
$OURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. C9, PAGES 20,877-20,881, SEPTEMBER 15, 1996 

Properties of nonuniform grids used in ocean general 
circulation models 

A.M. Treguier 
Laboratoire de Physique des Oceans, Instimt Fran9ais de Recherche pour l'Exploitation de la Mer, 
CNRS-UBO, Plouzane, France 

J. K. Dukowicz 

Los Alamos National Laboratory, Los Alamos, New Mexico 

K. Bryan 

Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey 

Abstract. Ocean general circulation models frequently use nonuniform grids, 
especially in the vertical direction. This paper clarifies the implications of using 
such grids on the consistency and accuracy of numerical schemes. It is emphasized 
that numerical schemes maintain their order of accuracy on a nonuniform grid 
provided the grid can be related to a smooth mapping. Additional metric terms 
appear in the truncation error, which should not be interpreted simply as a 
numerical diffusion. 

1. Introduction 

Modeling the oceanic circulation is made difficult by 
the broad range of important spatial scales. Both the 
basin scale (thousands of kilometers) and the scale of 
narrow straits and boundary currents (tens of kilome- 
ters) need to be represented in a numerical model. In 
the vertical the gradients of density and tracers are of- 
ten concentrated in thin layers just below the surface 
mixed layer or in the thermocline. Because of com- 
putational limitations, the resolution is never sufficient 
and ocean modelers have been concerned by the effects 
of the truncation errors of the numerical schemes they 
use. 

example, argued that using a nonuniform grid could 
increase the truncation error of the vertical advection 

scheme in the Geophysical Fluid Dynamics Laboratory 
(GFDL) general circulation model [Braiart, 1969; Coz, 
1984]. Their conclusions were as follows: (1) Although 
the scheme is second order on a regular grid, it becomes 
inconsistent on an irregular grid, which means the trun- 
cation error no longer tends to zero as the grid spacing 
A is refined. (2) The advection scheme has artificial 
numerical diffusivity when the grid is irregular. Marti 
et al., [1992], pointed out that the problem does not 
arise in the model they use, because their numerical 
method is based on a smooth transformation function 
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which brings the irregularly spaced points (in physical 
space) to a regular grid (in computational space). 

Here we want to stress that the statement of Marti 

et al. [1992] applies to all models, including the GFDL 
model. YF's demonstration is valid only for the very 
special mapping between physical and computational 
space that they have chosen. 

YF analyze the truncation errors of the vertical ad- 
vection operator on a nonuniform grid in the GFDL 
model and conclude that the scheme exhibits artificial 

numerical diffusion. It is common practice to identify 
second-order spatial derivative truncation error terms 
with diffusion, and this is apparently what YF do. 
Third-order spatial derivative terms in the truncation 
error are typically identified with dispersion. This prac- 
tice arises from the theory of first-order partial dif- 
ferential equations and the corresponding classification 
of these equations as either parabolic or hyperbolic. 
Parabolic equations are associated with even-order spa- 
tial derivative terms and are characterized by nega- 
tive real eigenvalues; this implies that second-order mo- 
ments or the total "energy" are always decreasing, and 
therefore these equations are "dissipative." A prime 
example is the diffusion equation, and therefore these 
equations are commonly labeled "diffusive" since they 
tend to "smear out" prognostic quantities (positive real 
eigenvalues are associated with "antidiffusion"). Hy- 
perbolic equations, on the other hand, are associated 
with odd-order spatial derivative terms and are charac- 
terized by imaginary eigenvalues. These equations typi- 
cally represent waves whose phase speed is wavenumber- 
dependent, and they are therefore "dispersive." This 
implies that second-order moments or the total energy 
are conserved and prognostic quantities are merely re- 
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distributed by the waves. Note, however, that these 
equations are typically analyzed in a uniform (Carte- 
sian) coordinate system. 

Unfortunately, truncation error terms evaluated on 
a nonuniform grid can give rise to spatial derivative 
terms associated with a represention of th e equation 
in a nonuniform coordinate system (the so-called met- 
ric terms) and not associated with the above classifica- 
tion. Classification by the order of the spatial derivative 
terms is therefore not reliable, and computation of the 
eigenvalues is too difficult. It is therefore important to 
test for the behavior of the second-order moments to 
conclude whether truncation errors associated with a 

particular scheme are diffusive or dispersive (or both). 
This is what we do in section 3. 

