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The predictive accuracy of complex fisheries models developed to anticipate the effects of changing fishery regulations appears to
depend on a solid understanding of the processes and feedback systems linking biological and physical information to resource
user. Many fisher decisions are modelled in the human component of the models, including inertia, or location choice flexibility.
We unpack a whole of ecosystem system model and explore how location choice flexibility in fleet behaviour (sticking to the
same seasonal and spatial distribution of fishing) affects outcomes such as catches and income levels and variability. Our analysis
shows that the interpretation is not straightforward, and the relationship between behavioural flexibility and income level and
income variability has to be considered in the context of three main fleet characteristics: profitability; how diversified the fleet is;
and growing or declining target species biomass. We contend that making behavioural flexibility sensitive to the health of the
stock and fleet profitability could potentially improve accuracy of large whole of ecosystem models such as Atlantis.
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Introduction
It is now well accepted by most fishery scientists and managers that
effective and efficient management policies depend on not only a
good understanding of marine biology but also knowledge of
decision-making and fisher behaviour (Hilborn, 1985; Fulton
et al., 2011a). Understanding feedback processes between human
and biological systems is particularly important in the context of
ecosystem-based management, as this entails an increasing focus
on adaptive, rather than prescriptive, approaches (Pascoe et al.,
2008; Symes and Hoefnagel, 2010; Tallis et al., 2010).

Over the past three decades, fishery models have been devel-
oped for many regions in the world to help policy-makers in
their endeavours to manage fisheries sustainably (Fulton, 2010).
The form and application of fishery models has evolved from
largely single species to an increasing number of ecosystem
models (Watt, 1975; Halfon, 1979; Sainsbury et al., 2000;
Plagányi et al., 2011). The focus of the models has also broadened
from tools for assessing fish abundance to include models that
allow testing of hypothetical management scenarios, or
Management Strategy Evaluation (MSE) (Smith, 1994). This
allows the prediction of management change outcomes prior to
implementation, and can minimize and potentially avoid unin-
tended consequences of change (Fulton et al., 2011a).

A key part of the expansion of the MSE approach to ecosystem-
level questions has been the evolution of operating models, which
has seen a broader set of potential processes considered; with
regard to both the biological and physical components of
marine systems, but also to the human elements that describe
resource user behaviour and interactions. The models in the
human domain largely rely on traditional and established theory
and modelling techniques mostly drawn from economics (van
Putten et al., 2011). Even though empirical research suggests that
fisher behaviour is frequently best explained by variables related
to profit (Eales and Wilen, 1986; Larson et al., 1999; Armstrong
and Sumaila, 2001; Cabrera and Defeo, 2001; Dorn, 2001;
Bjørndal and Lindroos, 2004), it is also well known that many
non-economic and non-observable fisher characteristics, such as
attitudes (van Putten et al., 2011, and references therein), knowledge
and beliefs (Kennedy, 1987; Abernethy et al., 2007; Del Valle et al.,
2008), and risk perception (Mistiaen and Strand, 2000; Eggert and
Tveteras, 2004; Haynie et al., 2009), can also contribute to explain
observed behaviour (Strand, 2004).

Over the past 20 years, there have been many papers published
that voice concern over the disregard and essential failure to
incorporate social and psychological knowledge into integrated
models (Fulton et al., 2011a). Currently, even though social

# 2012 International Council for the Exploration of the Sea. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

ICES Journal of

Marine Science
ICES Journal of Marine Science (2013), 70(1), 150–163. doi:10.1093/icesjms/fss175

 at Ifrem
er, B

ibliothÃ
¨queL

a PÃ
©

rouse on A
ugust 26, 2015

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

mailto:ingrid.vanputten@csiro.au
mailto:ingrid.vanputten@csiro.au
mailto:ingrid.vanputten@csiro.au
http://icesjms.oxfordjournals.org/


sciences have added important theoretical bases for studying fisher
decision-making and provided additional insights into their
behaviour (Hatcher et al., 2000; Cinner et al., 2009), quantitative
fishery models often do not fully incorporate these important
decision variables (Koeller, 2008; Symes and Hoefnagel, 2010),
or only do so implicitly, using default parameters without consid-
ering alternative functional relationships (Plagányi, 2006). Using
all available information sources to model and understand how
fishers may change their behaviour in the context of a dynamic
and adaptive management scenario may significantly improve
model predictions (Hicks and Schnier, 2006; Valcic, 2009).
Assessing the extent to which common representations of individ-
ual behaviour in simulation models capture these processes
adequately, and suggesting new approaches where they do not, is
also important to improve the predictive capacity of decision
support tools.

Inertia is one such variable commonly incorporated into fleet
dynamics models (Bockstael and Opaluch, 1983; Holland and
Sutinen, 2000). Inertia is interpreted as the resistance to moving
between fishing areas, with low inertia representing a more
mobile fleet (Fahrig, 1993). In this study, we examine the way in
which location choice decisions are modelled (Fulton et al., 2007)
at the fleet level and consider the impact of inertia on catch and
income levels and variability. We refer to inertia as the relative re-
sponsiveness of fishing operations to new information when decid-
ing on the location of their fishing activities. We contrast cases in
which historical information [e.g. information on new spatial dis-
tribution of catch per unit effort (CPUE)] is weighed heavily and
the fleet is slower to respond to changing circumstances with
cases in which recent information is weighted more heavily in loca-
tion decisions. Slow responses, resulting from a greater relative
weight granted to historical information, are interpreted as being
less flexible. This flexibility is then reflected in day-to-day location
choice. Flexible fishers are more likely to select locations identified
as productive in the new information, while those who more heavily
weight historical information will persistently return to the same
locations (and so display higher spatial inertia).

