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Abstract : 
 
Studying gamete biology can provide important information about a species fertilization strategy as well 
as their reproductive ecology. Currently, there is a lack of knowledge about how long sea bass 
Dicentrarchus labrax eggs can remain viable after being activated in seawater. The objectives of this 
study were to understand the effects of pre-incubation of fresh and overripe sea bass eggs in seawater 
and to determine the duration of egg receptivity. Pooled eggs (fresh and overripe) from four females 
were pre-incubated in seawater for 0 min (control), 0.5 min, 1 min, 3 min, 10 min and 30 min and then 
fertilized by pooled sperm from four males. The fresh eggs had a higher fertilization success than 
overripe eggs. Our results revealed a significant effect of pre-incubation time for both the fresh (P < 
0.01) and overripe eggs (P < 0.01). Fertilization success of eggs significantly declined for both these 
treatments after 3 min of pre-incubation, which clearly indicates that sea bass eggs are able to be 
fertilized by sperm for up to 3 min after release into seawater. This study has particular importance for 
understanding fertilization strategies, reproductive potential, as well as reproductive ecology of sea 
bass. 
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Introduction 54 

 55 

Marine and freshwater teleosts use different reproductive strategies to adapt with 56 

diverse aquatic habitats. Mature eggs of most teleost fishes are enclosed in an acellular 57 

multilayered egg envelope (Dumont & Brummet 1980; Yamagami, Hamazaki, Yasumasu, 58 

Masuda & Iuchi 1992; Scapigliat, Carcupino, Taddei & Mazzini 1994; Baldacci, Taddei, 59 

Mazzini, Fausto, Buonocore & Scapigliati 2001). The morphology of an egg depends on 60 

species and reflects adaptations to different ecological conditions (Fausto, Picchietti, Taddei, 61 

Zeni, Scapigliati, Mazzini & Abelli 2004). The main functions of the egg envelope are to 62 

fixate deposited eggs to substratum (for demersal eggs), sperm chemo-attraction, prevent 63 

polyspermy, and antibacterial and mechanical protection (Hart 1990; Zelazowska 2010, 64 

Siddique, Cosson, Psenicka & Linhart 2014). The egg envelope also enables gas exchange, as 65 

it aids in the excretion and transport of nutrients from the external environment for developing 66 

embryos (Riehl 1999).  67 

The duration of egg receptivity of marine and freshwater fishes is species specific and 68 

is closely related to different water flow regimes on the spawning ground (Mann 1996; Merz, 69 

Setka, Pasternack & Weathon 2004; Probst, Stoll, Hofmann, Fisher & Eckmann 2009). Sperm 70 

longevity, the velocity of sperm, and the duration of egg receptivity impact the success of a 71 

fertilization event (see Trippel & Morgan 1994; Butts, Trippel & Litvak 2009 among others). 72 

For instance, if sperm are viable for longer periods of time in the activation medium, then the 73 

potential of contacting and fertilizing an egg increases (Butts et al. 2009). On the other hand, 74 

when longevity of sperm is very short, than egg receptivity may be necessary to increase 75 

fertility, since longer periods of egg receptivity are predicted to increase the probability of a 76 

successful fertilization event (Trippel 2003). Therefore, duration of egg receptivity provides 77 
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valuable insights on reproductive behavior for any fish species (Butts, Roustaian & Litvak 78 

2012).  79 

The activation process for fish eggs represents several complex changes including the 80 

release of the developmental block of meiosis at metaphase (II), consecutive breakdown of 81 

cortical granules, and formation of the perivitelline space (Pavlov, Emel’yanova & Novikov 82 

2009). Egg activation is induced by the fusion of sperm in the majority of marine fishes, while 83 

in freshwater fishes and salmonids it is induced by contact with water or mechanical 84 

stimulation (Dettlaff 1962; Ginzburg 1972; Pavlov et al. 2009). In general, the influx of 85 

intracellular free Ca2+ in eggs mediates the cortical alveoli to initiate exocytosis (Finn 2007; 86 

