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Abstract
Spatial patterns of beta diversity are a major focus of ecology. They can be especially valu-

able in conservation planning. In this study, we used a generalized dissimilarity modeling

approach to analyze and predict the spatial patterns of beta diversity for commercially

exploited, demersal marine species assemblages along the Tunisian coasts. For this study,

we used a presence/absence dataset which included information on 174 species (inverte-

brates and fishes) and 9 environmental variables. We first performed the modeling analyses

and assessed beta diversity using the turnover component of the Jaccard’s dissimilarity

index. We then performed nonmetric multidimensional scaling to map predicted beta diver-

sity. To delineate the biogeographical regions, we used fuzzy cluster analysis. Finally, we

also identified a set of indicator species which characterized the species assemblages in

each identified biogeographical region. The predicted beta diversity map revealed two pat-

terns: an inshore-offshore gradient and a south-north latitudinal gradient. Three bio-

geographical regions were identified and 14 indicator species. These results constitute a

first contribution of the bioregionalisation of the Tunisian waters and highlight the issues

associated with current fisheries management zones and conservation strategies. Results

could be useful to follow an Ecosystem Based Management approach by proposing an

objective spatial partitioning of the Tunisian waters. This partitioning could be used to priori-

tize the adjustment of the actual fisheries management entities, identify current data gaps,

inform future scientific surveys and improve current MPA network.
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Introduction
Human well-being is intrinsically linked to biodiversity (e.g. [1]), a well-recognized fact driving
the increasing interest in the effective preservation of ecosystems. One of the fundamental par-
adigms underpinning these conservation efforts is ecosystem-based management (EBM) [2],
an approach which considers the whole ecosystem (including humans), instead of managing a
single species or threat in isolation. Implementing EBM requires significant spatial informa-
tion, such as distribution information on species, assemblages or communities [3,4,5]. To
determine spatial variations at a local scale, many current management programs use an alpha
diversity modeling approach. Alpha diversity can be measured by either using species richness
values or diversity indices (e.g., the Shannon-Weiner index or the Simpson index). Gamma
diversity is often used at regional scales and quantifies total species diversity across a group of
local scale habitats or sites [6]. However, the foundations underlying marine species diversity
distribution are more complex than the local or the regional diversity. Indeed, the diversity of a
region is determined more by differences in biological composition between locations (i.e. beta
diversity) than by site-level diversity [7]). Hence, it is more challenging to base conservation
assessments using beta diversity than either alpha or gamma diversity.

The concept of beta diversity was first introduced by Whittaker (1962, 1970) [8–9] to define
the extent of differentiation that existed in communities along a habitat gradient. In other
words, beta diversity explains the variations in species composition that can occur among indi-
vidual sites within the same geographic area. Whittaker (1970) also proposed that beta diversity
could be measured as the ratio between gamma and alpha diversity. Since this first work, many
alternative approaches to measuring beta diversity have been suggested, including the Jaccard
or Sørensen dissimilarity indices, which measure dissimilarity in species assemblages [10], the
slope of a linearized species-accumulation curve [11], and the parameter of a power function
[12]. To date, no consensus has been reached regarding the reliability of the different methods;
Koleff et al. (2003) [10] showed that each approach leads to a different assessment of beta
diversity. The most popular approach is to use a dissimilarity index [13–14]. Ultimately,
whichever method is selected, it is certain that quantifying the spatial turnover of species (i.e.,
beta diversity) is critical for effectively delineating biotic regions and conservation planning
[14–15].

Measuring beta diversity requires accurate and spatially-explicit species data. However,
acquiring such data at the necessary spatial resolution can be costly and laborious. Moreover,
data are mostly in coastal areas, in shallow part of the water column and this induces an impor-
tant bias with low trophic level species that are generally non-exploited [16]. Thus, many eco-
systems are only patchily surveyed. To overcome this issue, remotely mapped information can
be used (e.g., habitat type, abiotic variables) to predict diversity as a function of environmental
variables. This can be achieved using species distribution models or habitat suitability models
allowing for extensive data extrapolation [17]. Generating predictions of beta diversity within
unsurveyed areas across a region of interest is allowed by the generalized dissimilarity models
(GDM). First proposed by Ferrier et al. (2007) [7], GDM depend on a statistical technique to
analyze and predict spatial patterns of beta diversity that relates biological distance to distance
in environmental space. This approach is an extension of matrix regression and is specifically
designed to accommodate the nonlinearity commonly encountered in large-scale ecological
datasets [7]. These models can be used to meet various conservation planning requirements,
including bioregionalization, survey gap analyses and climate change impact assessments [7].