In our study, we link the concepts of inertia, responsiveness to
information, and location choice flexibility, but acknowledge that
a wide range of interpretations have been given to ‘inertia pat-
terns’, including technological constraints related to change,
skill, social capital, the difficulty in venturing into unchartered ter-
ritories, and information asymmetries due in part to social net-
works (Holland and Sutinen, 1999). Inertia can also be partly
explained by the behavioural implications of different aspects of
risk perception. Risk has been defined in a number of ways, but
generally involves the probability or likely occurrence of an uncer-
tain outcome or adverse event (Sjöberg, 2000; Sjöberg et al., 2004).
Psychological determinants of behaviour in the face of risks have
been shown to play an important role in explaining what people
do when they are uncertain about the outcomes of their decisions
(Kahneman and Tversky, 1979; Hogarth and Reder, 1987;
Kahneman et al., 1991).

We use the application of the Atlantis modelling platform for
the Australian Southern and Eastern Scalefish and Shark Fishery
(SESSF) as a case study (Figure 1) to investigate the impact of lo-
cation choice and species targeting flexibility assumptions in a
whole of ecosystem model.

Figure 1 shows the area that is the subject of the Atlantis mod-
elling case study as represented by 71 polygonal boxes. The box
boundaries are determined through a combination of physical

and ecological properties and information from the demersal bior-
egionalization by IMCRA (1998), Butler et al. (2001), Lyne and
Hayes (2005), and the CSIRO’s Atlas of Regional Seas dataset.
Within each box, there are up to five layers, depending on the
total depth of the box (Fulton et al., 2007).

Many different species occur in this region—including inverte-
brates (e.g. abalone, rock lobster, prawns, and squid), fin fish, such
as the very long-lived orange roughy (Hoplostethus atlanticus), and
species caught in shallow water (e.g. King George whiting captured
in Port Phillip Bay) and on the open ocean (e.g. broadbill sword-
fish). The commercial SESSF comprises . 20 major commercially
important species and stocks. The fishery has been managed using
a mix of input and output controls, including individual transfer-
able quotas (ITQs), since 1992 (Fulton et al., 2007).

In this study, we use the existing model of the fishery to
examine the influence of alternative assumptions regarding the
inertia in fishing patterns on outcomes of modelled fleet dynamics
with respect to the levels and variability of catch and income in the
fishery. We discuss the implications of the variability of catch and
income in the context of the empirical reality that fisher behaviour
is often explained by their desire to moderate the risk of income
variability (Holland, 2008; van Putten et al., 2011).

As background to this analysis, we first provide an overview
of the literature on fisher behavioural modelling, focusing on the
empirical literature regarding the role of risk perceptions in
fisher behaviour. The Atlantis ecosystem model of the SESSF is
then outlined prior to presenting and discussing the results of
our simulations.

Fisher behaviour modelling and risk
A broad range of drivers have been considered in explaining fisher
behaviour (Holland, 2008). In the modelling literature, rational
choice theory (von Neumann and Morgenstern, 1944; Becker,
1976; Hogarth and Reder, 1987; Raiffa, 1997) has mostly been the
basis on which formal description of the behaviour of individual
fishers has been developed in bioeconomic fishery models.
Rational choice theory outlines that individuals select a preferred
course of action based on an ordering of the alternative options
they face, according to their preferences over the expected outcomes
and consequences of these alternative options. In the economic lit-
erature, this is formally captured by a utility function which associ-
ates a number with each choice, such that the ranking of these
numbers reflects the agent’s preferences over the consequences of
the choices (von Neumann and Morgenstern, 1944).

This approach has led to the development of a large literature
on the determinants of decision-making under risk (Friedman
and Savage, 1948; Savage, 1954; Kahneman and Tversky, 1979;
Ramsey, 1990; Raiffa, 1997). A core result of rational choice
theory is that individual choice ranking will usually depend on
the mean or expected value of the potential outcomes associated
with alternative choices, which is a function of the value of these
outcomes if they prevail, moderated by the anticipated variability
in the outcomes (or level of uncertainty as to which of the out-
comes will eventuate), this being subject to the individual’s sub-
jective perceptions of, and attitudes towards, risks.

Standard models of fisher behaviour follow the above theory
and assume some form of profit or utility maximization through
the inclusion of variables such as relative catch rates, CPUE, or
other proxies for the returns associated with different fishing
options (van Putten et al., 2011). There are a number of proxies
for income variability, such as revenue (Holland and Sutinen,
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1999; Mistiaen and Strand, 2000; Pradhan and Leung, 2004) profit,
and wealth (Bockstael and Opaluch, 1983; Dupont, 1993), which
are used as explanatory variables in fisher location choice decision
models. In econometric studies, the sign of the coefficient on
income variability is often interpreted as an indicator of average
risk preference (Holland and Sutinen, 2000).

In empirically based models, many other variables are included
to explain location choice decisions. In a large number of applica-
tions, these variables are not described in detail, but rather
included in an “inertia” variable which more often than not is pre-
sented as a “black box”. Inertia is taken to reflect the variable pro-
pensity of operators to respond to new information, capturing the
empirically observed patterns of “habitual” behaviour which
models of rational agents operating with perfect information do
not predict well. Many different drivers have been considered in
attempting to explain such habitual behaviour, including combi-
nations of deliberate and non-deliberate decision-making.
Although past fisher behaviour is usually the basis on which sub-
sequent behaviour is predicted, in reality past behaviour is not a
causal factor in itself. According to the theory of Azjen (1991;
Azjen, 2001) behaviour depends on beliefs, subjective norms,
and intentions, and it is past experience, in conjunction with a rea-
soned response, which leads to subsequent behaviour.

Inertia (or sticking with the status quo) is a commonly dis-
cussed characteristic of observed behaviour in the context of
risk. The treatment of risk in the expected utility framework of
analysis was previously mentioned. Three behavioural concepts,

developed in the psychology and behavioural economics literature,
are relevant in relation to inertia and risk: loss aversion, risk aver-
sion, and ambiguity aversion. Loss aversion (Kahneman et al.,
1991) is the tendency to prefer avoiding losses to acquiring gains
(Kahneman and Tversky, 1979), making the loss of the status
quo option loom larger than the gain of an alternative option
(Gal, 2006), thus driving inertia. Risk aversion is the tendency to
prefer more certain but possibly lower outcomes to a bargain
with a potentially higher but more uncertain payoff. Sticking
with a known alternative that performs reasonably well thus
appears a good risk-averse decision strategy, thus driving inertia.
Ambiguity aversion describes a preference for known risks over
unknown risks, suggesting retention of the status quo as a pre-
ferred course of action (Hogarth and Kunreuther, 1995; Epstein,
1999), again driving inertia.

