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Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable
reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis
ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-
noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-
layer-depth, upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea ice thickness,
salinity), providing guidance for future enhancement of the observing and data assimilation systems.

Introduction

There is increasing demand for historical records of the
ocean climate (Balmaseda et al. 2010; Dee 2014). These
are needed as a reference for monitoring the current state
of the climate, and also to initialise and validate long-
range (e.g. seasonal and decadal) forecasts. Observations
alone are often inadequate to generate the required estimate
of the ocean variables. Ocean model simulations can provide
some insight on the ocean variability, but they are affected
by biases due to errors in model formulation, specification
of initial states and forcing, and are not directly constrained

by observations. Ocean reanalyses are the combination of
ocean models, atmospheric forcing fluxes and ocean obser-
vations via data assimilation methods and have the potential
to provide more accurate information than observation-only
or model-only based ocean estimations.

The production of ocean reanalyses (ORAs hereafter) is
now an established activity in several research and oper-
ational centres. ORAs are revisited every so often, and
new ‘vintages’ are produced at intervals of about five
years, as improvements in ocean models, data assimilation
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methods, forcing fluxes or ocean observations become
available. The previous vintage of ORAs (produced
around 2006) has already been documented (Stammer
et al. 2010; Lee et al. 2009). A new vintage has recently
been generated, which has come about through the avail-
ability of new surface forcing fluxes (from new atmos-
pheric reanalyses), improved qualitycontrolled ocean
datasets, including important corrections to the obser-
vations (Lyman et al. 2010; Wijffels 2009), as well as the
steady improvement in the ocean models and data assimila-
tion methods. There are lower resolution reanalyses (~1
degree horizontal resolution), spanning a long time-
period of typically 50 years, as well as higher resolution
products (about ¼ of degree), available for shorter
records, usually the altimeter period 1993-onwards.

Although new reanalysis vintages are produced rela-
tively infrequently, some of the ORAs are continuously
updated in quasi-real-time, with the model and data assim-
ilation methodology kept fixed. This is the case for the
ORAs produced in operational centres to initialize
coupled forecasts. These real-time ORAs have the
additional advantage that they allow monitoring of relevant
climate variables (Xue et al. 2010). The monitoring of the
tropical Pacific conditions with a multi ocean reanalysis
system (multi-ORA) is now a reality, as can be seen in
the NCEP ocean monitoring pages [http://www.cpc.ncep.
noaa.gov/products/GODAS/multiora_body.html]

In spite of the continuous improvements in method-
ology, the estimation of the historical ocean state with
reliable error estimates is a major challenge. In addition
to the estimation of the three-dimensional ocean state at
a given time (the analysis problem), an ocean reanalysis
also provides an estimation of the time evolution. The
time evolution represented by an ORA will be sensitive
to the temporal variations of the observing system, to
the errors of the ocean model, atmospheric fluxes and
assimilation system, which are often flowdependent,
and not easy to estimate (Masina et al. 2011). All
these factors contribute to the so-called structural uncer-
tainty, i.e. the uncertainty associated with the method-
ology and that cannot be sampled with a single
system. A crude but pragmatic way of estimating the
current uncertainty in our ability to measure key ocean
variables is to carry out an intercomparison of ORAs
within the framework of a multi-reanalysis ensemble
approach. For it to work, it is necessary that the individ-
ual components are sufficiently distinct while at the
same time have similar levels of error (i.e. equally
likely). The multi-analysis ensemble approach has
already been successfully used to study the ocean heat
content (Xue et al. 2012; Zhu et al. 2011), and to initi-
alize seasonal (Zhu et al. 2012; Zhu et al. 2013) and
decadal (Pohlmann et al. 2013; Bellucci et al. 2013)
forecasts. The ensemble approach is also used in the fra-
mework of the EU funded MyOcean project (Ferry et al.

2012) using eddy-permitting reanalyses over the satel-
lite period (1993-onwards).

The operational oceanographic community continu-
ously carries-out coordinated inter-comparison of ocean
forecasting systems (Crosnier & Le Provost 2006,
2007; Xie et al. 2008; Hernandez et al. 2009, 2014;
Oke et al. 2012). In the same way, there is also need
for routine coordinated evaluation of ORAs, which
would exploit the existing information for a variety of
purposes, namely (i) quantifying uncertainty, (ii) measur-
ing progress in the quality of the reanalyses and (iii) pro-
ducing indices for ocean monitoring with associated
error estimates. These are the motivations for the
current Ocean Reanalyses Intercomparison Project
(ORA-IP). This paper offers just a first glimpse of the
emerging results, with focus on the benefits of the ensem-
ble approach both to improve the estimation of the
signals and to provide uncertainty ranges.

The current ORA-IP project

The joint GODAE OceanView/CLIVAR-GSOP (Global
Synthesis and Observation Panel) workshop in Santa
Cruz (13–17 June 2011) (Oke et al. 2011) called for a com-
munity action on exploitation of the latest ORAs for real
time climate monitoring and intercomparison. Although
the ultimate goal is the near real-time monitoring of the
ocean through indices based on an ensemble of reanalyses,
the first stage was to complete an ORA-IP. A viable propo-
sal was put forward in Santa Cruz. The reanalyses produ-
cers were to provide relevant information (gridded fields
of basic primary variables) in agreed formats and grids
(where applicable), to enable the agreed intercomparison
procedure to be carried out. A ‘processing centre’ would
take responsibility for the intercomparison of a particular
variable in which they had a strong interest and expertise.
The processing centres would analyse ensemble statistics
based on the input from the individual reanalyses, and
create relevant indices, metrics or graphics that could be
directly compared.

Table 1 provides a list of the variables chosen for inter-
comparison. Table 2 lists the ORAs included in the study,

Table 1. List of ocean variables inter-compared and responsible
processing institution.

Variable

Ocean Heat Content MetOffice
Steric Height CMCC
Sea Level Mercator Ocean
Surface Heat Fluxes University Reading
Mixed Layer Depth MRI/JMA
Salinity CAWCR
Depth of 20 degree Isotherm Mercator Ocean
Sea Ice Env Canada
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and provides some details about the product name, associ-
ated institution, surface forcing, the ocean model, its resol-
ution1, assimilation method and observations assimilated.

The realtime ORAs are shown in italic. The data
assimilation column lists the observation types used for
their estimation (T/S for temperature and salinity; SLA:

Table 2. List of Ocean Reanalysis products entering the inter-comparison.