Although the evidence suggests that it is more challenging to base conservation assessments
using beta diversity, relatively little attention has been given to the application of marine beta
diversity values. Moreover, the use of GDMs to address the issues associated with patchy data
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have also been largely overlooked (e.g., [18–19]). In this study, we used GDM to analyze and
predict spatial patterns of beta diversity for commercially-exploited demersal assemblages
along the Tunisian coast. During the last decade, commercially-exploited demersal species rep-
resents nearly 48% of the total landings and contributes 68% of the fisheries products economic
values in Tunisia [20]. Situated at the junction of the eastern and western Mediterranean
basins, Tunisia’s marine ecosystems are particularly interesting. They are considered a biodi-
versity hotspot (support> 50%Mediterranean fish species; [21–22]), and exhibit diverse biotic
and abiotic characteristics. The Tunisian exclusive economic zone (EEZ) is also considered to
be one of the most anthropogenically-impacted areas in the Mediterranean Sea [23]. Specifi-
cally, we set out to (i) identify and delineate the biogeographical transition zones within the
Tunisian EEZ by assessing beta diversity patterns and (ii) identify a set of indicator species for
each biogeographical region that can be used to evaluate possible interdependencies between
the broader species assemblages and current environmental conditions.

Materials and Methods

Study Site
Tunisia is located in the southern Mediterranean Sea and lies in the transition zone between
the eastern and western basins (Fig 1). Tunisia’s 1670 km coastline features a variety of demer-
sal habitats: to the north, the seafloor is a mixture of rock and soft sediments; the continental
shelf is narrow, the slope is steep and the biodiversity is high [24]. In contrast, the eastern
coastline features an extended shelf and a less rocky seafloor; however, the biodiversity level is
relatively similar to the northern region [24]. The Gulf of Gabes in southern Tunisia, which fea-
tures the second widest continental shelf region in the Mediterranean Sea, is of particular eco-
nomic and ecological interest. Its highly productive ecosystem supports significant fisheries
activities [25] and the ecologically-important Posidonia seagrass meadows. A 2005 review of
Tunisia’s marine biodiversity (including all taxons except plankton and mammals) revealed
that the northern region supports 867 species, the eastern region 292 species, and the southern
region 667 species [26]. In this study, we will focus on the entire EEZ, which encompasses an
area of 101,809 km2 (Fig 1).

Species data
Since 1998, the National Institute of Marine Sciences and Technologies (INSTM) has regularly
monitored Tunisian marine biodiversity and made their data (presence/absence data) freely
available through the Ocean Biogeographic Information System (OBIS; http://www.iobis.org/).
We collated data on 174 species from OBIS (accessed on December 2014; 133 fishes, 18 cepha-
lopods, 22 decapods and one stomatopod; S1 Table). For each species, we obtained trawl data,
completed between 1998 and 2005, with central point georeferenced positions and the associ-
ated presence/absence information.

The INSTM dataset we used belongs to a standardized and validated database (see Hattab
et al. (2013) [27]) for more details about the survey data protocol) that have been already used
in previous studies (e.g. [27,28,29]). We proceeded to a data quality check by validating species
names and searching for synonymy based on WoRMS database (WoRMS Editorial Board 2013
[30]).

To ensure the data represent the full annual turnover of species per year, we checked the
monthly frequency of the samplings (S1 Fig).
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Environmental data
We selected nine variables to predict beta diversity that have previously been shown to strongly
influence species distribution patterns in coastal environments [31,32] and particularly for
local scale [27]. These included climate variables (sea surface temperature (SST) and sea surface
salinity (SSS)), local-scale habitat variables (bathymetry, bathymetric slope and aspect) and
spatial predictor (distance to shore). For SST (2002–2010; MODIS) and SSS (1955–2006;
NOAA’s World Ocean Atlas), we used monthly climatology data to derive annual mean values.
We also identified the annual range for each 12 month period using the maximum and mini-
mummonthly values, a metric that can be used to represent seasonality. We utilize the full
temporal extent of the climate datasets in making these climatologies to better reflect regional
disparities.