All three risk-related explanations of behaviour and the link to
inertia are relevant in a fisheries context. However, in fisheries,
inertia related to ambiguity aversion may emerge due to a
learning-based lock-in effect (Chorus and Dellaert, 2012) as the
qualities of alternatives are only revealed upon usage.

While the above explanations from psychology and behavioural
economics relate to location choice inertia, fishers face a wide
range of other decision problems; for instance, compliance with
fishing regulations, exit from and entry into particular fisheries,
and investment.

Empirically, fisher behaviour is often partially explained by
their desire to moderate the risk of income variability. In a study

Figure 1. Map of research area and the boxes in Atlantis for the Australian Southern and Eastern Scalefish and Shark Fishery.
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of this, Salas and Gaertner (2004) find that fishers are by and large
risk averse. Risk-averse fishers are likely to fish in areas where the
variability in catch and profit is low (Holland and Sutinen, 1999;
Pradhan and Leung, 2004). Risk aversion is also considered as a
factor leading to visiting the same fishing locations if they have
been successfully fished in the past (Strand, 2004; Pascoe and
Mardle, 2005), thus contributing to inertia in fishing effort alloca-
tion. However, the opposite is found by Holland and Sutinen
(1999) who indicate that fishers were more likely to go to areas
with higher variance in response to information received about
high revenue rates.

Empirical research on fisher decision-making and risk has been
carried out using econometric and other social science approaches.
There has been less attention paid to process-based or mechanistic
models, though a few examples exist (Allen and McGlade, 1986;
Holland and Sutinen, 2000; Soulie and Thebaud, 2006).

Allen and McGlade (1986) incorporate empirically determined
risk profiles into a single-species fishery model for the Nova Scotia
Groundfish Fishery. In this model, the “attractiveness” of a loca-
tion depends on expected profit, information exchange between
fishers and fleet, and the response of the skipper to the informa-
tion received. The skipper’s response to the information is a func-
tion of their aversion to uncertainty or ambiguity. According
to the model, so-called stochasts, described as risk takers, are not
explicitly choosing options with higher expected value, but
rather options with higher variance on returns. Stochasts make
their location choice random and thus discover new areas that
lead to switching in the investment of fishing effort. As stochasts
explore areas with previously low catch rates, they thus display a
“willingness to take risks”. Cartesian fishers believe all information
they receive and respond accordingly. Cartesians concentrate their
effort wherever catches were highest in the last period.

Having both fisher types in their model ensures that progress
and adaptation occur smoothly and not only by catastrophic col-
lapse and replacement.

Model description
Allen and McGlade’s (1986) single-species model assumes some
randomness in fisher location choice, which drives the discovery

of new opportunities, soon adopted by fishers with a follower,

low-risk, behaviour. We investigate the effects of behavioural

assumptions related to inertia and behavioural flexibility on the

patterns of catch, effort, income, and income variability in the

Atlantis ecosystem model, using the SESSF as a case study.
The Atlantis modelling framework is a whole of ecosystem

model used to support marine ecosystem-based management,

system understanding, and MSE (Fulton et al., 2007). The bio-

physical component of Atlantis is a deterministic (differential

equation), spatially resolved, three-dimensional spatial model

(Fulton et al., 2005), which spans physical drivers, habitats, and

foodweb-associated interactions and population dynamics

(shown in the top left-hand box in Figure 2; for a detailed

version see Fulton et al., 2011b). In total, Atlantis has six linked

submodels and, as the variables within each submodel are intern-

ally and externally linked, the flow on effects can be assessed for the

other submodels. The focus in this study is on the changes in the

industry submodel as a consequence of different parameter

assumptions in the socio-economic submodel (in this study only

parameters in the socio-economic submodel were varied).
In Atlantis, the fishing fleets each have their own characteristics,

including gear selectivity, habitat association, targeting, effort allo-

cation, and management structures (Fulton et al., 2007, 2011b;

Hutton et al., 2010). A hierarchical effort allocation model and

planning scheme is used for determining the scale and distribution

of fishing effort. Boats of similar size with common home ports,

gear type, target species, and socio-economic characteristics are

referred to as subfleets. Effort allocation (Figure 3) for these

subfleets is stepwise, based on past conditions, current economic

conditions, distance to fishing grounds, and management regula-

tions [i.e. total allowable catch (TAC)].

Figure 2. Schematic representation of the six linked submodels of Atlantis (the arrowhead is one-way interaction and the diamond shape
indicates that feedback exists). (For a detailed version, see Fulton et al., 2011.)
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Figure 3. Description of the assumed decision-making process for the fleets in the SESSF in Atlantis.
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A subfleet’s effort allocation plan is first calculated annually and
updated on a monthly basis. At the finest scale, fleets will allocate
their effort on the basis of their knowledge of CPUE, expected
return per target species, and quota available on a weekly basis.
At the end of 4 weeks (a month), economic statistics are
updated and effort scheduling is updated based on realized vs.
expected catches to date and quota remaining. After 12 months,
at the end of the year, the annual effort plan for the next year is
determined.

More formally, the first step in planning effort includes, calcu-
lating expected return (Re) per month (m) per target species (s).
Expected revenue per unit of effort is calculated by multiplying
the price per species per fleet (i) and subfleet ( j) per month
(Ps,j,m) and the expected catch (He, see below) per unit of effort
(Eh) less the per unit of effort costs by species (gs,i,j,mCe,i,j,m,y−1).