Product Forcing Configuration Data Assim. Method

ARMOR3Da,b

CLS
N/A 1/3° Obs-Only

(T/S/SSH/U/V)
OI (SLA/MDT/T/S/SST)

CFSRc,d

NOAA NCEP
Coupled DA 1/2° MOM4 coupled 3DVAR (T/SST/SIC)

C-GLORS05V3e

CMCC
ERAi corr+Bulk 1/2° NEMO3.2 3DVAR (SLA/T/S/SST/SIC)

ECCO-NRTf

JPL/NASA
NCEP-R1 +CORE Bulk 1° MITgcm KF-FS (SLA/T)

ECCO-v4g,h

MIT/AER/JPL
ERAi+CORE Bulk 1° MITgcm 4DVAR (SLA/SSH/T/S/SST)

EN3 v2ai

Hadley Center
N/A 1° Obs-Only (T/S) OI (T/S)

GECCO2j

U. of Hamburg
NCEP-R1+Bulk 1°×1/3° MITgcm 4DVAR (SLA/T/S/MDT/SST)

ECDAk,l

GFDL/NOAA
Coupled DA 1/3° MOM4 coupled EnKF (T/S/SST)

GloSea5m,n

UK MetOffice
ERAi+CORE Bulk 1/4° NEMO3.2 3DVAR (SLA/T/S/SST/SIC)

MERRA Ocean
GSFC/NASA/GMAO

Merra +Bulk 1/2° MOM4 EnOI (SLA/T/S/SST/SIC)

GODASo

NOAA NCEP
NCEP-R2 Flux. 1°×1/3° MOM3 3DVAR (SST/T)

GLORYS2V1(G2V1)
Mercator Océan

ERAi corr+CORE Bulk 1/4° NEMO3.1 KF+3DVAR (SLA/T/S/SST/SIC)

GLORYS2V3(G2V3)
Mercator Océan

ERAi corr+CORE Bulk 1/4° NEMO3.1 KF+3DVAR (SLA/T/S/SST/SIC)

K7-ODA(ESTOC)p

JAMSTEC/RCGC
NCEP-R1 corr. Flux 1° MOM3 4DVAR (SLA/T/S/SST)

K7-CDAq

JAMSTEC/CEIST
Coupled DA 1° MOM3 coupled 4DVAR (SLA/SST)

LEGOSr

LEGOS
N/A 1/4° Obs-Only (SL) OI+EOF (SLA/SSH)

NODCs

NODC/NOAA
N/A 1° Obs-only (T/S) OI (T/S)

PEODASt

CAWCR(BoM)
ERA40 to 2002; NCEP-R2
thereafter.

Flux 1°×2° MOM2 EnKF (T/S/SST)

ORAS4u,v

ECMWF
ERA40 to 1988; ERAi
thereafter. Flux.

1° NEMO3 3DVAR (SLA/T/S/SST)

MOVE-Cw

MRI/JMA
Coupled DA 1° MRI.COM2 coupled 3DVAR (SLA/T/S/SST)

MOVE-G2x

MRI/JMA
JRA-55 corr+Bulk 0.5°×1° MRI.COM3 3DVAR (SLA/T/S/SST)

MOVE-COREy,z

MRI/JMA

CORE.2 Bulk 0.5°×1° MRI.COM3 3DVAR (T/S)

SODAaa

U. of Maryland and TAMU
ERA40 to 2002; ERAi
thereafter. Bulk

1/4° POP2.1 OI (T/S/SST)

UR025.4bb

U. of Reading
ERAi +CORE Bulk 1/4° NEMO3.2 OI (SLA/T/S/SST/SIC)

AVISOcc

CLS
N/A 1/4° Obs-Only (SSH/SLA) OI (SLA)

SlCCIdd

ESA
N/A 1/4° Obs-Only (SSH/SLA) OI (SSH)

aGuinehut et al. 2012; bMulet et al. 2012; cSaha et al. 2010; dXue, 2011; eStorto et al. 2011; fFukumori, 2002; gWunsch & Heimbach, 2013; hSpeer & Forget,
2013; iIngleby & Huddleston, 2007; jKöhl, 2014; kZhang et al. 2007; lChang et al. 2013; mBlockley et al. 2013; nWaters et al. 2014, oBehringer, 2007;
pMasuda et al. 2010; qSugiura et al. 2008; rMeyssignac et al. 2012; sLevitus et al. 2012; tYin et al; 2011; uBalmaseda et al. 2013; vMogensen et al.
2012; wFujii et al. 2009; xToyoda et al. 2013; yTsujino et al. 2011; zDanabasoglu et al. 2013; aaCarton & Giese, 2008; bbHaines et al. 2012; cc[(http://
www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf]; ddAblain et al. 2013.
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altimeter-derived sea level anomalies; SSH: sea surface
height -from tide gauges; SST: sea surface temperature,
MDT: mean dynamic topography, SIC: sea ice concen-
tration), as well as assimilation techniques used for reanaly-
sis: Optimal Interpolation (OI), Ensemble Kalman Filter
(EnKF), Kalman Filters and Smoothers (KF-FS), Ensemble
OI (EnOI), variational methods (3D-var and 4D-var). Some
of the observational products also use statistical techniques
such as Empirical Orthogonal Functions (EOFs). In addition
toORAs, Table 2 also lists products namedObs-only (OO in
what follows), meaning that they are observation-only pro-
ducts that do not include a dynamical oceanmodel. TheOOs
provide sea surface height (SSH) or its anomaly (SLA), and/
or temperature and salinity (T/S) estimates, and sometimes
3D velocities (U,V), as in the case of ARMOR3D. The
atmospheric surface forcing is usually provided by
atmospheric reanalyses, using either direct daily fluxes, or
different bulk formulations. Sometimes the atmospheric rea-
nalysis forcing is corrected (suffix corr in Table 2), using a
variety of methodologies. There are also systems that use
fluxes from coupled data assimilation systems (Coupled
DA), which come in multiple flavours (parameter esti-
mation, EnKF, weakly coupled). The section on ‘Surface
Heat Fluxes’ below provides additional discussion. The
detailed description of the analysis systems joining ORA-
IP and their differences is beyond the scope of this paper.
However, more details about the products can be found in
the references given in the Table.

The production centres provided monthly mean fields
interpolated to the standard 1 × 1 degree latitude-longitude
grid used by the World Ocean Atlas 2009 (WOA09)
(Locarnini et al. 2010). Heat and salinity content, their
steric contribution, and assimilation increments of tempera-
ture were provided as vertically integrated quantities from
the surface down to a number of depths: 0–100 m; 0–300
m; 0–700 m; 0–1500 m; 0–3000 m; and 0–4000 m.