Fig 1. Geographical location of the study area andmain geographical features of the Tunisian
exclusive economic zone (EEZ). The axes indicate degrees latitude and longitude.

doi:10.1371/journal.pone.0131728.g001
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As this study deals with demersal species, we tested if surface parameters show the same
spatial distribution and temporal variation than seafloor parameters derived fromMEDAR/
MEDATLAS datasets (S2 Fig).

To derive the habitat and spatial predictor variables, we used publicly available raster data
that we sourced fromMARSPEC’s SRTM30_PLUS high resolution bathymetry dataset (www.
marspec.org). To accurately describe aspect, we used two variables, the eastness and the north-
ness of the slope [33]. Aspect represents the azimuthal direction of the steepest slope and was
transformed into two derived variables: Eastness (values close to 1 represent an eastward
aspect, while values close to –1 represent a westward aspect) and Northness (values close to 1
represent a northward aspect, while values close to –1 represent a southward aspect).

Overall, the nine predictor variables used to predict beta diversity are mean annual SST,
annual range in SST, mean annual SSS, annual range in SSS, bathymetry, bathymetric slope,
aspect (eastness), aspect (northness) and distance to shore.

The Generalized Dissimilarity Modeling Approach
The GDM approach uses recorded species data from a range of locations across the study site
to fit a model that predicts the compositional dissimilarity between pairs of locations as a non-
linear multivariate function of the environmental attributes of these locations [7]. It is a refor-
mulation of the Mantel approach into a generalized linear model in which a single response
matrix can be modeled as a function of distance matrices of a number of explanatory variables
[7]. By using a GDM approach, we can overcome two major problems: non-linearity in com-
munity dissimilarity between sites and ecological distance and uneven rates of species turnover
along environmental gradients [34]. A key strength of GDM is that it uses flexible splines (con-
strained to be positively monotonic [34]) instead of parametric transformations of the
variables.

We developed our GDM using a downloadable toolkit package (‘Gdm01’) for R software.
This package provides a matrix-regression tool that models compositional dissimilarity as a
function of environmental dissimilarity and geographic distance. We selected the three I-spline
basis function option [7,34] and accounted for spatial autocorrelation by including the geo-
graphic distance between pairs of sites as a predictor variable. To evaluate the impact of each
environmental variable, we ran multiple GDMs and removed one predictor at a time. We then
compared the variance of the full GDM to each of the partial models to evaluate the importance
of environmental variables on the change of communities.

Measuring beta diversity
Beta diversity has two components: species turnover and nestedness of assemblages. The first
component measures the rate with which one set of species replaces another set from site to
site. Nestedness quantifies differences in species richness between sites [35]. Several recent
papers [13,36,37] have demonstrated the importance of considering only species turnover,
while measuring the level of differentiation between species assemblages. Therefore, we do not
consider nestedness. Indeed, if we had of taken this component into account, the Jaccard dis-
similarity index used here would have underestimated the influence of turnover on total dis-
similarity while overestimating the influence of richness differences on total dissimilarity.
Thus, we quantified compositional beta diversity for all pairwise grid cell combinations using
the turnover component of the Jaccard’s dissimilarity index (βjtu; [37]). This is expressed as:

bjtu ¼
2minðB;CÞ

Aþ 2minðB;CÞ
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where for each pair of grid cells, A is the number of species that exist at both sites i and j, B is
the number of species found in cell i but not in cell j and C is the number of species found in
cell j but not in cell i.

Ordination and clustering
To identify the biogeographical transition zones, we performed a nonmetric multidimensional
scaling (NMDS) neighbor-joining algorithm to plot the observed and predicted beta diversity
distance matrix along reduced axes [13,38].

The observed βjtu dissimilarity matrix has a dimension of 692 x 692 since the observed data
belong to 692 sites. The predicted βjtu dissimilarity matrix has a dimension of 16796 x 16796.
This matrix is generated using environmental data derived form rasters containing 16796
pixels.

To reach a stable solution and avoid the local minima, we performed a two-dimensional
NMDS with 100 random starts. Stress values (i.e., the sum of the squared differences between
the fitted and original distances) were used to assess how well the configuration of the points in
the reduced ordination space matched the original distance matrix [39]. These values ranged
from 0 to 1, with lower values indicating a better fit [39]. The ordination results were then plot-
ted and mapped by assigning a color to each grid cell according to its position in the ordination
space [13].