Vasilev, Chun, Gragnaniello, Garante & Santella 2012). Following this Ca2+ wave, cortical 87 

glycoproteins are then broken into smaller units by proteolysis and form the osmotic gradient 88 

that facilitates uptake of ambient seawater across the egg membrane (Lønning & Davenport 89 

1980; Govoni & Forward 2008). The perivitelline space between the oocyte plasma 90 

membrane and egg envelopes fills with perivitelline fluid, which is formed by imbibed water 91 

and the substances released from the cortical granules (Siddique et al. 2014). Until now, there 92 

is a knowledge gap on activation mechanisms and formation of perivitelline space of sea bass 93 

eggs. 94 

The European sea bass Dicentrarchus labrax (L.) is a leading species for aquaculture 95 

in the Mediterranean due to its emerging economic importance in the Mediterranean and 96 

North East Atlantic regions (Vandeputte, Dupont-Nivet, Haffray, Chavanne, Cenadelli, Parati, 97 

Vidal, Vergnet & Chatain 2009; Colléter, Penman, Lallement, Fauvel, Hanebrekke, Osvik, 98 

Eilertsen, D’Cotta, Chatain & Peruzzi 2014). Adults usually exhibit demersal behavior and 99 

inhabit coastal waters down to 100 m depth but are more common in the littoral zone on 100 

various kinds of bottoms in estuaries, lagoons and occasionally in rivers. In the 101 

Mediterranean, first sexual maturity occurs at 2 to 4 years and fish spawn once a year in 102 
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groups (Froese & Pauly 2015). The egg envelope of sea bass consists of three distinct layers 103 

with a funnel shaped micropylar canal (Fausto, Carcupino, Scapigliati, Taddei & Mazzini 104 

1994; Scapigliati et al. 1994). Sea bass eggs are pelagic, small in size (1.1 to 1.5 mm 105 

diameter), freely floating in seawater, and fertilized externally (Froese & Pauly 2015). In 106 

teleost fishes, eggs can be activated by contact with water or by the penetration of sperm 107 

(Pavlov et al. 2009). In case of sea bass, eggs can be activated in seawater and after a few 108 

seconds of activation, a thin perivitelline space is formed beneath the egg membrane. 109 

Currently, there is lack of knowledge about how long sea bass eggs can remain viable after 110 

being activated in seawater within the natural environment. 111 

In controlled reproduction, the major problem encountered for this species is over 112 

ripening of eggs. After ovulation, sea bass eggs over ripen very quickly and they can even 113 

start to over-ripen in the ovary before stripping. Very little is known about the fertilization 114 

ability of overripe eggs of sea bass. However, knowledge about gamete biology, longevity of 115 

eggs and effects of pre-incubation is crucial for standardization of fertilization protocol for 116 

any fish species. Here, we conducted a laboratory experiment to determine the duration of egg 117 

receptivity in seawater and effect of pre-incubation of sea bass eggs (fresh and overripe) on 118 

fertilization success.   119 

 120 

Materials and methods 121 

 122 

Broodstock husbandry and gamete collection 123 

 124 

Sea bass broodstock (aged 4 to 6 years and weighted 2 to 5 kg) were kept at the 125 

Ifremer Experimental Aquaculture Station (Palavas-les-Flots, France). Males and females 126 

were kept separately in recirculation systems (8 m3 volume). Mature males were recognized 127 

Page 5 of 24

Aquaculture Research

Aquaculture Research



For Review
 O

nly

 

 

6 

 

by gentle abdominal pressure and females were selected by assessing the maturation stage 128 

with ovarian biopsies. Maturation stages were determined based on oocyte diameter and 129 

migration of the germinal vesicle using a light microscope (4× magnification). Females at 130 

“stage B” of development (when the germinal vesicle started its migration to the animal pole) 131 

were selected for hormonal induction (Fauvel & Suquet 1988). Each female received a single 132 

dose (10 µg.kg-1 body weight mixed with physiological solution) of Luteinizing Hormone 133 

Releasing Hormone analogue (LHRHa, Sigma, France) in order to induce final maturation 134 

and ovulation (Fauvel & Suquet 1988). The treated females were isolated in individual tanks 135 