The ORAs can be exploited, among other purposes, to
assess the strengths and weakness of the different systems,
to identify gaps in the observing systems, and to identify
robust quantities to use in climate monitoring. The focus
of the results presented is to identify the commonalities
and differences among the existing reanalyses. To this
end, a multisystem ensemble approach is followed, where
the signal and its associated uncertainty are measured by
the ensemble mean EM(t) and the ensemble standard devi-
ation (ESD(t)) respectively, defined as:

EM(t) = 1

N
SN
K=1XK(t) and

ESD(t) =
��������������������������������
1

N − 1
SN
K=1(XK(t) − EM (t)2)

√ (1)

where Xk(t) denotes an individual reanalysis product. The
different signals in a time series (mean, seasonal cycle,

interannual variability, etc.,) are the result of a temporal
filter F, and here EMF(s) and ESDF(s) denote the ensemble
mean and ensemble standard deviation of the filtered
signal2. The temporal standard deviation of the filtered
ensemble mean EMF(s) is defined as sF

EM , while sF
ESD is

the quadratic mean of ensemble spread of the filtered
ESDF(s) as follows:

sF
EM =

��������������������������������������
1

MF − 1
SS=MF

S=1 EMF(s) − EMF
( )2√

and

sF
ESD =

������������������������
1

MF
S
S=MF

S=1 ESDF(s)( )2√ (2)

with EMF the time mean of the filtered EM, and MF is the
number of independent temporal samples in the filtered
timeseries. The signal-to-noise ratio, defined as the ratio
sF
EM/s

F
ESD, provides guidance on whether the estimation

is robust. For instance, estimations with signal-to-noise
less than unity are usually not considered robust.

In what follows, the term EM-ORA and EM-OOwill be
used to refer respectively to the ensemble mean of ORAs
and OOs. The rest of the article presents a brief overview
of the preliminary results of the intercomparison of the vari-
ables listed in Table 1.

Heat content

Monthly mean depth integrated potential temperatures
(K m) were used in this study. The vertically integrated
temperature was converted to ocean heat content (OHC)
per unit of area by multiplying by reference values for
density (1025 kg m−3) and specific heat capacity (3985 J
Kg−1 K−1). This quantity, further integrated in the horizon-
tal global domain, and computed relative to a common
reference period of 1993–2007, has been used to estimate
changes in the global OHC. Note that when the timeseries
are dominated by trends, the choice of reference period
impacts the time evolution of the spread among the time-
series3. The apparent increase in spread among analyses
during the 2000s is substantially reduced if one chooses
the 2003–2007 reference period (not shown).

Time series of global OHC change (Figure 1) show best
agreement for the upper levels and the products start to
diverge as the integration is carried out to deeper levels.
The largest rates of 0–4000 m OHC rise during the 1990s
exceed 3 Wm−2 (expressed relative to Earth’s surface
area) for some products initialized in the early 1990s and
cannot be considered physical. They are most likely arte-
facts of system spin-up or ‘shocks’ related with introduc-
tion of the altimeter data. Trends over the period 2000–
2009 for 0–4000 m OHC give values between about 0.1
and 0.8 Wm−2. The OO products ARMOR3D and EN3
are both near the upper end of this range. Ocean heat
uptake below 300 m appears to increase markedly in the

Journal of Operational Oceanography s83

D
ow

nl
oa

de
d 

by
 [

IF
R

E
M

E
R

- 
C

en
tr

e 
D

e 
B

re
st

] 
at

 0
6:

30
 2

3 
Se

pt
em

be
r 

20
15

 



early 2000s for most products (Palmer et al. 2014), qualitat-
ively supporting the results from the ORAS4 system (Bal-
maseda et al. 2013), although there is still a large spread in
the amplitude of the OHC, and spatial patterns of change
below 300 m vary among ocean data assimilation products
(not shown). The OO products ARMOR3D and EN3 both
show a similar signal of deep ocean heat uptake to ORAS4,
illustrating that this signal is inherent to the observations
(Palmer 2014).

Figure 1 also shows that the ensemble spread of the
multi- ORA is larger than the ensemble spread of the
ORAS4 system (Balmaseda et al. 2013b). Whether this
holds for other individual ensemble-based ORA would
need to be evaluated. A more difficult question is
whether the multi-ORA spread is a good estimator of the
existing uncertainty. It appears similar to the spread
obtained with observation-only estimations (Palmer 2010).

Steric sea level

Steric sea level (SSL) refers to the change of sea level due
to ocean density variations associated with thermal and
haline expansion or contraction of sea-water. SSL rise is
responsible for about 30% to 40% of the total sea level
rise during the last decades, according to recent estimates

(Cazenave & Llovel 2010; Church et al. 2011). The
ORA-IP is being used to investigate the steric sea level
variability, by: (i) quantifying the global SSL, its uncer-
tainty and consistency with respect to independent esti-
mates; (ii) assessing the regional SSL change and the
agreement among ocean reanalyses; (iii) quantifying the
relative contributions of the thermal and haline components
and (iv) quantifying the relative contributions of different
vertical depth ranges (Storto et al. 2014). Some of these
aspects are clearly related with the ocean heat content vari-
ations and with the attribution of sea-level changes, but are
not discussed here. Instead, this section focuses on the per-
formance of the EM-ORA compared to EM-OO.

SSL can be diagnosed in two different ways: (i) as nor-
malized vertical integration of density anomalies (SSL-
density), and (ii) as the differences between sea-level and
bottom pressure anomalies (SSL-residual). The latter is
not easy to infer from models, which are volume-
preserving by virtue of the Boussinesq approximation
(Greatbatch 1994). Instead, temperature and salinity
monthly means from the ORA and OO products, contain-
ing information from in-situ observations, are used to diag-
nose SSL-density. Satellite-products are used to derive
SSL-residual, thus providing an independent validation
data set. Here monthly means of altimetric sealevel

Figure 1. Time series of global ocean heat content anomaly, relative to a baseline period of 1993–2007. Note that SODA only includes
grid boxes that span the full column and therefore will tend to underestimate OHC changes as the depth of integration increases.
ARMOR3D and EN3 are obs-only analyses and do not include a dynamic model component. [UoR in legend corresponds to the
URO25.5 in Table 2].
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anomaly (from AVISO) minus gravimetric ocean bottom
pressure anomaly are used; (from GRACE RL05
(Chambers & Bonin 2012) available from 2005).

