the spatial pattern of the cumulative energy of

released eggs (Fig. 4d), higher values are obtained mostly in cells below 46oN. However, northerly of

46oN, increased energy invested for reproduction is noticed mainly in coastal areas with bottom depth

lower than 50m (Fig. 4d). 
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Fig. 4. Spatial characteristics of the bioenergetics integrated over the simulation period: a) weight change, b) 

length change, c) fish energy change and d) cumulative energy of released eggs.  

3.2 Experiments

Pattern statistics for the eleven simulations of Table 1 were computed and the position of each point ap-

pearing on the Taylor diagram (Fig. 5) quantified how closely simulated distributions (Fig. 6) matched

with observations (Fig. 2b).  All experiment runs displayed higher aggregations below 46oN (Fig. 5)

but their performance showed differentiations. The reference run (point 0) indicated a correlation coef-

14

c)



ficient R=0.55, square root error RMS=0.87 and standard deviation, SD=0.81 .  The kinesis algorithm

(point 1) has a slightly smaller correlation coefficient (R=0.52) and smaller RMS (0.85) as compared to

Sim0 but it simulates the amplitude of the variations less well resulting with a lower SD=0.6. Of the

poorer performing models, Sim2 (point 2) displayed a low pattern correlation (R=0.23) and high error

(RMS=1.36). The increase of time step (point 3) increased the correlation coefficient to 0.57 but de-

creased significantly the standard deviation (SD=0.43). The variation on the number of particles (points

4,5) and the random initialization (point 7) did not significantly change the Taylor metrics  while the

shift of initial date (point 6) contributed to a slight increase of correlation coefficient (R=0.59) and a

slight decrease of RMS=0.82, compared to reference run (Sim0). Sim8 (point 8)  implied a very low

correlation R=0.15 and high error RMS=1.12. Similarly, the SST cue alone (point 9) had also low cor-

relation R=0.4 and high error (RMS=1.62). Finally, the bioenergetics cue alone (point 10) showed also

a low performance with R=0.21 and high error, RMS=1.18. 

Fig. 5. Taylor diagram comparing the simulated distributions Sim0 to Sim10 against observations. Simulation

runs are detailed in Table 1.
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Fig. 6. Anchovy distributions maps derived from experiment runs (Table 1). 

Sensitivity analysis on the model time step demonstrated that one hour resolution (Sim2) caused a

decrease of both GIC (0.74) and SA/PA (0.42) in comparison to Sim0 (Fig. 7). On the other hand, the

increase of time step to five hours (Sim3) decreased GIC (0.84) and increased significantly the ratio

SA/PA making the anchovy distribution more aggregated. Simulations Sim4 to Sim7 did not make the

GIC vary significantly, while Sim8 and Sim10 had low GIC (≈0.70). The aggregation in the simulated

spatial patterns (SA/PA) was not notably affected by the shifting of initial date (Sim6) and the random

initialization (Sim7),  whereas the decrease (Sim4) and increase (Sim5) on the number of particles

caused a slightly higher (lower) dispersion, respectively. Sim9 had high GIC value (0.95) but at the

same time the lowest value of spreading (SA/PA=0.33). Sim10 showed a low GIC=0.7 and a spread

similar to that of Sim0. 
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Fig. 7 . Plot of GIC and SA/PA indices for all simulations. Indices are detailed in Table 2.

Fig. 8 provides a comparison of the variation of latitude of CGs for all runs. Visually,  the general

pattern for simulations Sim0 to Sim8 is characterized by a gradual descent of latitude, which becomes

more intense from early April until the middle of May following the gradual increase of temperature

and zooplankton (Fig. 9). The kinesis algorithm (Sim1) showed a smoother pattern compared to the

GAS algorithm, which resulted in moderate downward motion of individuals, especially after May.