(1.5 m3, 17 L.h-1 water renewal, and low air flow) at 13°C water temperature. Ovulated 136 

oocytes were collected from females after 72 h of hormonal stimulation by abdominal 137 

pressure. Sperm were collected from the male’s genital papilla by applying pressure to the 138 

abdominal region. Samples were drawn into 5 ml syringes. Before collection, the genital 139 

papilla was wiped dry and extra care was taken to avoid contamination with urine. Sperm 140 

were then held at 4°C until use. The males and females both were fished treated without 141 

anesthetics and immediately wrapped in a dark wet towel to limit stress and fish movement 142 

during sperm and oocyte collection. 143 

 144 

Quantification of sperm density and motility 145 

 146 

Sperm concentration was measured before pooling using a Thoma hemocytometer 147 

(depth 0.1 mm × length 0.05 mm) after dilution of sperm by 1:2000 in distilled water. After 148 

allowing 10 min for sedimentation of the sperm, three frames of 24 squares were recorded 149 

randomly through a video camera (Axiolab, Zeiss + SSC-D50AP video camera, Sony). The 150 

cells were then automatically counted using image analysis software (Image J, NIH, USA). 151 
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Sperm motility was measured according to the procedure by Fauvel, Boryshpolets, Cosson, 152 

Leedy, Labbe, Haffray & Suquet (2012). 153 

We determined the effects of pre-incubation time for fresh and overripe sea bass eggs 154 

in seawater as well as the duration of egg receptivity. For this experiment we used 155 

proportionally pooled sperm from 4 males. The mean (±SD) sperm density of pooled sperm 156 

was 5.3 ± 0.03 × 109 sperm mL-1, while sperm motility was 60 ± 8.16%, and mean sperm 157 

longevity was 42 ± 6 s. 158 

 159 

Effects of pre-incubation time on fertilization and determination of egg receptivity 160 

period 161 

 162 

Pooled eggs from 4 females were used for this experiment. The difference between 163 

egg collection from the first female to fourth female was 20 min. Freshly stripped eggs (10 164 

mL) were first placed in 18 × 250 mL plastic dishes. Then 5 mL of seawater (pH 8.22, salinity 165 

37.4 psu) was added to each dish. The eggs were pre-incubated in seawater for 0 min (no 166 

incubation to serve as the experimental control), 0.5 min, 1 min, 3 min, 10 min, and 30 min 167 

before sperm was added for fertilization. There were 3 plastic dishes for each allotted pre-168 

incubation period for replication. Immediately following pre-incubation, 5 mL of sperm were 169 

added to the eggs using a micropipette and the plastic dishes were shaken rotated by hand for 170 

30 s to facilitate fertilization. For the experimental control, with no pre-incubation, the 171 

seawater and sperm were added simultaneously. 172 

Following fertilization, 150-200 mL of additional seawater was added to each plastic 173 

dish and kept at 13°C for incubation. For the overripe eggs (1 h of storage at 13°C), these eggs 174 

(10 mL) were placed in 18 × 250 mL plastic dishes and the same procedure was applied as for 175 

the freshly stripped eggs (see above).  176 
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At 3 h post-fertilization, cleavage was observed. After removing water from the plastic 177 

dishes, eggs were mixed properly with a plastic spoon and 300 eggs were randomly chosen 178 

for observation. Only eggs that had developed to 2-4 cells after 3 h incubation were used for 179 

analysis. Additionally, we took pictures for the unfertilized eggs under light microscope at 0, 180 

60, 100, 220, 300, 450 and 500 s post activation by water to observe the swelling process and 181 

formation of perivitelline space.  182 

 183 

 184 

Statistical analyses 185 

 186 

All data were analyzed using SAS statistical analysis software (v.9.1; SAS Institute 187 