The top-left panel of Figure 2 depicts the 2005–2009
map of temporal anomaly correlations between SSL-
density from EM-ORA and SSL-residual (altimetry
minus gravimetry). The high values of the correlation
suggest high consistency in SSL between two independent
estimates of SSL over most of the Global Ocean. In the
Southern Ocean, south of approximately 60S, where the
availability of in-situ observations is poor, the correlation
is lower. The top-right panel shows the temporal anomaly
correlations, calculated after the seasonal signal has been
removed (i.e. inter-annual signal retained). Although
removing the seasonal cycle decreases the correlation
value (especially in the Atlantic Ocean and at high lati-
tudes), EM-ORA still exhibits high correlations for the
inter-annual signal in the tropical areas and at mid-latitudes.

The correlation between SSL-density and SSL-residual
is higher for EM-ORA (0.84) than for any individual
product (0.77 at the maximum), and also higher than for
EM-OO (0., not shown). The latter is especially evident
in areas where the in-situ observing network is poor and/
or where there is impact of deep and bottom waters. The
bottom panels of Figure 2 show the difference of the
anomaly correlation with respect to the validation dataset
between the EM-ORA and the EM-OO for the full (left)
and inter-annual (right) signals. The high correlation
obtained by EM-ORA emphasizes the added value of the
dynamical constraints and atmospheric forcing included
in the ORAs. This is evident in the full fields (in the
Southern Ocean, in the South Atlantic and just south of

the Bering Strait), and especially noticeable for the inter-
annual signal.

Although the EM-ORA proves to be a good estimator
of total steric height, uncertainty still remains regarding
the partition into thermal and haline components, and the
contribution of different depth ranges. Preliminary results
over a longer intercomparison period (1993–2009) (Storto
et al. 2014) show a large spread regarding the contribution
of deep layers (below 700 m of depth) to SSL trends, with
a low signal-to-noise ratio in the trend estimation of less
than 1.

Sea level

The sea levels from the ORAs in Table 2 and two OO pro-
ducts (ARMOR3D and LEGOS) have been evaluated.
(The sea level ARMOR3D is effectively the delayed
gridded AVISO [http://www.aviso.oceanobs.com/fileadmin/
documents/data/tools/hdbk_duacs.pdf] product, also called
DUACS). This comparison focuses mainly on the interann-
ual variability and regional distribution of the trend, and it
uses globallydetrended monthly means of sea level
anomalies. For each product, the seasonal cycle was
removed at each location of the ocean domain. The global
mean sea level for each month was also removed.

Two reference data sets have been used for the evalu-
ation: sea level from tide gauges, and the newly reprocessed
altimeter-derived sea level from the ESA Climate Change
Initiative (SLCCI) (Ablain et al. 2013). The latter is a
gridded dataset where the original altimeter data has been
reprocessed with improved algorithms (orbit, wet tropo-
spheric corrections, among others) and ancillary data

Figure 2. 2005–2009 Steric Sea Level anomaly correlation of EM-ORAwith respect to the validation dataset (altimetry minus gravime-
try) described in the text, for the full (top-left) and the inter-annual signal (top-right). Correlations higher than 0.25 are significant (at the
95% confidence level). The bottom panels show the map of differences between the EM-ORA anomaly correlation and the EM-OO
anomaly correlation for the full (bottom-left) and the inter-annual signal (bottom-right). Positive (negative) values indicate that the corre-
lation is higher (lower) with EM-ORA than with EM-OO.
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(using improved atmospheric fields for instance) in order to
produce consistent time series of sea level for climate
studies. SLCCI has not been assimilated by any of the pro-
ducts in Table 2, although many of these products assimi-
late along-track satellite altimetry (usually AVISO). Only
two products (ECCO-v4 and LEGOS) use information
from tide gauges.

The tide gauges used for the evaluation are the same as
the subset from the Global Sea Level Observing System
[GLOSS, see http://www.gloss-sealevel.org/] chosen for
evaluation of sea level reconstructions (Meyssignac et al.
2012).

Monthly means of sea-level anomaly at the tide gauge
locations were created after removing the effects of tides

and inverse barometer from the original tide gauge data.
This allows a relevant comparison with sea level anomalies
from the reanalysis products because tides and inverse bar-
ometer are not represented in the reanalysis products. The
ORAs and OOs were spatially interpolated to the tide
gauge locations. All the time series involved in the analyses
were detrended at each location by removing the product-
specific local linear trend.

The comparison with tide gauges appears in the top
panels of Figure 3. The statistics are for the period 1993–
2009. Figure 3(a) shows the scatter diagram for the individ-
ual products (top-left), with the temporal correlation (x-
axis) and the rms error (cm, in the y-axis). A large scatter
in the scores is seen among different products, with the

Figure 3. Top: Comparison between tide gauges and ORAs and OOs, after detrending and removing of seasonal cycle: (a) RMS/Corre-
lation diagram for the individual products using GLOSS tide gauge data as reference; (b) correlations between EM-ORAalti and tide gauges
time series, at tide gauge locations. Bottom: Evaluation of a sea level index: (c) Taylor diagram using SLCCI as verification (red contours
interval is 0.5 cm, centered in the verification); (d) Index time series, defined as the area-averaged sea level anomalies over the North-East
Tropical Pacific region (0–12°N, 84–108°W). Red contours in the Taylor diagram in (c) represent the RMS error, plotted at 0.5 cm intervals
centered on the verification value. Anomalies and statistics have been computed over the 1993–2009 period.
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best fit generally obtained by the products assimilating
SLA, and in particular by those with higher horizontal res-
olutions, with scores comparable to those obtained by the
altimeter-derived SLCCI and AVISO. This result indicates
that not all the ORAs are equally likely, and therefore the
grand ensemble mean may not be appropriate to estimate
coastal sea-level variations. In this case, the ensemble
approach is limited to those products that assimilate alti-
meter EM-ORAalti. Figure 3b shows the correlation map
between tide gauges and EM-ORAalti. Even with the
reduced ensemble, the correlation is higher in the open
ocean than in the continental shelves, and it appears
higher in the tropics than at higher latitudes.