The ability to classify communities is a central requirement to distinguish, name and syn-
thesize them [13]. Community patterns can be determined using NMDS results, though transi-
tion zones between communities may be gradual, occurring in response to environmental
gradients. Consequently, it is not uncommon for this approach to produce areas of ambiguity
that display properties of more than one community. Hierarchical cluster analysis, an approach
frequently used to classify regional faunas [13], produces singletons. This approach assumes
that one internally homogenous community exists at each point of space, with all communities
excluded to the same degree [40] and any ambiguity in classification viewed as an error. Fuzzy
C means (FCM) is an alternative approach that actively recognizes the “fuzzy” properties of
communities [41] to identify fuzzy clusters instead of discrete clusters [42]. The FCM is a form
of the K means analysis, meaning it requires the number of groups to be predefined [43]. Here,
we chose to fix this number to three, reflecting the current number of fisheries management
zones in place thereby facilitating comparisons. A fuzziness parameter (m) of 2 was used, based
on the optimal range of 1.5 to 3.0 [42]. Fuzzy clustering results were displayed as maps that dis-
played the degree of membership to each group. The final color of each fuzzy community [43]
was determined using the primary color levels taken from the centroid of its corresponding
cluster on the NMDS axes.

The modeling framework with all the data processing steps is illustrated in Fig 2.

Indicator species
We used the Dufrêne–Legendre indicator species analysis to identify indicators for each of the
three biogeographical regions defined in this study [44]. Using this analysis, we calculated an
indicator value (IndValg) for each species considered. The IndValg is a modified version of the
original Dufrêne–Legendre’s indicator value (IndVal), which allows the user to better control
the effect of unequal site group sizes [45]. The IndValg metric is defined as the product of speci-
ficity and fidelity, where specificity is the probability that the surveyed site belongs to the target
site group (on the basis that a target species has been found) and fidelity is the probability of
finding the target species in sites belonging to the site group [45]. Indicator species were
selected as those that had a significant IndValg that was greater than 0.6 (p< 0.001; significance
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was assessed by running a 9999 permutation test). This value was selected to ensure a reason-
able number of species were selected for each region.

Results
Our dataset included information on a total of 692 sites and 174 species from 77 families. The
most represented families in this dataset were Sparidae (21 species), Rajidae (9 species) and
Gadidae (6 species). On average, species were prevalent at 30% of sites. The most prevalent spe-
cies occurred at 58% of the studied sites, while the least prevalent species only occurred at only
1% of the studied sites

Generalized Dissimilarity Modeling
The GDM explained 63% of the variation in community composition. Following a comparison
of the different GDM results, it was clear that aspect along the east-west axis was the most
important explanatory variable for changes in demersal species composition (Table 1). This
was followed by mean annual SSS and bathymetry (Table 1). Conversely, the annual SSS range
and aspect along the north-south axis had no influence on community composition.

Fig 2. Modeling framework adopted in the present study.

doi:10.1371/journal.pone.0131728.g002
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Spatial patterns of predicted beta diversity
The NMDS ordinations led to satisfactory projections of both the observed and predicted βjtu
dissimilarity matrices (with the dimensions 692 x 692 and 16796 x 16796, respectively) into a
two-dimensional space. This was indicated by the relatively low stress values we obtained (0.19
and 0.20, respectively). The projection of the predicted βjtu onto the NMDS axis showed a Gutt-
mann effect, which means that the ordination axes are linked by a non-linear relationship and
they describe a single ecological phenomenon [46]. The spatial beta diversity patterns were
visualized using color maps, with similarly colored grid cells predicted to have similar species
assemblages. Conversely, cells mapped in very different colors are predicted to have highly dis-
similar species assemblages. The observed and GDM predicted beta diversity maps (Fig 3A and
3B) show similar spatial patterns: both exhibit an inshore-offshore gradient and a latitudinal
gradient (from south to north).

The GDMmap shows a distinct difference in species assemblages between coastal and off-
shore areas. For example, the shallow Gulf of Gabes supports coastal assemblages that differ
from those found in the deeper regions. A south to north gradient is also distinguishable, e.g.,
the deeper waters found in the far northern region exhibited the highly distinct deep-sea
assemblages. These were also encountered off the eastern Tunisian coast and in a small patch
off the Gulf of Gabes where the continental slope begins. The coastal areas of northern and
eastern Tunisia appear to have a similar species composition. It appears that the transition
between the Gulf of Gabes and the eastern coastal areas is relatively soft (Fig 3C). On the con-
trary, the transition between the eastern and northern coastal areas and the offshore areas is
marked. The latter exhibits a steep slope, reflecting an important change in species composi-
tion. Overall, the slope map revealed a high beta diversity gradient in the Tunisian EEZ.