Inc., Cary, NC, USA). Residuals were tested for normality (Shapiro-Wilk test) and 188 

homogeneity of variance (plot of residuals vs. predicted values). If data violated ANOVA 189 

assumptions fertilization success was arcsin square-root transformed. Alpha was set at 0.05 190 

for main effects and interactions. A-posteriori analyses were performed using Tukey’s 191 

multiple comparisons procedure. 192 

Fertilization success was analyzed using a two-way repeated measures ANOVA 193 

model containing the pre-incubation time (0 min, 0.5 min, 1 min, 3 min, 10 min, and 30 min; 194 

fixed repeated factor) and egg status (fresh and overripe; fixed factor) main effects as well as 195 

the pre-incubation time × egg status interaction term. When a significant pre-incubation time 196 

× egg status interaction was detected the saturated model was decomposed into a series of 197 

lower-order statistical models following Keppel (1991). Here, the decomposed ANOVA 198 

models were run to (i) determine the effect of pre-incubation time for each egg status category 199 

using a series of one-way repeated measures ANOVA models, and (ii) determine the effect of 200 

egg status category for each pre-incubation time using a series of t-tests. These reduced 201 
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models involved only pre-planned comparisons, so alpha-level corrections for a posteriori 202 

comparisons were not necessary. 203 

 204 

Results  205 

 206 

The saturated two-way repeated measures ANOVA model revealed a significant pre-207 

incubation time × egg status interaction term (P < 0.05); therefore, the model was 208 

decomposed into a series of lower-order statistical models. When the saturated model was 209 

decomposed to determine the effect of pre-incubation time for each egg status category a 210 

significant pre-incubation time effect was detected for both the fresh (P < 0.01; Fig. 1A) and 211 

overripe eggs (P < 0.01; Fig. 1B), such that egg fertilization success significantly declined for 212 

both these treatments after 3 min of pre-incubation. Together, this means that sea bass eggs 213 

have the capability to be fertilized within 3 min post-activation. After that window of 214 

receptivity the eggs lose their ability to be fertilized. Moreover, when the saturated model was 215 

decomposed to determine the effect of egg status for each pre-incubation time a significant 216 

egg status effect was detected at the 0.5 min (P < 0.01; Fig. 1D), 1 min (P < 0.05; Fig. 1E), 3 217 

min (P < 0.05; Fig. 1F), and 30 min pre-incubation times (P < 0.05; Fig. 1H); here, the fresh 218 

eggs had a higher fertilization success than overripe eggs. This means that fertilization ability 219 

is decreased in overripe eggs; therefore, short term storage of sea bass eggs is not feasible due 220 

to their fast over ripening process. On the contrary, no significant effect was detected between 221 

the fresh and overripe eggs at the 0 min (P > 0.05; Fig. 1C) and 10 min pre-incubation times 222 

(P > 0.05; Fig 1G).  223 

Sea bass eggs showed a very rapid swelling process after releasing into seawater (Fig 224 

2A-B). During activation of eggs in seawater, a small perivitelline space was observed in 225 

several eggs across the females. After 60 s of activation, the perivitelline space became 226 

Page 9 of 24

Aquaculture Research

Aquaculture Research



For Review
 O

nly

 

 

10 

 

clearly visible (Fig 2C) and there were no substantial changes in perivitelline space after 100 s 227 

(Fig 2D) and 220 s (Fig 2E) of activation. Then, the perivitelline space became large after 300 228 

s (Fig 2F) to 450 and 500 s (Fig 2G & 2H) of activation.  229 

 230 

Discussion  231 

 232 

Egg activation is a key process in early embryonic development of fish, but not fully 233 

understood (Webb & Miller 2013). Fish eggs are activated upon contact with water and this 234 

activation mechanism is initiated by the release of intracellular stored Ca2+ in the egg cytosol 235 

(Coward, Bromage, Hibbitt & Parrington 2002; Finn 2007), which resulted in formation of 236 

the fertilization membrane (Minin & Ozerova 2008). As seen in our study, sea bass eggs swell 237 

very rapidly (within 10-20 s) upon activation by contact with seawater. However, when in 238 

contact with seawater the egg only takes a few seconds to achieve flexible size and structure, 239 

and to acquire fertilization ability. In this study, mean fertilization rate of fresh eggs slightly 240 

increased for 30 s and 1 min of pre-incubation in seawater, but it was not statistically 241 

significant. In our decomposed statistical models, a significant pre-incubation time effect was 242 