A different application of the multi-ORA ensemble is
the definition of climate indices relevant for regional
climate monitoring, which is illustrated in the following
(although more work is needed to define relevant
indices). The sea level variability averaged over the
Eastern North Tropical Pacific region (0–12°N, 84–108°
W) has been chosen as an example, because although
different from the traditional equatorial El Niño index, it
reflects the impact the El Niño in the Western Coast of
Mexico related to the coastal propagation of Kelvin
waves. In this case, ESACCI is used as validation data
set. All products show a coherent interannual variability
(Figure 3d), even when altimeter data are not assimilated,
and there is very small spread around EM-ORA (black).
The variability is dominated by the El Niño 1997–98,
and a significant negative trend of ~3–4 mm/y, consistent
with the lack of Eastern Pacific ENSO in the last decade,
and with the recently reported strengthening of the
Pacific trade winds (Balmaseda et al. 2013b; England
et al. 2014; de Boisséson 2014). Figure 3c shows the corre-
sponding Taylor diagram for the different ORAs and OOs
averaged over this region. In contrast with the tide-gauge
evaluation, here the scores of the ORAs versus SLCCI
are quite similar (sixteen of the nineteen products show cor-
relations higher than 0.95 and rms differences lower than
1.5 cm). The smallest rms error (around 0.5 cm rms error,
y-axis in Taylor diagram) is achieved by the EM-ORA.
The EM-ORA score is comparable to that achieved by
the best members (which assimilate satellite altimetry)
and by AVISO, and is larger than 0.99. EM-ORA has a
weaker signal than SLCCI (4.8 instead of 5.2 cm of stan-
dard deviation, x-axis in Taylor diagram), a natural conse-
quence of the ensemble averaging.

In other areas, like the North Atlantic (not shown), there
are more discrepancies among the reanalysis products and
weaker signal-to-noise ratios. Discrepancies can arise
from different choices in the assimilation systems (Hernan-
dez et al. 2014). It has been shown that products assimilat-
ing altimeter data can be distinguished from those that do
not. The different methods used to assimilate altimeter
information can also introduce spread. For instance, the
altimeter can be used to constrain only the baroclinic

mode, or only the barotropic mode, or to constrain the
fresh water budget, or the three aspects simultaneously.
The altimeter data can be assimilated in anomaly mode
(using anomaly values relative to a reference period) or
using the absolute values (which implies the use of an
external mean dynamic topography (MDT), which differs
between systems). The ORA-IP can be used to gain
insight into the sensitivity arising from the assimilation
methods, but this is beyond the scope of this paper.

Surface heat fluxes

The purpose of this comparison is to assess the global heat
closure in ORAs, the consistency of the seasonal cycle and
interannual variability between the products, and to
compare with other heat fluxes from a variety of sources
(primarily satellite, ships, buoys and atmospheric reanaly-
sis). These other sources are not completely independent
(with the exception of satellite based radiative fluxes)
because they may also use SST or near surface meteorolo-
gical data to generate products. Nevertheless, they enable
some assessment of the uncertainty introduced by the rea-
nalysis methods themselves. Additional datasets include
the OAFlux latent and sensible heat flux product (Yu
et al. 2008) combined with ISCCP satellite based radiation
(Zhang et al. 2004), the ship-based NOC2.0 product (Berry
& Kent 2009), the Large and Yeager (2009) hybrid flux
dataset CORE.2, and two atmospheric reanalysis products,
the ECMWF ERAInterim reanalysis (Dee et al. 2011)
(referred to as ERAi) and the NCEP/DOE reanalysis R2
(referred to as NCEP-R2) (Kanamitsu et al. 2002).

Most ORAs are forced with bulk formulae using an
atmospheric dataset taken from an atmospheric reanalysis
product. In these cases, assimilation of sea surface tempera-
ture (SST) observations directly influences the net surface
heat flux, as the turbulent latent and heat fluxes, computed
from bulk formulae, and the outgoing long wave radiation,
computed using the Stefan-Boltzmann Law, depend on the
SSTs. The ORAs can also close their heat budget through
the temperature assimilation increments, since the verti-
cally integrated temperature assimilation increments, with
the appropriate unit transformation, are equivalent to a
heat flux (Balmaseda et al. 2013b).

Figure 4 shows the 17 yr mean globally integrated heat
fluxes for 15 individual ORAs and for the ensemble mean,
as well as for the other global flux products. The interann-
ual variability over the same period is shown by the error
bars. Most ocean reanalyses have a positive surface imbal-
ance (mean net surface heat flux into the ocean), usually
considerably smaller than for the observational products,
e.g. ISCCP/ OAFlux and NOC2.0, and smaller than for
atmospheric reanalyses in some cases. The largest interann-
ual variability is seen for the PEODAS product which uses
ERA-40 (Uppala et al. 2005) forcing fields until 2002, and
NCEP-R2 based forcing thereafter. Interannual variations
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over 1993–2009 are only ~1 W/m2 for the ensemble of 15
flux estimates. The contributions from the assimilation
increments are mostly negative (removing heat from the
ocean on the global average), resulting in a reduction of
the net heat flux. The total net heat flux applied (i.e.
surface plus assimilation) is still positive and mostly
smaller than ±2 W/m2, consistent with reported warming
in global ocean heat content (Levitus et al. 2012; Balma-
seda et al. 2013b; Palmer et al. 2010).

The seasonal cycle in surface heat fluxes closely agrees
in most regions between the reanalysis products (not
shown), with monthly spreads generally being smaller
than 10 Wm-2 over most of the global ocean, exceptions
being the subpolar gyres, the Southern Ocean and some
eastern subtropical basin areas (Valdivieso et al. 2014).
Interannual signal-to-noise ratios for the surface heat
fluxes over the period 1993–2009 show strong signals
(2+) in the ENSO affected regions and perhaps some
signals at higher latitudes, but with signal/ noise ~1,
longer analysis periods may be needed to identify this

variability more clearly. Regional comparisons are being
extended to include individual flux components (represent-
ing radiative and turbulent transfers), and also validation
against in situ flux measurements at a number of Ocean-
SITES moorings (Valdivieso et al. 2014), which provide
an independent check that is not reliably gained from any
other source.

Mixed layer depth

Mixed layer depth (MLD) is one of the most important vari-
ables for both the dynamical process of climate variation
and for biogeochemistry. Intercomparison of the seasonal
to interannual variability in the global MLD provides a
useful gauge of the value of ORAs for the study of
climate variability.