Re,s,i,j,m = Ps,j,m
He,s,i,j,m

Eh,i,j,m
− gs,i,j,mCe,i,j,m,y−1 (1)

The expected revenue per unit of effort per year for the subfleet is
summed over all months of that year and all target species (tot) of
that subfleet [Equation (2)].

Re,tot,i,j,y =
∑m

1

∑s

1

Ps,j,m · He,s,i,j,m

Eh,i,j,m
− gs,i,j,mCE,i,j,m,y−1

( )
(2)

The next step is to calculate expected monthly gross effort alloca-
tion (Ee,i,j,m) over a particular commercial species. The historical
(h) monthly effort data (Eh,i,j,m) are scaled depending on the
expected monthly returns (Re,tot,i,j,m). The expected monthly
returns are proportional to last year’s (y–1) revenue (Rtot,i,j,y-1)
and quota availability [ueffort; Equation (3)].

Ee,i,j,m = Eh,i,j,m · Re,tot,i,j,m

Rtot,i,j,y−1
· ueffort (3)

Quota availability is a scalar used to ensure that the expected
harvest does not exceed quota in hand (Qi,j,y). The expected pro-
portional value for each species relative to the total expected value
in the fishery is used to weight the effort scaling function. The pro-
portional value matches the value of that species in the subfleet’s
take [Equation (4)].

geffort = max 1.0,
∑

s

Qi,j,y

He,s,i,j,y
· Re,s,i,j

Re,tot,i,j

( )
(4)

After monthly gross effort is planned, subfleets update their target
species to match those with the highest expected returns.

Key to the model is the way in which expected harvests are
represented, as a function of past information, and of the way in
which this information is used by fleets to revise their predictions
of future catch opportunities. Flexibility is modelled on the basis
of the knowledge of the fishery system built up at the fleet level.
In the annual effort scheduling, differential fisher knowledge is
captured in the expected harvest per unit effort, which is
updated per trip based on willingness to accept new subfleet-level
information using the simple interpolation of new information
and the existing historical view held by that fisher [e.g. as in

Equation (5) for harvest per unit effort L].

Le,s,i,j,m,y−1 = di,j(Lo,s,i,j,m,y−1 − Lh,s,i,j,m,y−1) + Lh,s,i,j,m,y−1 (5)

where Le is equivalent to He/Eh; Lo was the new observed informa-
tion, and Lh is the historical view. Fishers’ flexibility is defined by a
heuristically tuned flexibility coefficient (d) which dictates how the
fishers weigh their more recent catches and effort over longer term
patterns (Holland, 2008, and references therein). A low flexibility
coefficient indicates a heavier reliance on historical information.
In contrast, those with a high flexibility coefficient have the cap-
acity to be more responsive and display more flexible behaviour
as new information becomes available. This behavioural assump-
tion differs from that in Allen and McGlade (1986) who assume
a single pattern of behavioural response for Cartesian operators,
alongside randomly driven behaviour for the stochasts.

The expected effort schedule in Atlantis is spatially allocated in
proportion to the monthly effort applied by the subfleet to each
spatial box. Boxes in Atlantis are not of a uniform size (see
Figure 1), but based on biophysical properties. In areas where
the properties change rapidly, the boxes are smaller, while in
large relatively homogenous areas (like patches of open ocean)
the boxes are larger. Planned effort in box b by subfleet
(Eplan,i,j,b,m) is:

E plan,i,j,b,m,y = Ee,i,j,m,y
Eh,i,j,b,m

Eh,i,j,m
(6)

With Ee,i,j,m,y the monthly resolved scheduled effort for the sub-
fleet, Eh,i,j,m historical levels of monthly effort, and Eh,i,j,b,m the
level of monthly effort by the subfleet historically seen in box b.

However, fishers’ annual effort scheduling is also affected by the
ability to move to other areas (boxes). Movement may be con-
strained by onshore social and economic issues or technical avail-
ability. For all types, the effort updating is calculated using
Equation (7) [this second inclusion of inertia and historical distri-
butions is because interviews with fishers (see Fulton et al., 2007
for more detail)] indicated that for inflexible fishers, not only
did historical data heavily influence planned trip locations, but,
once at sea, a plan to visit new locations was often impulsively
dropped in favour of returning to a known historical site].

Ei,j,m,current,b = di,j(Ee,i,j,m,b − Eh,i,j,m,b) + Eh,i,j,m,b (7)

where Ee,i,j,m,b is effort per box (b) based on expectations created
using recent experience and conditions; and Eh,i,j,m,b is the
pattern of effort based on historical patterns and memory.

Methods
We used the Atlantis model to run a base case and two scenarios
with different flexibility coefficient (d) values. For our base case,
the flexibility term was parameterized by retrofitting the effort
allocation model to reproduce the shifts in allocation and targeting
as observed during the 1990s; the skill of this parameterization was
assessed by checking predictions vs. effort distributions through
the early 2000s (Fulton et al., 2007). While the fishery is a move-
able feast in terms of the fine details of management, the general
form of effort allocation behaviour has persisted (based on
repeated unpublished interviews with fishers participating in the
fishery).
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 at Ifrem
er, B

ibliothÃ
¨queL

a PÃ
©

rouse on A
ugust 26, 2015

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


For the base case, the coefficient is set individually for each sub-
fleet within a fleet. For instance, the demersal trawl fleet has five
subfleets. These fleets target deep piscivorous and demersal fish,
such as ling (Genypterus blacodes), blue grenadier (Macruronus
novaezelandiae), and gemfish (Rexea solandri), as well as bycatch
species (including deep-water sharks and dogfish, and miscellan-
eous deep-water invertebrates). The flexibility coefficient for the
26 fleets of smaller vessels was set at 0.1. The flexibility coefficient
increased to 0.15 for the six fleets of medium-size vessels, and to
0.2 and 0.225 for the fleets of slightly larger and largest vessels,
respectively. Larger vessels are assumed to be better equipped for
exploratory fishing.