detected for both the fresh and overripe eggs, where a significant decline of egg fertilization 243 

rate was observed for both these treatments after 3 min of pre-incubation. This means that sea 244 

bass eggs have the capability to be fertilized within 3 min after activation in seawater; after 245 

that period the eggs lose their fertilization ability. Moreover, in the decomposed model, 246 

fertilization success of the fresh eggs was significantly higher than overripe eggs at the 0.5 247 

min, 1 min, 3 min, and 30 min pre-incubation times. Thus, our results reveal that the 248 

fertilization ability of overripe eggs are less than the fresh eggs, but they are still capable of 249 

being fertilized for up to 3 min after being released into seawater.   250 
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We determined the egg receptivity period of sea bass for the first time. Pre-incubation 251 

of eggs in water prior to fertilization is the simplest way to determine the egg receptivity 252 

period. Although, sea bass is a marine species, the duration of egg receptivity of sea bass is 253 

close to many freshwater species like Rainbow trout Oncorhynchus mykiss, crucian carp 254 

Carassius carassius and European perch Perca fluviatilis (see Table 1). The spermatozoa 255 

longevity of sea bass is also very short (less than 1 min). Fish, which have short periods of 256 

sperm longevity and egg receptivity, show different fertilization strategies. In this case, male 257 

and females release their gametes at the same time or males release their milt on the eggs to 258 

facilitate the fertilization process. For sea bass, we showed that the eggs were receptive to be 259 

fertilized for 3 min. Compared to other marine species like winter flounder 260 

Pseudopleuronectes americanus and Atlantic cod Gadus morhua, the duration of egg 261 

receptivity of sea bass eggs is much shorter (Table 1). 262 

For unfertilized sea bass eggs, formation of the perivitelline space initiates within 30 s 263 

after activation in seawater, but not for all eggs. Formation of the perivitelline space upon 264 

activation in seawater is a common feature for many marine fish species; including European 265 

eel Anguilla anguilla and Japanese eel Anguilla japonica (Govoni & Forward 2008; Sørensen, 266 

Butts, Munk & Tomkiewicz et al. 2015). In acipenserids, the perivitelline space is only 267 

formed after fertilization of eggs by sperm (Dettlaff, Ginsburg & Schmalhausen et al. 1993; 268 

Linhart & Kudo 1997; Siddique et al. 2014). Generally when eggs are fertilized by sperm, the 269 

cortical reaction and formation of perivitelline space is faster (Iwamatsu & Ito 1986). In sea 270 

bass eggs, when they are released in seawater, this process starts within a few seconds after 271 

activation without sperm but takes several minutes to complete. At the initial stage of forming 272 

the perivitelline space, eggs are capable to be fertilized by sperm, but in the later space when 273 

the perivitelline space become larger, the perivitelline fluid blocks the micropylar canal or 274 
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sperm entry site. This is the mechanism of polyspermy block for acipenserids (Linhart & 275 

kudo 1997; Siddique et al. 2014).  276 

For sea bass eggs, it is difficult to control post-ovulatory ageing. Therefore, hand 277 

stripping is needed to understand ovulatory rhythms in females and to minimize the impact of 278 

over-ripening. Following ovulation, sea bass oocytes remain viable during a short window 279 

before they undergo a natural breakdown process. We observed that the over ripening period 280 

of sea bass is <1 h which is similar to striped bass Morone saxatilis (<1 h; Stevens 1966) but 281 

two-fold higher than white bass Morone chrysops (15-30 min; Mylonas, Magnus, Gissis, 282 

Klebanov & Zohar 1996). The fertilization ability of over-ripe oocytes sharply declines and 283 

totally depends on the storage temperature and the time interval between ovulation and 284 

stripping. All oocytes in an ovary are not ovulated at the same time; therefore, the percentage 285 

of over-ripe eggs in each individual is also important to consider.  In our study, we obtained 286 