The MLD used in this study is defined as the depth
where potential density exceeds the 10 m depth value by
Δρ = 0.03 or 0.125 kg/m3 (MLDr003/MLDr0125). Simi-
larly, the isothermal layer depth (ILD) is defined as the

Figure 4. Time mean global net ‘Surface’ heat fluxes (grey bars) and their interannual standard deviations (red error bars) over the 17
years (1993 – 2009) spanned by all data sets. The 15 member ensemble of ‘Surface’ flux products is also shown (dark grey bar), along
with observation based on atmospheric reanalysis products to the right hand side (orange bars). Eight products also have ‘Assimilation’
fluxes (blue bars) computed by integrating the temperature increments from the surface down to the bottom, along with ‘Total’ -fluxes,
i.e. ‘Surface’ +’Assimilation’ fluxes (green bars). Positive is heat flux into the ocean. Units are in Wm−2.
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depth where potential temperature differs from the 10 m
depth value by ΔT = 0.2 or 0.5°C (ILDt02/ILDt05). Differ-
ent criteria are used because it is not easy to find a unique
threshold that defines the mixed layer depth at all latitudes.
For MLD/ILD verification the MILAGPV (Hosoda et al.
2010) and deBoyer (deBoyer Montegut et al. 2004) data-
sets are used, also estimated from the individual TS pro-
files, following the definitions above. In particular,
MILA-GPV uses only the Argo profiles without interp-
olation between grid points, although the spatio-temporal
coverage of the dataset is limited. deBoyer provides the
monthly climatological fields (MLDr003 and ILDt02).

The MLD/ILD are calculated from monthly means of
temperature-salinity (TS) fields on the individual native
grids of three OO products (EN3v2a, ARMOR3D,
WOA09) and 16 ORAs; these are then interpolated to the

regular global longitude-latitude common grid. EM-ORA
is estimated as the ensemble average of individual MLD/
ILD on the common grid (this will differ from the MLD/
ILD calculated from the ensemble mean of TS). The
MLD/ILD from the individual ORAs exhibit various
biases in the mean fields depending on the diversity of
model configurations and assimilation systems (not
shown). Here the evaluation of EM-ORA is focussed on
rather than on the detailed representations of the individual
reanalysis fields, which will be described in future work.

Figure 5 presents the zonal mean monthly MLD/ILD
normalized differences of EN3v2a, ARMOR3D, deBoyer,
WOA09 and EM-ORA with respect to the MILA-GPV as
reference. Note that values averaged over the Argo-rich
2005–2011 period are plotted for MILA-GPV, EN3v2a,
ARMOR3D and EM-ORA, while the climatological

Figure 5. Zonal mean monthly MLDs and ILDs from MILA-GPV averaged over 2005–2011 (left column).
Others: Differences from MILA-GPV, normalized by the MILA-GPV values.
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fields are provided by deBoyer and WOA. The differences
between deBoyer and MILA-GPV (MLDr003 and ILDt02)
are generally small, since MILA-GPV and deBoyer are
comparable datasets that use individual TS profiles. The
larger differences appear in high latitudes, where the avail-
ability of ocean observations is limited. MLDs/ILDs for
EN3v2a and ARMOR3D are biased-shallow due to the
use of gridded and monthly mean TS fields. ILDt02s in
WOA are 20 to 40% shallower than MILA-GPV globally,
due to the use of the climatological TS field (de Boyer
Montegut et al. 2004). Using larger values for criterion
(Δρ = 0.125 kg/m3 and ΔT = 0.5°C) reduces the shallow
biases. The shallow biases in MLDr0125 and ILDt05 for
EN3v2a and ARMOR3D are generally less than 20%
except at high latitudes. We found that a large portion of
these shallow biases result from the coarser vertical resol-
ution of the OO gridded TS products at relevant depths
compared with the model based reanalyses (Toyoda et al.
2014). Model biases do cancel in most areas in the EM,
although large positive biases remain in regions where
common biases are well known from coarse resolution
models (Hasumi et al. 2010) (e.g. the Kuroshio Extension
and Antarctic Circumpolar Current regions). In addition,
ILDt05 values from WOA, EN3v2a, ARMOR3D and
EM-ORA are commonly larger than those from MILA-
GPV in the subarctic regions and Southern Ocean around
spring. This is likely due to the fact that MILA-GPV is
the only product that does not use monthly means of TS
when deriving MLD/ILD. This specific topic will be
described in future work.

Salinity in the top 700 m

Salinity variability has a significant impact on the density
structure and dynamics of the ocean. However, it is only
in the past few years that assimilation of salinity has
received attention, largely because of the advent of Argo
[see http://argo.jcommops.org], which has significantly
improved the sampling of the global ocean salinity), and
because of its importance in obtaining balanced ocean
states. For instance, recent studies on seasonal forecasts
(Zhao et al. 2013a, b) demonstrate that the assimilation of
salinity observations results in improving ocean states
density and T/S properties, resulting in better ENSO
prediction.

This study evaluates the averaged salinity in the top 700
m of the ocean (S700) as represented by the EM-ORA and
compared it with the EM-OO. As discussed, the ESDORA
gives an indication of uncertainty, and the signalto- noise
ratio provides guidance on where the signal measured by
the ensemble mean dominates over the noise measured
by the ensemble spread.

Figure 6a shows the difference of annual mean S700
between EM-ORA and EM-OO in Table 2 over the
period 1993-2010. The difference is largest (~0.2 psu) in

regions of strong frontal variability such as the Gulf
Stream, Southern Ocean along the Antarctic Circumpolar
Current (ACC) region, and to a lesser extent the Kuroshio
region. In the tropics the difference is generally less than
0.05 psu.

Figure 6(b) shows the ESD-ORA of the S700 1993–
2010 mean (or sM

ESD, whereM denotes 1993–2010 temporal
mean). In general the largest spread, up to 0.15 psu, is also
associated with the areas of strong variability or greatest
mean difference compared to the EM-OO analyses.
Around most of the ACC, the ESD-ORA is just large
enough to encompass the large differences between EM-
ORA and EM-OO. The spread is relatively large in the
eastern equatorial Atlantic and the western equatorial
Indian Ocean, where the spread reaches up to 0.1 psu

Figure 6(c) shows the correlation of S700 interannual
anomalies between the EM-ORA and EM-OO for the
period 1993–2010. Correlations are relatively high,
greater than 0.75, in the equatorial and sub-equatorial
Pacific, particularly in the centre and west. They are also
high in the eastern equatorial Indian Ocean, and throughout
parts of the sub-tropical and mid-latitude oceans. Corre-
lations are relatively low, less than 0.5, around the northern
edge of the ACC, Western Indian Ocean and parts of the
sub-tropical Atlantic, particularly downstream of the Med-
iterranean outflow. Each individual ORA can be correlated
with the EM-OO. Then the spread in this correlation gives
an indication of the disagreement in the estimate of varia-
bility between the different systems. This is shown in
Figure 6(d). There is some correspondence between areas
with large spread and low correlation in Figure 6(c), e.g.
the northern edge of the ACC in the Pacific Sector and
the northern part of the tropical Atlantic. Equally, the
high correlation in the Tropical Pacific, Eastern Indian
Ocean, North East Pacific and North East Atlantic, where
the spread is low, is indicative of consistency between the
different estimates. The Southern Ocean is an exception,
presenting relatively large values of the correlation and
large values of spread.