One-hour  time  step  (Sim2)  and  food  cue  (Sim8)  were  ineffective  to  induce  a  notable  latitudinal

displacement,  while  SST  cue  (Sim9)  displayed  an  active  latitudinal  movement  which  started  in

February and continued till the end of the simulation. Finally, bioenergetics cue (Sim10) displayed at

the end a CG latitude similar to Sim2, revealing, however, a different movement pattern. Interestingly,

contrary to other simulations, the southward shift was more direct during May.   
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Fig. 8.  Plots of latitudes of the CGs. Runs are detailed in Table 1.
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Fig. 9.  a) Mean zooplankton (mgC/m3) over 0-40m and b) mean temperature (oC) over 0-10m (lower)

calculated along the transect of 100m from south to north. 

4. Discussion

4.1 Model evaluation 

The reference run proposed that gradient area search with zooplankton and SST as cues was the most

appropriate mechanism to induce north to south mobility of individuals and recreate successfully the

observed anchovy distribution. Moreover, it demonstrated that the southward migration becomes more
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direct from early April to mid-May (Fig. 8) following properly ECO-MARS3D forcing environment,

which predicts an increase of both temperature and plankton dynamics in the south of the Bay in spring

(Figs. 9 and 10).

Fig. 10. Snapshots of zooplankton and temperature fields during middle May.

The  interplay  between  zooplankton  and  SST was  balanced  through  the  parameter  RAa  for  GAS

algorithm and  KINa  for  the  kinesis  model.  We point  out  that  although these  parameters  were  not

possible to be estimated from any data, they parameterized an important process in the model. Their

main contribution was to trigger the “SST gradient dominance hypothesis” through the Eqs. (4) and (5).

Taylor results  (point 0, Fig. 5) showed that this  switch and its timing may be indeed important to

finalize  successfully  the  geographical  shift  of  the  individuals.  In  terms  of  their  sensitivity,  small

changes on their values did not severely affect the model’s performance. Values between 0.7-0.9 for

both  RAa  and  KINa  during  the  first  phase  of  locomotion  were  sufficient.  After  the  switch  of  fish

behavior from food driven to more SST driven, the model was able to work efficiently when RAa  took

values between 0.25-0.35 and KINa  between 0.2-0.3. Similar concept was adopted Tu et al. (2012) who

assumed a stepwise swimming scheme where fish was switching its stimuli from current to temperature

when sensing the optimal temperature for spawning.
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Our use of GAS behavior to actualize the reference run was motivated by the spring environmental

fields which are characterized by a progressively established north to the south gradient (Fig. 10). This

choice is consistent with the recommendation of Watkins and Rose (2013) who suggested that gradient

based approaches seem more appropriate to simulate a population that strongly aggregates in response

to gradually changing cues. However, consideration of other approaches for representing behavioral

movement is equally important given that variations in spatial patterns and growth dynamics can be

found due to the way fish perceive and respond to its living conditions (Humston et al., 2004; Okunishi

et al., 2012b; Watkins and Rose, 2013). Hence, we implemented the kinesis behavior as an alternative

mechanism to induce anchovy’s spawning movement. In section 4.3, we discuss its performance and its

differences with GAS.   

4.2. Ecological significance of the spawning migration

The coupling of the growth model with the movement process justified that the individuals who shifted

to the southern part of the bay were benefited in terms of fish bioenergetics as compared to those re-

maining in the north (Fig. 4). Particles that finally ended below 46oN, showed a better growth based on

their weight and length (Fig 4a, 4b). Even more contrasted is the difference in fish condition based on

their energy content (Fig 4c). Individuals remaining in the north had a negative energy balance between

winter and late spring, while those having migrated south were able to replenish their energy more

rapidly after the winter, as showed beneficial both in terms of growth and reproduction. 

Concerning  the  simulated  spawning  grounds,  we  notice  that  they  are  consistent  with  the  spatial

distribution patterns southern of 46oN (Figs. 2a, 4d).  For the individuals that aggregated in the northern

part of the bay, those showing higher egg production were located in coastal waters (Fig. 4d). The

simulated spawning areas are in agreement with observed egg distribution maps (Motos et al., 1996;

Bellier et al., 2007). Our modelling results then suggest that this late-spring spawning spatial pattern,

with higher fecundity in the south, is a result of the general southward movement of the population, as

well as the associated better bioenergetics conditions as compared to the individuals remaining in the

north. For those latter ones, remaining close to the coast is a better than spreading over the shelf.