The first scenario, which we labelled the traditional fisher scen-
ario, characterizes the fishery by a low flexibility coefficient of 0.05
as the fleets are assumed to rely mostly on historical information to
make decisions. In the second scenario, the flexibility coefficient
was set at a high value (0.95). We labelled this the flexible fisher
scenario as the fleets were assumed to be mostly responsive to
new information and conditions. We model expected and realized
effort, expected and realized catch, and expected and realized
CPUE, and present differences in outcomes for the base case
and the two scenarios for the whole SESSF. We also detail the out-
comes for five selected fleets in the SESSF fishery (target species
and detailed information for the five fleets are shown in
Appendix 1).

Results
Each fleet annually adjusts their expected catch for each species up
or down, or retains it at the same level, on the basis of catches in the
previous year(s) and assumptions made as regards their flexibility.
On average over the entire period in the base case, realized catches
are 25% higher than expected catches at a whole of SESSF level. In
the flexible fisher scenario, however, expected catch is overesti-
mated by the fleets, indicating that flexible fishers are “overoptimis-
tic”, and that elements of uncertainty and risk may exist at fleet level
in a complex, whole of ecosystem fishery model, even if this model is
based purely on deterministic assumptions.

When considering the whole SESSF, cumulative realized
catches over the 20-year period are 6% lower (�52 000 t) for flex-
ible fishers than for the base case and traditional fishers. Realized
catch and effort and derived CPUE for the base case and the trad-
itional fisher scenario (d ¼ 0.05) and flexible fisher scenario (d ¼
0.95) are shown in Table 1.

There is little difference between the base case and traditional
fisher scenario. However, for flexible fishers, both realized
catches and realized effort are lower, resulting in a higher CPUE.
In a fishery that is only marginally profitable, greater flexibility
in reducing effort pays off. In terms of realized CPUE, flexible
fishers in the SESSF are �30% more efficient (2817 as opposed
to 2165). Given this greater efficiency (based on realized CPUE),
although the cumulative gross value of landings over the 20-year
period is 6% lower for flexible fishers, the total economic rent
increases under this scenario, while it decreases for both the base
case and traditional fisher scenario (see also Figure 4).

Changes in biomass levels of the main commercial fish species
modelled, according to the different scenarios, are shown in
Appendix 2. Targeting behaviour changes over the 20-year
period, as the biomass of some species changes and as new
fishing opportunities arise. The catches of the main species by
all fleets in the SESSF are shown in Figure 5 for the base case.

The largest relative fall in catch in the base case is observed for
blue grenadier and orange roughy, even though the biomass for
both species increases from about year 10 onwards (see
Appendix 2), by which time the fishing fleets are targeting different
species. In contrast, the catch and biomass of flathead and ling
increases over the 20-year period (Appendix 2). Catch changes
in the flexible fisher scenario (not shown in Figure 5) are similar
to those shown above except for greater variability in rock
lobster catch. Flexible fishers switch targets, temporarily moving
from targeting mainly piscivorous fish into high value rock
lobster (despite the costs of the quota leases which such switches
in target species involve), which does not seem to affect rock
lobster biomass significantly (Appendix 2). The biomass of most
species increases over time in all scenarios (although at different
rates). However, prawns and commercial crabs show a decline,
as well as some of the bycatch species such as school shark.

At the scale of the entire SESSF, fishing patterns and species tar-
geting under the traditional and flexible fishing scenarios seem to
conform to expectations. Flexible fishers are able to switch species,
and their capacity to reallocate their effort rapidly allows them to
benefit from opportunities as they arise. Even though cumulative
realized catches are lower for flexible fishers, their realized CPUE

Figure 4. The annual economic rent for the base case and two
scenarios with traditional (d ¼ 0.05) and flexible fishers (d ¼ 0.95)
for the SESSF fishery.

Table 1. Cumulative catch and effort, and CPUE for the SESSF
fishery modelled for the base case, and two scenarios with
traditional (d ¼ 0.05) and flexible fishers (d ¼ 0.95).

Indicators of
efficiency
for the whole SESSF

Base case
(d 5 0.20)

Traditional
fisher

scenario
(d 5 0.05)

Flexible
fisher

scenario
(d 5 0.95)

Cumulative realized
catch (‘000 000 kg
over 20 years)

878 877 826

Cumulative realized
effort (‘000 days
fished over 20 years)

406 405 293

CPUE (kg d21 fished) 2163 2165 2817
Cumulative gross value

(undiscounted
US$‘000 000 over
20 years)

42 720 4284 40 482

Cumulative economic
rent (undiscounted
US$‘000 000 over
20 years)

–227 –217 436
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is significantly higher as they are able to reduce their total effort
more easily, in an only marginally profitable fishery.

A detailed examination of five individual fleets provides
insights into the importance of flexibility assumptions in explain-
ing the performance of these fleets. Details for each fleet are pre-
sented in Appendix 1 and their main characteristics are
summarized in Table 2.

With the catch changes for target species in mind, in particular
the decrease in the target species of the bottom trawl for orange
roughy, and the increase in target species of the bottom trawl and
Danish seine for flathead, we assess the effect of different assump-
tions with respect to fisher responsiveness on catch, effort, and
CPUE of fleets (Table 3). We define “gross value” as the sum of
the total landings per species multiplied by the price per species,
and the “profit” as the gross value minus the total cost of fishing.

In all fleets, flexible fishing is more efficient, with an average
CPUE between 1% (for the bottom trawl for deep demersal fish)
and 69% (for the Danish seine for flathead) higher than average
CPUE for traditional fishers. A similar advantage is observed
with flexible fishing in the bottom trawl for the flathead and
prawn trawl fleet. In the prawn trawl fleet, flexible fishers are
able to benefit from a one-off lobster biomass opportunity,
while traditional fishers cannot benefit from this opportunity to
the same extent. Even though the prawn trawl fleet is profitable
in all three scenarios, flexible fishers realize 5% higher catches
and profit over the 20-year period.

