Swimming speeds of polychaete larvae collected near deep-sea hydrothermal vents

Type Article
Date 2015-08
Language English
Author(s) Beaulieu Stace E.1, Sayre-Mccord R. Thomas1, Mills Susan W.1, Pradillon FlorenceORCID2, Watanabe Hiromi3
Affiliation(s) 1 : Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
2 : Inst Francais Exploitat Mer, Plouzane, France.
3 : Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan.
Source Marine Ecology-an Evolutionary Perspective (0173-9565) (Wiley-blackwell), 2015-08 , Vol. 36 , N. S1 , P. 133-143
DOI 10.1111/maec.12207
WOS© Times Cited 6
Note Special Issue: Biological and Ecological Processes in Reducing Marine Environments: Proceedings of the 5th International Symposium on Chemosynthesis-Based Ecosystems
Keyword(s) Hydrothermal vent, larval dispersal, Mariana back-arc, swimming behavior
Abstract For benthic fauna endemic to hydrothermal vents, larval dispersal in the plankton is required for maintenance of populations and colonization of new vents. Dispersal distances in the plankton are expected to be influenced by vertical positioning into horizontal currents, and larval survival in the plankton as well as encounter rates for settlement cues may be influenced by swimming speed. Here, we present the first quantitative measurements of swimming speeds of polychaete larvae collected near deep-sea hydrothermal vents. We focused on three polychaete larvae of different morphotypes, with two morphotypes identified genetically to Capitellidae and Spionidae. Mean swimming speeds and helical parameters of the deep-sea polychaete larvae (measured at 1 atm) were similar to values reported for shallow-water polychaete larvae, with mean helical 3D swimming speeds ranging from 0.8-1.4 mm.s(-1). To account for swimming that deviated from helical patterns, we developed a new method to reconstruct 3D swimming trajectories, using the 2D track and larval orientation. Speeds were generally faster for downward swimming, with mean vertical displacement speeds ranging from 0.6-0.8 mm.s(-1) downward as compared with 0.2-0.6 mm.s(-1) upward. Mean swimming speeds and helical parameters differed among the individuals. Our results are a first step towards constraining a behavioral component in models of larval dispersal between deep-sea hydrothermal vents.
Full Text
File Pages Size Access
Publisher's official version 11 523 KB Open access
Top of the page

How to cite 

Beaulieu Stace E., Sayre-Mccord R. Thomas, Mills Susan W., Pradillon Florence, Watanabe Hiromi (2015). Swimming speeds of polychaete larvae collected near deep-sea hydrothermal vents. Marine Ecology-an Evolutionary Perspective, 36(S1), 133-143. Publisher's official version : https://doi.org/10.1111/maec.12207 , Open Access version : https://archimer.ifremer.fr/doc/00279/39024/