FN Archimer Export Format PT J TI Swimming speeds of polychaete larvae collected near deep-sea hydrothermal vents BT AF BEAULIEU, Stace E. SAYRE-MCCORD, R. Thomas MILLS, Susan W. PRADILLON, Florence WATANABE, Hiromi AS 1:1;2:1;3:1;4:2;5:3; FF 1:;2:;3:;4:PDG-REM-EEP-LEP;5:; C1 Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. Inst Francais Exploitat Mer, Plouzane, France. Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan. C2 WHOI, USA IFREMER, FRANCE JAMSTEC, JAPAN SI BREST SE PDG-REM-EEP-LEP IN WOS Ifremer jusqu'en 2018 copubli-int-hors-europe IF 1.138 TC 6 UR https://archimer.ifremer.fr/doc/00279/39024/37585.pdf LA English DT Article DE ;Hydrothermal vent;larval dispersal;Mariana back-arc;swimming behavior AB For benthic fauna endemic to hydrothermal vents, larval dispersal in the plankton is required for maintenance of populations and colonization of new vents. Dispersal distances in the plankton are expected to be influenced by vertical positioning into horizontal currents, and larval survival in the plankton as well as encounter rates for settlement cues may be influenced by swimming speed. Here, we present the first quantitative measurements of swimming speeds of polychaete larvae collected near deep-sea hydrothermal vents. We focused on three polychaete larvae of different morphotypes, with two morphotypes identified genetically to Capitellidae and Spionidae. Mean swimming speeds and helical parameters of the deep-sea polychaete larvae (measured at 1 atm) were similar to values reported for shallow-water polychaete larvae, with mean helical 3D swimming speeds ranging from 0.8-1.4 mm.s(-1). To account for swimming that deviated from helical patterns, we developed a new method to reconstruct 3D swimming trajectories, using the 2D track and larval orientation. Speeds were generally faster for downward swimming, with mean vertical displacement speeds ranging from 0.6-0.8 mm.s(-1) downward as compared with 0.2-0.6 mm.s(-1) upward. Mean swimming speeds and helical parameters differed among the individuals. Our results are a first step towards constraining a behavioral component in models of larval dispersal between deep-sea hydrothermal vents. PY 2015 PD AUG SO Marine Ecology-an Evolutionary Perspective SN 0173-9565 PU Wiley-blackwell VL 36 IS S1 UT 000360368300010 BP 133 EP 143 DI 10.1111/maec.12207 ID 39024 ER EF