Similarly, flexible fishers in the bottom trawl for flathead fleet
are better able to exploit increasing biomass of flathead. Their cu-
mulative realized catches are higher (59 000 t) than those of trad-
itional fishers (50 000 t). This fleet is only marginally profitable,
however, and flexible fishers also experience negative profits in
the first 15 years of the simulation. Overall, the losses are �10%
lower for flexible fishers than for traditional fishers.

Flathead is also targeted by the seine fleet. In this fleet, flexibility
of the fishers does not pay off in terms of total catches (46 000 t as
opposed to 60 000 t). However, by significantly reducing their effort
(by 53%), flexible behaviour does pay off in terms of profit (US$24
million profit for flexible fishers as opposed to a US$40 million loss
for traditional fishers). A 69% higher CPUE is realized by flexible
fishers compared with traditional fishers in the Danish seine fleet.

In the bottom trawl for deep demersal fish fleet, the difference
in CPUE between flexible and traditional fishing is smallest (3304
and 3271, respectively). This fleet is very diverse in terms of the
number of target species, of which there are 11, with an additional
six potential target species that remain unfished. The ability to
make quicker and greater annual adjustments does not pay off
for flexible fishers in this highly diversified fishery. This is due to
the cost structure of this fleet which is only marginally profitable.
Flexible fishers are able to avoid only 6% less losses than traditional
fishers in this fleet.

The bottom trawl fleet for orange roughy is characterized by a
decline in the catch of its main target species. In this fleet, flexible

Table 2. Characteristics of the five main fleets in the SESSF fishery in terms of relative diversity, biomass target species, and profitability
(averages over the 20-year run for the base case scenario).

Fleet
characteristics

Danish seine
for flathead

Bottom trawl for
deep demersal fish

Bottom trawl
for flathead

Bottom trawl for
orange roughy Prawn trawl

Diversity 66% dependence
on one species

Highly diverse set
of target species

71% dependence
on one species

Diverse set of target
species

Specialized

Catch target
species

� (flathead) � � (flathead) � (orange roughy) Temporary � then �
(rock lobster) �

Profitability Highly unprofitable Marginal Marginal Unprofitable Profitable

Figure 5. Catch of the main species for the SEFFS fishery (20 years – base case).
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fishers switch to other activities, leading to lower catches, but again
achieve a 17% higher CPUE. The higher CPUE pays off in this
declining fishery as losses for flexible fishers are 45% lower than
for traditional fishers. In summary, we find that the payoff for
increased flexibility is dependent on the relative profitability of
the fleet, the diversity of targeting by the fleet, and trends in the
catch of the target species.

While average and total payoffs are usually seen as important
drivers of fleet behaviour, as discussed in the introduction and
background sections of this paper, empirical evidence suggests
that minimizing the variability of returns is an important driver
of fisher behaviour (Holland, 2008; van Putten et al., 2011).
Table 4 lists measures of the variability (standard deviation) in rea-
lized catch and profit for the base case and two scenarios for the
SESSF and the five main fleets.

The variability in catch is greater for flexible fishers compared
with that of traditional fishers for the SESSF fishery as a whole (cu-
mulative total for all fleets) and at an individual fleet level for the
trawl fleets. Given that the behavioural model is based on relative
catch rates as a main driver of effort reallocation, more flexible
fleets will work to reduce the variability in catches due to ecologic-
al and environmental variability, by quickly adjusting relative
effort across different stocks. In contrast, traditionalist fleets
have a more static behavioural filter to the changes in the

ecosystem. The results regarding profits reflect the relative prices
of different species as well as the different cost structures of fleets.

As opposed to the trawl fleet, for the flathead seine fishery,
which is a highly unprofitable fishery, the catch variability for flex-
ible fishers is lower. A two-tailed Student t-test indicates that the
difference in the standard deviation for catch between the base
case and the flexible fishers (p ¼ 0.074) and the traditional and
flexible fishers (p ¼ 0.100) is significant (at the 10% level).

There is greater variability in profit for flexible fishers in all fish-
eries except for the orange roughy trawl fishery, which is character-
ized by a decline. However, the difference in the standard deviation
for profit is not significant at the 10% level.

Discussion
In our study, we focus on the consequences of alternative assump-
tions regarding inertia, or location choice flexibility, in a whole of
ecosystem model (Fulton et al., 2007). We apply three different
scenarios to investigate if, in accordance with theoretical assump-
tions and empirical evidence, flexible behaviour pays off in terms
of higher catches and income, while traditional fishers who stick
to past routines and fishing patterns are expected to have lower
catch and income levels. At the same time, flexible fishers are
expected to incur greater, and traditional fishers lower, variability
in their income.

Table 3. Cumulative catch and effort, and average CPUE for the five main fleets in the SESSF fishery modelled for the base case,
and two scenarios with traditional (d ¼ 0.05) and flexible fishers (d ¼ 0.95).

Indicators of efficiency Base case (d 5 0.20)

Traditional
fisher scenario

(d 5 0.05)

Flexible fisher
scenario

(d 5 0.95)

Value (d 5 0.95)
divided by value

(d 5 0.05)a

Cumulative realized catch (‘000 000 kg over 20 years)
Danish seine for flathead 58 60 46 0.77
Bottom trawl for deep demersal fish 310 308 282 0.92
Bottom trawl for flathead 49 50 59 1.18
Bottom trawl for orange roughy 39 40 36 0.90
Prawn trawl 190 190 198 1.04

Cumulative realised effort (‘000 days fished over 20 years)
Danish seine for flathead 45 45 21 0.47
Bottom trawl for deep demersal fish 95 94 85 0.90
Bottom trawl for flathead 74 74 63 0.85
Bottom trawl for orange roughy 14 14 11 0.79
Prawn trawl 19 19 16 0.84

Average annual CPUE (kg d21 fished)
Danish seine for flathead 1278 1321 2238 1.69
Bottom trawl for deep demersal fish 3270 3271 3304 1.01
Bottom trawl for flathead 667 672 936 1.39
Bottom trawl for orange roughy 2755 2907 3415 1.17
Prawn trawl 10049 10049 12121 1.21