The three fuzzy biogeographical regions identified using the FCM were each assigned a
membership value (Fig 4): (1) southern coastal region (corresponding to the Gulf of Gabes;
GG), (2) the eastern and northern coastal areas (ENCA), and (3) the offshore areas (OA). This
last region extends further seawards in the north, beyond the continental shelf.

We also generated radial plots to characterize the modeled regions by multiplying the fuzzy
membership of each region by the value of each variable.

As this study was predictive, we intentionally omitted any exploration of the factors that
may be driving beta diversity. We only relied on the description of the radial plots characteriz-
ing each region.

Table 1. Contributions of the variables for the GDM.

Variable Dev variable i-Dev %

Aspect (eastness) 124 17.7

Mean annual SSS 81 11.9

Bathymetry 36 5.1

Bathymetric slope 33 4.7

Distance to shore 20 2.9

Annual range in SST 15 2.2

Mean annual SST 13 1.9

Aspect (northness) 4 0.5

Annual range in SSS 0 0.1

Change in the deviance when the variable was removed from the model is shown, as well as the

percentage contribution to the model (sea surface salinity (SSS), sea surface temperature (SST)).

doi:10.1371/journal.pone.0131728.t001
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Indicator species
In total, 14 of the 174 species analyzed had an IndValg greater than 0.6 (Table 2; from the total
174 species analyzed) and are thus considered to be indicator species.

Discussion
It is widely acknowledged that determining beta diversity patterns is a key component for con-
servation planning and biodiversity management [8,47]. To date, although some Mediterra-
nean basin-scale studies have been completed (e.g., [48]), no efforts have been made to identify
the large-scale biodiversity patterns (especially beta diversity) along the Tunisian coast. Indeed,
according to the Marine Ecoregions of the World (MEOW) system proposed by Spalding et al.
(2007) [4], the Mediterranean Sea province is part of the temperate North Atlantic realm and
is itself made up of seven ecoregions among which the Tunisian Plateau/Gulf of Sidra. Accord-
ing to the MEOW system, Tunisian EEZ belongs to a unique ecoregion. This system is based
on a synthesis of existing biogeographical boundaries and expert knowledge at a global scale.

According to Hattab et al. (2015) [49], based on phylogenetic and compositional beta diver-
sity, Tunisian waters belongs to two biogeographical regions, the southern inshore and the
southern offshore Mediterranean. This work, carried at the regional Mediterranean scale, used
data that were originally sourced from the Atlas of Fishes of the Northern Atlantic and Medi-
terranean [50] and further refined using the known bathymetric tolerances of species [48].

Neither Spalding et al. (2007) [4] nor Hattab et al. (2015) [49] take into account local char-
acteristics and are consequently irrelevant to base conservation assessments in the Tunisian
EEZ.

Fig 3. Observed (a) and GDM predicted (b) spatial patterns of beta diversity for demersal exploited marine species assemblages along the
Tunisian coasts and the slope of the predicted beta diversity (c).Grid cells mapped in a similar color are predicted to have similar species assemblages,
while cells mapped in a very different color are predicted to be highly dissimilar in composition.

doi:10.1371/journal.pone.0131728.g003
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As Tunisian authorities are recently committed to adopting an Ecosystem Based Manage-
ment approach in order to achieve the sustainability of marine ecosystems, there is a need to
rest on ecological relevant geographical framework.

Biogeographical regions delineation
In this study, we showed that for any site within the Tunisian EEZ, the demersal community
may exhibit the characteristics of multiple different communities. Further, the degree to which

Fig 4. Biogeographical regions resulting from a Fuzzy Cmeans cluster analysis and radial plots of the environmental variables.Radial plots result
from the multiplication of the fuzzy membership of each region by the value of each variable (GG: Gulf of Gabes, ENCA: Eastern and Northern Coastal Areas,
OA: Offshore Areas).

doi:10.1371/journal.pone.0131728.g004

Table 2. Indicator species identified for each biogeographical region on the basis of their indicator values (IndValg).