32.5% fertilization rate from the overripe eggs (control group), which was not significantly 287 

different from the fresh eggs. This is only possible when eggs are collected immediately after 288 

ovulation.  289 

In conclusion, the information provided here is pertinent to fisheries ecologists and 290 

also has implications for domestication and controlled reproduction of sea bass. Further 291 

studies to observe the changes of egg membranes and how long the micropyle remains open 292 

during activation in seawater are encouraged.  293 
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Figure legend 446 

 447 

Figure 1.  Effects of pre-incubation time (0 min, 0.5 min, 1 min, 3 min, 10 min and 30 min) 448 

on fertilization rate of (A) fresh eggs and (B) overripe eggs of sea bass Dicentrarchus labrax; 449 

and effects of egg status on fertilization rate for (C) 0 min, (D) 0.5 min, (E) 1 min, (F) 3 min, 450 

(G) 10 min and (H) 30 min pre-incubation time. 451 

 452 

Figure 2. Micrograph of sea bass Dicentrarchus labrax eggs; ovulated, non-activated eggs 453 

(A); unfertilized eggs 20 s after activation in seawater (B); unfertilized eggs developing 454 

perivitelline space at 60 s (C), 100 s (D), 220 s (E), 300 s (F),  450 s (G), and 500 s (H) after 455 

activation in seawater. PS - perivitelline space, LD – lipid droplet, EM – egg membrane. 456 

Micrographs were taken at 4× magnification. 457 
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Table 1: Duration of egg receptivity and spawning habitat of marine and freshwater fishes.  
 
 
Species Duration of egg 

receptivity 

Natural spawning habitat 
a
 Reference 

Silver carp 
Hypophthalmichthys molitrix (Valenciennes, 1844) 

30-40 s Rivers and tributaries Mikodina & Makeyeva 
(1980) 

Sockeye salmon 
Oncorhynchus nerka (Walbaum, 1792) 

40 s Stream Hoysak & Liley (2001) 

Rainbow trout 
Oncorhynchus mykiss (Walbaum, 1792) 

40 s Lake and streams Liley et al. (2002) 

Crucian carp 
Carassius carassius (Linnaeus, 1758) 

1 min Shallow pond, lake and rivers Żarski et al. (2014) 

Goldfish  
Carassius auratus (Linnaeus, 1758) 
 

<1 min Shallow water, river, and lakes Hamano (1951) 

European perch 
Perca fluviatilis Linnaeus, 1758 

2.5 min Lake and rivers Żarski et al. (2012) 

Sea bass 
Dicentrarchus labrax (Linnaeus, 1758) 

3 min Sea Present study 

Vendace 
Coregonus albula (Linnaeus, 1758) 

4 min Lakes and shallow waters Lindroth (1947) 

Japanese rice fish  
Oryzias latipes (Temminck & Schlegel, 1846) 
 

4 min Pond, marsh, paddy field, and small 
streams 

Yamamoto (1944) 

Pond loach 
Misgurnus anguillicaudatus (Cantor, 1842) 

5 min Stream and pond Gamo, Yamauchi & Suzuki 
(1960) 

European weatherfish 
Misgurnus fossilis (Linnaeus, 1758) 

10 min Open water, lake, and streams Minin & Ozerova (2008) 
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Mummichog  
Fundulus heteroclitus (Linnaeus, 1766) 
 

10-30 min Salt marsh and tidal creeks Kagan (1935) 

Chum salmon 
Oncorhynchus keta (Walbaaum, 1792) 

15-30 min River Yamamoto (1951) 

Winter flounder 
Pseudopleuronectes americanus (Walbaum, 1792) 

32 min Sea Butts et al. (2012) 

Atlantic cod 
Gadus morhua Linnaeus, 1758 

2 h Offshore water Davenport et al. (1981) 

Pontic shad  
Alosa immaculate Bennett, 1835 
 

>2 h Large river Kryzhanovskii (1956) 

Atlantic herring 
Cluoea harengus Linnaeus, 1758 

4 h Shallow coastal areas or offshore banks Kryzhanovskii (1956) 

Russian sturgeon 
Acipenser gueldenstaedtii Brandt and Ratzeburg, 
1833 
 

6 h River Ginzburg (1972) 

Note: a Data are retrieved from FishBase (Froese & Pauly 2015)  
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Fig 2 
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