Cumulative gross value (US$‘000 000 000 over 20 years)
Danish seine for flathead 1.40 1.44 1.18 0.82
Bottom trawl for deep demersal fish 7.70 7.65 6.78 0.89
Bottom trawl for flathead 1.69 1.72 1.85 1.08
Bottom trawl for orange roughy 1.31 1.33 1.12 0.84
Prawn trawl 23.47 23.47 23.66 1.01

Cumulative economic rent (US$‘000 000 000 over 20 years)
Danish seine for flathead –0.04 –0.04 0.02 –0.50
Bottom trawl for deep demersal fish –1.43 –1.42 –1.33 0.94
Bottom trawl for flathead –0.15 –0.15 –0.14 0.93
Bottom trawl for orange roughy –0.05 –0.05 –0.03 0.60
Prawn trawl 1.90 1.91 1.99 1.04

aThe proportion is shown to make explicit the proportional between the two scenarios.
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Our analysis shows that the interpretation of fishing choice flexi-
bility and its impacts on fishing outcomes is not straightforward and
has to be considered in the context of three main fleet characteris-
tics: whether the fleet is profitable; how diversified the fleet is; and
what the status and variability of the target species biomass is.

Flexible behaviour pays off in terms of higher catches in fleets
that are at least marginally profitable and are characterized by
growing biomass or by biomass spikes (such as the deep trawl for
flathead fleets and prawn trawl fleets in our case study). As expected,
flexible fishers also experience significantly greater variability in
their catches. [Even though flexible fishers also experience relatively
greater variability in profit, statistically it is not significantly differ-
ent (at the 5% level) from that of traditional fishers.] In this same
situation, traditional fishers, who tend to stick to their existing
fishing patterns, obtain lower but less variable returns. Thus, for
fleets that operate on improving and/or less variable stocks, the
outcomes of fishing in terms of catch and income are as expected
for both flexible and traditional fishers.

In unprofitable fleets, regardless of whether biomass is increas-
ing (e.g. the Danish seine fleet for flathead) or in decline (e.g. the
bottom trawl for orange roughy), a flexible fisher’s payoff must be
interpreted in terms of avoided losses. Having greater “flexibility”
to reduce effort and thus decrease relative cost or increase CPUE,
flexible fishers are “better off” than their traditional counterparts.
The ability of flexible fishers to reduce effort radically and immedi-
ately also reduces catch variability in highly unprofitable fisheries.

In highly diverse fleets, characterized by multiple target species
(in our case the bottom trawl for demersal species), little income
benefit can be derived from being flexible, most probably due to
the cost structure of those fleets, making it financially unattractive
to change fishing behaviour.

In our simulation model, we have assessed the adequacy with
which the common representation of location choice, by means
of flexibility or inertia, captures expected catch and income
levels and their variability. By systematically exploring the effects
of an important behavioural characteristic of fishing fleets cap-
tured in the model, we seek to gain better understanding of the
complex dynamics at play in the human behavioural part of the
model. For the purpose of MSE, model reliability with respect to
the human behaviour component is of ultimate importance, not

least because of the high uncertainty in this dimension of many
models (Fulton et al., 2011a). MSE models are increasingly used
by policy-makers to precede the implementation of new manage-
ment approaches and thus to minimize unintended consequences
(e.g. Plagányi et al., 2012).

Interestingly, while Atlantis is a deterministic model, the simu-
lation experiments undertaken in the present study allow identifi-
cation of cases in which individual fleets experience a divergence
between their expectations and realized outcomes. This divergence
results from the combined effects of complex biophysical interac-
tions captured in the ecosystem components of the simulation
model, as well as multiple responses from the different fleets,
and their interactions at the local level. This raises the question
of the potential links that could be established between the ques-
tion of flexibility of behaviour, and that of attitudes towards
risk, as mentioned above. Given that the expected choice outcomes
can be described in terms of levels and variability of income (or
catches), it should be possible to develop an analysis of the prefer-
ences fishers may have for alternative behaviours, including in
terms of flexibility in adapting to new information, depending
on the degree to which they are risk averse.

The empirical literature suggests that risk seekers are willing to
take risks in terms of higher variability in their income, but they
expect to get higher average returns from risk seeking over time
(Das and Teng, 1988). In contrast, risk-averse operators will
prefer certain outcomes, even if these are expected to be lower.
In the context of fisheries with positive profits and new opportun-
ities due to growing stocks, risk-seeking behaviour could be seen as
attempting to achieve higher payoffs by exploring options other
than already profitable ones, even if this entails a risk of missing
out on the income that would be guaranteed by sticking to existing
fishing activities. Thus, risk-prone operators in such contexts
could be expected to display flexible behaviour (and risk-averse
operators could be expected to maintain traditional fishing pat-
terns). In a fishery with negative or near-zero profits, or with
highly variable returns, risk-seeking behaviour could be seen as
refusing to change fishing pattern, based on an expectation that
there could be a turn of luck, rather than trying out alternative
options even if these are expected to yield only small but relatively
certain extra gains or lower losses. That is, for fishers that operate

Table 4. Variability in annual realized catch and economic rent for the five main fleets in the SESSF fishery modelled for the base case,
and two scenarios with traditional (d ¼ 0.05) and flexible fishing (d ¼ 0.95).