Biogeographical region Indicator species IndValg p value

Gulf of Gabes (GG) Penaeus kerathurus 0.752 0.001

Sepia officinalis 0.697 0.001

Boops boops 0.61 0.001

Eastern and Northern Coastal Areas (ENCA) Octopus vulgaris 0.694 0.002

Mullus surmuletus 0.648 0.005

Loligo vulgaris 0.644 0.003

Mullus barbatus 0.638 0.001

Offshore Areas (OA) Parapenaeus longirostris 0.733 0.001

Lepidopus caudatus 0.713 0.001

Helicolenus dactylopterus 0.692 0.001

Capros aper 0.683 0.001

Merluccius merluccius 0.667 0.001

Nephrops norvegicus 0.635 0.001

Phycis blennoides 0.6 0.001

doi:10.1371/journal.pone.0131728.t002
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that community belongs to a single community archetype can be quantified on a continuous
scale.

The three fuzzy communities delineated in this study reflect the magnitude of dissimilarity
in the composition of demersal communities across the Tunisian EEZ. The species assemblages
present in the GG biogeographical region are typically characterized by coastal species that
favor soft bottom habitats. This region supports the unique Gulf of Gabes ecosystem, which is
characterized by the second widest shelf region in the Mediterranean Sea, exclusively soft sedi-
ment seafloor habitats (sandy and sandy-muddy) and well-developed Posidonia seagrass mead-
ows [24]. The oceanographic conditions of this ecosystem are also unusual, including high
tidal activity with up to 2 m tides. Water circulation is cyclonic and localized. Moreover, due to
the shallowness of the region, it is highly sensitive to the effects of differential heat [51]. The
radial plot indicates that this region is characterized by high SSS (mean annual SSS = 37.46
psu) and SST (mean annual SST = 20.77°C) relative to the other two regions (Fig 4A). Collec-
tively, this unique set of oceanographic and geomorphological characteristics shapes a notable
assemblage of species. We identified Penaeus kerathurus, Sepia officinalis and Boops boops to
be the indicator species. This finding is consistent with the fact that these are the three most
exploited species in the Gulf of Gabes fisheries [20] and that they prefer soft bottom habitats of
less than 100 m [52].

The second biogeographical region, ENCA, experiences oceanographic conditions influ-
enced by a stream of the Atlantic Current [51] and is characterized by patchy, diverse seafloor
habitats [24]. This region is relatively deep (average depth = 225 m), but experiences lower SSS
and SST (mean annual SSS = 37.35 psu and mean annual SST = 20°C) than the GG region (Fig
4B). We identified Octopus vulgaris andMullus surmuletus as indicator species of this region.
Both species are known to prefer moderate depths and occur in both soft and rocky bottoms
[52].

The third biogeographical region, OA, is characterized by very different depth (average
depth = 632 m) and exposure conditions as compared to the other two regions (Fig 4C). In
addition, its water properties and currents are also very different. This area is flowed by the
main stream of the Atlantic Current characterized by cold water with low salinity [53]. Unsur-
prisingly, the area hosts a very dissimilar assemblage of species. The indicator species we identi-
fied for the region include Helicolenus dactylopterus and Lepidopus caudatus. Both species are
typically considered deep-water species that are known to occur at depths of 600m and 620m,
respectively [52].

Our results are not consistent with Hattab et al. (2015) [49] where Tunisian waters appear
to belong to two ecoregions, the southern inshore Mediterranean including the very shallow
part of the Gulf of Gabes and the southern offshore Mediterranean including all the remaining
EEZ. A biogeographical region including the shallow part of the Gulf of Gabes would have
appeared if we hadn't constrained the ordination to three regions to match the number of fish-
eries management entities. Moreover, as beta diversity depends on the spatial scale, it is
unlikely that the three biogegraphical regions delineated at a small scale match with those
delineated at a regional scale [54].

This work indicates that both oceanographic and environmental gradients play a role in
shaping community composition. However, it is important to highlight that the beta diversity
patterns shown here are not only explained by these variables but can also be influenced by a
range of other factors that we have not actively considered in this study, such as species interac-
tions [48], bio-physical indicators (e.g. Ekman pumping, nutrient concentration, euphotic
depth, stratification) [55] and mesoscale ocean features (e.g. eddy kinetic energy, finite-size
Lyapunov exponents, surface frontal gradients) [56]. Moreover, due to the general lack of
information available about Tunisian seafloor habitat, we were unable to include habitat type
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as an explanatory variable. In the future, it is imperative that we focus our efforts on addressing
these data limitations to ensure that we can deliver more reliable estimates of beta diversity
patterns.