Figure 6e shows the standard deviation of the interann-
ual S700 anomalies (seasonal cycle removed) of EM-ORA
(sI

EM , where I stands for ‘interannual’). This gives an esti-
mate of the amplitude and geographical distribution of the
S700 interannual signal, which appears highest in subduc-
tion areas close to the edge of strong boundary currents. It
is also high in the western equatorial Pacific and central
Indian Ocean, probably associated with changes in the
fresh-water fluxes. Figure 6(f) shows the spread in the
S700 monthly anomalies of the ORAs (or s I

ESD) I. The
spread is largest in the sub-tropics and midlatitudes, par-
ticularly associated with western boundary currents and
the Southern Ocean. In the western boundary current
regions and parts of the Southern Ocean it exceeds 0.1
psu. The signal-to-noise ratio is greater than 1 in the equa-
torial west Pacific, central Indian Ocean and small regions
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of the mid-latitude ocean. However, over most of the
oceans the signal-to-noise ratio is less than 1 (Alves et al.
2014).

An interesting question arising from this study is why
the spread appears to be larger in the Gulf Stream than in
other western boundary currents. One possible explanation
is related to the stronger salinity fronts in this region, such

that small variations in the Gulf Stream path can produce
strong salinity anomalies. But other factors can contribute
as well, such as the uncertainty associated with deep-
water formation, sea ice, and a larger uncertainty in the rep-
resentation of the Gulf Stream path itself (compared with
other western boundary currents). The uncertainty intro-
duced by the assimilation method cannot be discounted

Figure 6 (a) 1993–2010 mean difference of S700 (Depth-averaged salinity over 0–700 m) between EM-ORA and EM-OO. The interval of
colour bar is 0.05 psu. (b) The ensemble spread of the mean S700 (ESD-ORA). The interval of colour bar is 0.05 psu. (c) Temporal cor-
relation of S700 monthly interannual anomalies between the EM-ORA and EM-OO, for the period 1993–2010. (d) Spread of correlation
coefficients of S700 anomalies from the individual ORAs. (e) The inter-annual standard deviation (1993–2010) of EM-ORA S700, repre-
sentative of the interannual ‘signal’ (s I

EM )I. The interval of colour bar is 0.02 psu. (f) The average ensemble spread of the interannual
anomalies of S700 (sI

ESD representing the uncertainty or ‘noise’). The interval of colour bar is 0.02 psu.
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either, and it would be interesting to evaluate the uncer-
tainty pattern of ocean model simulations, as well as that
of individual ensemble-based data assimilation systems.

Depth of 20°C isotherm

Variations in the thermocline depth are associated with
major modes of tropical climate variability. The depth of
the 20°C isotherm (D20) has been considered as part of
this intercomparison project as a proxy for thermocline
depth and variability in the tropical oceans. D20 monthly
means from the different ORAs in Table 2 and from two
OO products (EN3v2a and ARMOR3D) have been used.

The absolute value of D20 depends on the vertical dis-
cretisation of the model used in each reanalysis. Most of the
products have between 16–25 levels in the upper 200 m
depth. There is the small group of eddy-permitting,
NEMO based reanalyses, characterized by high vertical
resolution of the upper ocean (1 m in the first level, then
31 levels for the first 200 m depth). There is also some

ambiguity regarding the definition of D20 monthly means
included in the evaluations: these can be either ‘monthly
means of D20 from instantaneous values’ or ‘the D20
from the monthly means of the temperature field’. In this
preliminary diagnostics, different groups have used differ-
ent methods (Hernandez et al. 2014).

Figure 7 shows the spatial pattern of D20 in the EM-
ORA (Figure 7(a)), the differences between the two OO pro-
ducts (Figure 7(b)), and the difference between EM-ORA
and each of the OO products (Figure 7(c) and Figure 7
(d)). On average, EM-ORA is shallower than the OO pro-
ducts in the centre of gyres, and deeper on both eastern
and western boundaries of the ocean basins. There are also
large differences at the western boundaries, especially
along the Gulf Stream, which may be related with the misre-
presentation of the path of western boundary currents by the
models. However, differences along the western boundary
currents are also large between the OO products EN3v2a
and ARMOR3D (Figure 7(b)). Compared to the OO pro-
ducts, the D20 EM-ORA is slightly deeper in the Equatorial

Figure 7. (a) Global map of mean of D20 from EM-ORA. Differences in mean D20 between (b) the two OO products ARMOR3D and
EN3v2, (c) EM-ORA and ARMOR3D and (d) EM-ORA and EN3v2. Units are m. The mean fields have been calculated over the 2005–
2010 periods.
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Indian, Atlantic and Eastern Pacific Oceans, and shallower in
the Pacific Warm Pool. The reasons for this unexpected
difference will be investigated in future work.

Sea ice

Several studies have suggested that sea ice thickness may
be a predictor for seasonal sea ice extent (Kauker et al.
2009; Chevallier et al. 2013). This highlights a weakness
in almost all ice forecasting systems in that they don’t
include the explicit assimilation of ice thickness obser-
vations. Moreover, it remains to be seen how the predict-
ability of the seasonal ice cover depends on the
representation of various physical processes and model
details, such as spatial resolution and the inclusion of an
ice thickness distribution. By intercomparing various prop-
erties of the sea ice cover in existing ice-ocean reanalyses, it
may be possible to highlight deficiencies and best practises
in these systems toward answering the question: Are
current ice-ocean reanalyses suitable for initializing

seasonal forecasts of the ice cover? Here we present pre-
liminary results from this intercomparison.

The ice-ocean reanalyses considered here use a variety
of model resolutions, physics and analysis methods. Reana-
lysis details are provided in Table 2. For the ECMWF
reanalysis system, two additional versions of the system
were considered whereby only the method of ice assimila-
tion was varied (ERAL-linear, ERAN-non-linear (Tang
et al. 2013); note that these products do not appear in
Table 2).