Indicators of variability
Base case

(d 5 0.20)

Traditional
fisher scenario

(d 5 0.05)

Flexible fisher
scenario

(d 5 0.95)

Value (d 5 0.95)
divided by value

(d 5 0.05)a

Standard deviation on realized catches (US$‘000 000)
Whole SESSF 6.82 6.73 8.51 1.26
Danish seine for flathead 1.20 1.43 1.06 0.74
Bottom trawl for deep demersal fish 2.05 2.07 2.67 1.29
Bottom trawl for flathead 0.68 0.68 0.98 1.44
Bottom trawl for orange roughy 0.82 0.81 1.06 1.31
Prawn trawl 2.07 2.09 3.99 1.91

Standard deviation on economic rent (US$’000 000)
Whole SESSF 99.25 100.07 117.10 1.17
Danish seine for flathead 4.35 4.33 5.57 1.29
Bottom trawl for deep demersal fish 59.50 60.00 61.90 1.03
Bottom trawl for flathead 5.62 5.78 7.05 1.22
Bottom trawl for orange roughy 2.05 1.97 1.82 0.93
Prawn trawl 23.08 23.19 41.42 1.79

aThe proportion is shown to make explicit the proportional difference in the variability in catch and economic rent.

Behavioural flexibility in ecosystem models 159

 at Ifrem
er, B

ibliothÃ
¨queL

a PÃ
©

rouse on A
ugust 26, 2015

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/


in fisheries that are degrading and where stocks are variable, risk-
prone behaviour would imply being relatively inflexible.

The links between flexibility in behaviour and attitudes towards
risks have been examined in studies undertaken in other fields,
such as agricultural economics. In these studies, risk-averse behav-
iour is often interpreted as moving away from strategies with high
variance of income (e.g. Hansson and Lagerkvist, 2012). However,
in relation to tactical adjustments in extreme years—where a tac-
tical and dynamical response (i.e. being flexible) to unfolding op-
portunities and threats is used to generate additional income or
avoid losses—flexible behaviour is sometimes also interpreted as
risk-averse behaviour (e.g. Pannell et al., 2000).

This leads to envisaging new ways of implementing differing
flexibility in simulation platforms such as Atlantis that include a
significant human behavioural component. This could be done,
in particular, by doing away with the assumption that flexibility
profiles should be stable. Indeed this assumption has been chal-
lenged in the literature (Isaac and James, 2000; Frechette, 2005)
and it has been empirically shown that flexibility profiles are not
stable over time. Fishers of all types may display different behav-
ioural flexibility in good and bad years. For instance, in a bad
year, there may be a preference for an immediate resolution of un-
certainty due to the negative consequences associated with delay-
ing the resolution. This is not dissimilar to biological models
where there is a trade-off between being hungry and the need to
leave cover to feed, thereby changing risky behaviour (Walters
et al., 1997). As fishers are not meeting their income targets in
bad years, they may behave as if they were in a non-profitable
fishery, thus decreasing the level of inertia in a fishery.

Similar considerations also apply to the assumption that fisher’s
weighting of past catch rate information is linear and diminishing
over time. Anecdotal information suggests that fishers may, in
fact, weigh catch and effort information from extreme years more
heavily. For instance, fishers will more “vividly” recall their location
choices for years with catches that were significantly above (and
below) average. If current catches resemble those of an extremely
good year, fishers are more likely to repeat the location choice pat-
terns of the “past good year”. Fishers will also weigh location choice
decisions made in bad years differently. After all, they will seek to
avoid repeating decisions that, in their minds, led to outcomes
that were significantly below average. Addressing the differential
weighting of “extreme” years in catch rate information over time,
and making flexibility coefficients relative to the context, could po-
tentially improve the human behaviour component of large whole
of ecosystem models such as Atlantis.
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Appendix 1
Over the 20-year period the biomass level changes in one of five
ways: is stable (�), increases (�), increases a little (��),
decreases (�), or decreases a little (��) with respect to year 1

(% increase or decrease shown for the main species where
change was large or the species makes up a large proportion of
the catch).

Table A1. Total catch (in tonnes) of main species and proportion of catch by fleet modelled for the SESSF for the base case scenario.

Species
Total
catch

(Change
from year
1 in year 20)

DseineFDB
(Danish
seine)

DtrawlFD
(bottom

trawl
for deep
demersal

fish)

DtrawlFDB
(bottom
trawl for
flathead)

DtrawlFDO
(bottom

trawl
for orange

roughy)

PtrawlPWN
(prawn
trawl)

Morwong 2056 (�) Ta 609 T 61 T 757 B 578
Cardinal fish 144 (�) T – B 143
Gem fish 1387 (�) T 1356 30
School whiting 45 320 (� 68%) T 24 664 T 4716 B 8965 B 6566
Mirror dory, oreo,

whiptails
18 887 (�) T – T 8426 B 179 T 10 238 5

Blue grenadier 122 790 (� 49%) Bb 82 T 77 219 B 3652 B 15 422 B 1438
Flounder, gurnard,

wrasse, trevally,
snapper, king
george whiting,
latchet

98 922 (� 82%) T 38 837 T 15 245 T 3342 B 1012

Redfish 12 472 (�) T 9437 B 1882 B 1066
Ribaldo 1346 (�) T 872 T 474
Flathead 140 910 (� 452%) T 77 441 T 10 862 T 36 122 B 496 B 13 752
Ling 60 449 (� 414%) T 41 118 B 503 B 11 434
Orange roughy 20 649 (� 86%) T 6574 T 13 207 B 868
Blue-eye trevalla 13 231 (�) T –
School shark 2842 (�) T –
Skates and rays 13 831 (�) B 468 T – B 152 B 12 561
Blue warehou 7767 (�) T – B 269
Gulper sharks 953 (�) T – B 71
Rock lobster 120 478 (� 13%) T 117 582
Octopus,

stomatopods,
seastar, gastropod,
prawns,
non-commercial
crabs

25 047 (� 42%) T 13 441

Prawns and commercial
crabs

30 104 (� 62%) T 28 923

Total catch (including
bycatch species)

117 436 195 838 50 801 50 787 208 262

Number of vesselsc 27 88 35 22 8
Average crew sizec 3 or 4 3–7 3–5 3–5 3
Number of subfleetsc 2 4 3 3 1
aT ¼ target species.
bB ¼ by catch species.
cAdapted from Hutton et al. (2010).
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Appendix 2
Figure 2A. Biomass for a number of target and bycatch species for
fleets in the SESSF as modelled by Atlantis over a 20-year time
frame for the base case scenario.
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