Implications for conservation and fisheries management
Ecosystem Based Management approach requires a geographical framework for marine zoning
[57] and fisheries management [58]. This highlights the need of an objective spatial partition-
ing of the areas of interest.

Hence, the ability to spatially categorize biodiversity is critical for fisheries managers operat-
ing at all scales. In Tunisia, the current fisheries management approach divides national waters
into three zones (Fig 1), each of which corresponds to a different administrative entity. These
zones are also used by the General Fisheries Commission for the Mediterranean for stock
assessment purposes as well as by the INSTM to direct scientific surveys. This zoning regime
was adopted in 1994, immediately after Tunisia’s fisheries legislation was amended. These laws
were changed to ensure aquatic living resources were sustainably exploited while still preserv-
ing the ecosystem. However, the current zoning regime is based on practical and political con-
siderations and is not ecologically relevant. Thus, it is imperative that Tunisia prioritizes the
adjustment of these boundaries so that they better reflect the natural ecological boundaries
[59,60]. The biogeographical regions identified in this study present one such zoning alterna-
tive that could be pursued to achieve this objective.

Further, the beta diversity patterns identified in this study could be used to gauge overall
meta-community stability, allowing fisheries managers to better understand the spatial impacts
of exploitation and identify recovery opportunities. Indeed, Shackell et al. (2012) [61] demon-
strated that a low beta diversity scenario can be advantageous when a system is exploited
because locally depleted populations are more likely to be "rescued" by neighboring areas. The
high levels of beta diversity observed in this study reflect the high variability which character-
izes the current Tunisian commercial fishery. This fishery is best defined as a composite fish-
ery, made up of numerous small- to medium-size boats that focus on the coastal region, and a
semi-industrial fleet that targets offshore regions. These fishers target multiple species and use
multiple gear types. This variability across the fishery makes it difficult to effectively manage
[62,63].

The results of this study are also relevant for identifying current data gaps and have the
potential to inform future marine surveys undertaken by INSTM. Current surveys neglect two
areas in particular: the 0–20 m depth contour off the Kerkenah Islands and the upper EEZ
limit, which corresponds to the deepest areas of the continental shelf and the beginning of the
continental slope. From our results, we know that the Kerkenah Island region lies within the
transition zone between the ENCA and GG biogeographical regions. Thus, it is important that
we gather further information about this area as it is likely to be rich in transitional communi-
ties of particular ecological interest. The importance of the second area lies in the growing pres-
sures exerted by commercial trawlers as they move to progressively deeper waters as coastal
stocks decrease. It is critical that we have the necessary scientific information available to ade-
quately assess these fragile low resilient deep-sea stocks [64]. In contrast, the beta diversity
maps could be used to indicate regions that require less sampling effort, thereby improving
sampling efficiency. For example, sampling efforts could be reduced in areas identified as hav-
ing low beta diversity but increased in areas of high beta diversity where there was a greater
likelihood of finding rare species and/or rich transitional communities that support key eco-
logical functions [19].
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The beta diversity maps could also have direct application for conservation planning. For
example, they could be used to assess the efficiency of the current marine protected area
(MPA) network and to inform future improvements (i.e., identify high beta diversity areas that
can be prioritized for inclusion). This is highly relevant for Tunisia where existing MPAs were
developed using the classical alpha diversity indices and are further curtailed by factors such as
avoidance of military zones. Unfortunately, these factors have resulted in poorly-located
MPAs. For example, although the La Galite and the Zembra archipelago MPAs (Fig 1) may
contain important biodiversity, it is clear that their zoning is sub-optimal. Further, as they both
occur within a single biogeographical location (i.e., ENCA), they are failing to achieve the bio-
geographical representation goals widely promoted as best MPA practice (20%–50% coverage
by the MPA network) [3]. Thus, it is clear that there is significant opportunity to improve
Tunisia’s current MPA network.

Furthermore, it would be relevant to project spatial patterns of beta diversity based on future
scenarios of SST and SSS. Since conservation planning requires considering both actual and
future patterns, such projections would be relevant to explore.

In conclusion, this study offers the first contribution towards developing a bioregionalisa-
tion of Tunisian waters. It provides a basis for future assessments of conservation measures
and improvements to fisheries management and conservation planning measures. We recom-
mend that future efforts should focus on exploring the role that environmental variables take
in shaping contemporary patterns of beta diversity and the predicted patterns of functional
and phylogenetic beta diversities.
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