The positive effect of fish migration on growth and population dynamics of a stock has been also

ascertained in  other  model  studies.  For example,  Okunishi  et  al.  (2012b) demonstrated that  in the
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western  Pacific  ecosystem,  the  migration  of  juvenile  Japanese  sardines  exposed  them to  optimal

temperatures and high chlorophyll concentrations for growth, while the average spatial distribution of

Peruvian anchovy implied that the movement of the population to  relatively cool waters and high

productivity areas supported better growth conditions and high survival rates (Xu et al., 2013).

4.3. Comparison of experiments 

Comparing kinesis with GAS scheme, we note that kinesis resulted in lower simulation skills (Fig. 5,

point 1), while it did not demonstrate a significant southern shift of individuals (Fig. 8, Sim1). In terms

of  spatial  indices,  kinesis  scheme displayed fish  distribution  with  lower  value  of  GIC and higher

spreading than GAS (Fig. 7). It seems that the advantage of GAS to allow fish detecting habitat quality

in the surrounding environment had an edge to induce a southward migration that recreated better the

observed  anchovy distribution (Fig. 6, Sim0).  Representing fish movement following the restricted

area search scheme has been proven useful also in other studies like in Xu et al. (2013) and Railsback

et al. (1999) who assumed that individuals can evaluate growth rates in the neighborhood cells and

move towards the cell which provides the maximum fitness.

Despite the lower efficiency of the kinesis algorithm, we argue that it cannot be rejected as an alterna-

tive movement strategy.  Identification  of  other  meaningful  biological  stimuli  which can determine

when a fish leaves or remains its current location could perhaps improve its performance. We recall

that generally, kinesis has been proposed as a more useful choice when simulating a species that ex-

plores its environment with a wandering behavior and not by searching for local optima (Humston et

al., 2004). As a result, final fish distributions are characterized by more scattered patterns (Watkins and

Rose, 2013). For instance, Okunishi et al. (2012) predicted that kinesis was more accurate than the fit-

ness search behavior, to reproduce the observed northward migration of juvenile sardine in the western

Pacific. 

Evaluating  the  effect  of  computational  and behavioral  assumptions  is  indispensable  to  discern  the

capabilities and the limits of the model (Humston et al., 2004). Watkins and Rose (2014) illustrated that

the minimum fish swimming speed was not slow enough to maintain model individuals near high-

quality habitats under longer time steps, while the number of particles reaching the spawning grounds

in the coastal waters of Taiwan was decreased when there was a delay of one month on the starting date
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(Tu et al., 2012). For this reason, we performed a series of sensitivity tests and compare them using

spatial  indices  and  CGs  latitudes.  Sensitivity  results  demonstrated  that  individuals  reflect  similar

migration patterns (Fig. 8) but they exhibit differentiations in their final distribution.  Thus, Taylor

diagram results (Fig. 5) and GIC metric (Fig. 7) showed that the simulated spatial patterns did not

significantly change due to the variations on particle number (Sim4, Sim5), the shift of initial date

(Sim6) and the random initialization (Sim7), while more spreading of the population (SA/PA) occurred

especially when we increased the number of particles (Fig. 7b, Sim4). Regarding the time step and the

adopted cues, they affected drastically the model’s performance. Both the decrease and increase of time

step by two hours (Fig. 5, Sim2 and Sim3) worsen the model’s performance. When the food used a cue

(Fig. 6, Sim8), its poor performance indicated that it cannot be the only factor controlling spawning

movement. Under  SST scenario, many particles moved offshore (Fig.6, Sim9), whereas a significant

proportion  ended in  the  south.  Despite  its  high value  of  GIC (Fig 7a),  it  was  documented  as  the

simulation with the highest RMS error, implying that SST cannot be the exclusive driver of anchovy

movement. 