Sea ice models used here include two community
models, the Los Alamos Community Ice model (CICE
(Hunke & Lipscomb 2010)) and the Louvain sea Ice
Model (LIM (Fichefet & Maqueda 1997)), as well as inde-
pendently developed models. While these models and their
particular implementation details may vary widely, an
important distinction is the representation of the ice thick-
ness distribution. Some models include a sophisticated
multi-category approach, while others use a single ice cat-
egory. This different treatment of ice thickness impacts

Figure 8. Example of mean sea ice thickness for the various ice-ocean reanalyses for March 2007. Also shown is a satellite estimate of sea
ice thickness from ICESat (bottom left).
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both ice dynamics and thermodynamics (Martensson et al.
2012).

Another important distinction is in the application of ice
assimilation. Many systems employ a simple nudging of ice
concentration toward a gridded ice analysis product (e.g.
OSISAF, NSIDC), while a few systems use more sophisti-
cated ice assimilation methods (e.g. 3DVar, SEEK).
However, perhaps the most important aspect of ice assimi-
lation is in how the increments to concentration affect ice
thickness. Two systems (ECMWF and Mercator) supplied
different versions of their reanalyses with/without ice
assimilation and the impact on ice thickness is non-negli-
gible, albeit unconstrained (not shown).

Figure 8 shows an example highlighting the large range
of mean ice thicknesses found for the various ice-ocean rea-
nalyses in March 2007. Also shown is a satellite estimate of
the ice thickness derived from ICESat (Kwok & Rothrock
2009) for February/March 2007. In general, the reanalysis
products all exhibit the basic feature of thicker ice cover
north of the Canadian Arctic Archipelago and Greenland
as seen in the observations, albeit to a varying degree.
However, the thickness of ice in the central Arctic and
along the Siberian coast varies widely. In particular, the rea-
nalyses tend to cluster toward either overly thin ice (~1 m)
or overly thick ice (>3 m), with perhaps only one or two
showing realistic thicknesses of about 2 m. These differ-
ences are larger than interannual variations and are on the
scale of the decadal thinning of the ice cover (not
shown). The relative contribution of the various factors
(e.g. model physics and resolution, atmospheric forcing,
data assimilation) that may be contributing to these differ-
ences is a topic of on-going study. Such large biases may
limit the usefulness of these products for seasonal
forecasting.

Summary

This paper presents the first results of the ORA-IP, which
aims at exploiting the diversity of existing ocean reanalyses
to identify those aspects that are robustly represented by the
different products and those where there is a large level of
discrepancy. The agreement can be exploited to define
indices for monitoring or verification, while the discrepan-
cies point towards areas for future enhancement of assimi-
lation and observing systems. The paper also illustrates the
use of independent evaluation metrics to measure the
quality of the ensemble mean and individual products,
thus providing guidance on the adequacy of the ensemble
approach.

The intercomparison has focused on a small set of
ocean variables, interpolated into a common horizontal
grid, and for a limited set of vertical levels (when appli-
cable). The intercomparison period is mainly 1993–2010,
although shorter periods are also used. Where relevant
(mixed layer, ocean heat content, steric height, sea level,

salinity and thermocline depth) the ensemble mean of the
ocean reanalyses was compared with observation-only esti-
mates, to assess if the model-derived estimates show any
systematic differences from the observation-only estimates.
The ensemble spread is also used as a measure of the exist-
ing uncertainty.

It is shown that in general the ensemble mean is usually
a better estimation than any individual ocean reanalyses.
However, in the case of coastal sea level variability, the
evaluation with tidegauge data indicates that ORAs with
high-resolution models and assimilation of altimeter are
more skilful, and the scores are better when using a sub-
ensemble including the subset of best ORAs instead of
the grand ensemble.

Systematic differences between OOs and ORAs are
largest in the tropics, where model-physics and the wind
variability are key assets for the ORAs. These differences
are seen in the thermocline and mixed layer depth. In
addition, the ensemble of ORAs performs better than the
OO products in the estimation of steric height variability
at seasonal and interannual time scales in the Atlantic and
outside the tropics.

The surface heat flux estimates from ocean reanalyses
were compared with other products, mostly based on
atmospheric reanalyses. Although large uncertainty still
exists, the ocean reanalyses global surface heat fluxes
appear more balanced than the atmospheric-based pro-
ducts, especially when the contribution of the assimilation
increments is taken into account. The results suggest that
data assimilation methods and ocean observations can con-
tribute to the estimation of surface heat fluxes.

The estimation of interannual variability of salinity con-
tinues to be a challenge. Signal-to-noise ratios larger than
one are confined to the tropical western Pacific, dominated
by the ENSO signal. This was the case in the previous inter-
comparison of reanalyses (circa 2006) (Stammer et al.
2010; Lee et al. 2009), and continues to be so now, in
spite of the increased salinity observations in recent
years. More work is needed to establish the source of uncer-
tainty (changing observing system; e.g. differences before
and after Argo, forcing fields, assimilation methods and
error specification).

The intercomparison of sea ice showed a large uncer-
tainty in the estimation of sea ice thickness, which is
largely unconstrained by the assimilation methods, high-
lighting the need for observations of ice thickness for
both assimilation and validation.

This ORA-IP has also identified areas where the uncer-
tainty is large, thus providing a focus for future develop-
ments in the observing system and modelling/data
assimilation. The deep ocean (below the top few hundred
metres), the Southern Ocean (Antarctic Circumpolar
Current region), coastal areas and the path of western
boundary currents appear as the areas with largest uncer-
tainty in the density, temperature and salinity fields. Not
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only are the differences between ORAs and OO products
the largest, but there is also a large spread among ORAs
(as expected from model error), and among OOs (likely
because observation representativeness errors are large).
These are also important areas for climate.

It is clear that we are still a long way from providing
ocean estimations that can answer satisfactorily many fun-
damental questions, and that continuous development of
the assimilation and observing system is needed. In the
meantime, the multi model ensemble strategy is a prag-
matic approach to exploit the current resources. It is also
clear that the evaluation of successive vintages of ocean
reanalyses should be a continuous process, since it is
needed to assess progress and to identify gaps, thus contri-
buting to setting the directions for future developments.
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Notes
1. Even the low resolution models resolve the Equatorial

Rossby Radius of deformation by including meridional grid
refinement close to the Equator.

2. Here s is a generic temporal index associated to the temporal
filter.

3. In the case of linear trends, the spread will increase with the
distance to thecenter of the reference period.
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