4.3 Model limitations

The reference run was not very efficient to realize a massive “large scale” displacement of particles

south of 46oN whose initial positions were on the upper part of BoB. More particularly, 23.3% of the

particles that had initial latitude positions above 46oN were moved finally below 45oN, while 11% of

particles who were initially above 47oN, they were finally found within the continental shelf southerly

of  45oN at  the  end  of  the  simulation  (Fig.  2a).  Additionally,  the simulated  distribution  predicted

increased concentration offshore between 45-46oN which was not compatible with observations. This

mismatch can be explained by the fact that during May-June except from the latitudinal gradient of

SST, there was also an inshore to offshore gradient (Fig. 10). Other mechanisms not included, for

example the energetic cost of movement or evolutionary selection of spawning habitats could probably

prevent this misplacement. 

Due  to  the  absence  of  empirical  support  of  behavioral  assumptions  (Humston  et  al.,  2004),  the

imposition of rules and the testing of cues are the common ways to determine when individuals depart

their  current locations and how they select destinations when implementing a fish IBM movement

model (Railsback et al., 1999). In Okunishi et al. (2012b), chlorophyll-a concentration, SST and sea-
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surface velocity were used as external forces to simulate growth and migration of Japanese sardine in

the western North Pacific,  while  tuna’s migration in  the Gulf  of Maine was driven by SST maps

(Humston et al., 2000). Temperature and current at a given depth were adopted as cues to explain the

spawning migration routes of Icelandic capelin stock (Barbaro et al.,  2009). In this study, we used

simplified but meaningful cues as potential mechanisms to drive anchovy to spawning habitats. Thus,

average values of zooplankton and temperature over the water column as well as SST were used as

forcing inputs. However,  defining more dynamic ways or simulating vertical  fish movement could

provide  more  realistic  explanations  about  the  effects  of  vertical  environmental  variability  on  the

movement  process.  This  was  especially  evident  for  the  bioenergetics  cue  (Fig  5,  Sim10)  which

predicted a latitudinal shift of the population (Fig. 8, Sim10) who was poorly compatible with observed

distribution (Fig 5, point 10). 

All the simulations were realized under climatological forcing conditions. Additional runs that will take

into account climate and plankton interannual variability will further enlighten the relationship between

fish behavior and environment. Contrary to other studies, we did not adopt an optimum temperature to

trigger (Tu et al., 2012) or slow down (Humston et al., 2000; Okunishi et al., 2012b) the impact of

temperature, since there was no empirical study that can support an evident value. Including this kind

of information in a future study would produce more realistic motions towards preferred environmental

conditions, given that high deviations from optimal conditions can limit or delay migration success.

Another  question that needs further  elaboration when modelling spawning movement concerns the

motivation of the fish. It would be challenging to explore evolutionary rather than ecological drivers of

movement as proposed by Huse and Ellingsen (2008) and Okunishi et al. (2009). 

As mentioned in the implementation section, the effect of the mortality was not assessed in our study.

Considering the fact that fishing mostly occurs mostly during April to June when Spanish fleet is active

in the south of the bay (ICES, 2014), fishing mortality is likely to modulate and play a role in the

observed spatial distribution at the end of spring. However, this would need to be investigated on a

yearly basis based on the interannual variability of fishing effort. Based on the fact that during our

period of observation (decade 2000) fishery was close from 2005 to 2009, we believe that this effect is

rather limited.

In  summary,  we  compounded  a  fish  movement-bioenergetics  model  in  order  to  increase  our
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understanding on the underlying mechanisms that define the movement routes of anchovy in the BoB.

Our study proposed a potential mechanism for the southward movement success during spring months

and confirmed  the resulting fish energy gain as an ecological explanation for this migration. Future

efforts that will reproduce the late summer feeding migration towards the north of the bay is the next

necessary step to complete the annual life cycle of anchovy in the BoB.
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