2. Consistency of the Scheme 

The order of accuracy of a numerical grid is the alge- 
braic rate of decrease of the truncation error with the 

grid spacing A. This notion is clearly defined on a reg- 
ular grid only (when A is uniform). This issue has been 
discussed thoroughly by Thompson and Mastin [1985]. 

YF consider the example of vertical advection of tem- 
perature O(wT)/Oz, where w is the vertical velocity and 
T the temperature, in the GFDL model. The placement 
of the variables w and T on the staggered grid is shown 
in Figure 1. The grid spacing A• -- z•-x/2- z•+x/2 is 
positive, and the index k grows from the surface down- 
ward. In the GFDL model the vertical advection is 

approximated by 
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Figure 1. Position of the variables on the vertical gridø 
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YF calculate some leading order terms of the truncation 
errorø Their equation (3) can be rewritten as 
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Because of the second term on the right-hand side, YF 
claim that the truncation error does not tend to zero 

as A tends to zero, therefore the scheme appears to 
be inconsistent (i.e., a "zeroth-order" scheme). This is 
not true because the truncation error in (2) contains 
the difference of terms involving A•. The order of the 
expression (A•-x + A•+x-2A•) is a priori unknown. A 
classical definition for the order of an approximation is 
[Ames, 1977, p.16] "if e(•)is an approximation to E(•) 
we say it is of order n, with respect to some quantity 
A=, if n is the largest possible positive real number 
such that I E -e I -- O(ZX) ZX. --. 0." According to 
this definition, (2) only shows that the order n of the 
scheme must be n > 0. It does not demonstrate that n 

is exactly zero. 
To define the order of a scheme on a nonuniform grid 

one has to specify how the grid spacing A tends to zero, 
so that the order of expressions like (A•_z+A•+z--2A•) 
can be calculated. The most natural way to do this is to 
use a distribution function f which maps physical space 
onto a computational space, for example the interval 
[0,1], in which gria s•acing is uniform (A = l/N). The 
grid spacing is decreased by increasing the number of 
points N without changing the distribution function f. 
Thompson and Mastin [1985, p.243] show that when f 
is smooth, differentiable, and does not depend on N, 

all difference representations maintain their 
order on a nonuniform grid with any dis- 
tribution of points in the formal sense of 
the truncation error decreasing as the num- 
ber of points is increased while maintaining 
the same relative point distribution over the 
field. 

YF obtain a different result because they have violated 
this rule by choosing a very special mapping f' that 
depends on N as shown below. 

We take Thompson and Mastin's [1985] definition of 
order and assume that there exists a smooth (differen- 
tiable) function f which maps the nonuniform grid (in 
coordinates z) to a uniform grid (in coordinates r/): 

z - -H f07) , (3) 

where H is the total depth and both f and r/vary be- 
tween 0 and 1. Expressing A• = z•_•t --z•+• as a 
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function of r/, using the Taylor series for f and the fact 
that the grid spacing in r/is l/N, and denoting f• the 
derivative of f with respect to r/, 

A•_• + A•+• - 2A• 
4A• 4N •' f 

i fill 
-- • --. (4) 

Here we have assumed that the mapping applies to w 
points, Z•+l/•. - -Hf(r/•+l/•.), and that the T points 
are in the middle of w points as in the standard GFDL 
code. If the position of T points is calculated taking the 
mapping into account, the error is smaller as follows: 
the factor in (4)is 1/8 instead of 1/4. In both cases, 
when fm/f• is bounded as N tends to infinity, the error 
tends to zero and the scheme is second order. The error 

is reduced for smooth mappings with l frei << Ill. 
YF assume a constant stretching factor c. This cor- 

responds to the mapping 

c •v• - 1 

f(r/)- cN-••-. (5) 
The function f depends on N, which violates Thompson 
and Mastin's [1985] criterion. The truncation error for 
this mapping is independent of N, 

i fill 
4N •' f' 

--ln•'(c)/4, (6) 

therefore the scheme appears to be inconsistent. How- 
ever, this is merely an artifact of choosing the ill- 
behaved mapping in (5). 

3. Numerical Diffusion 

YF note that when the grid is irregular, another term 
appears in the truncation error, which they interpret as 
a diffusion term. To discuss this issue, we consider the 
simplified case when w is a constant. The truncation 
error e is 

T•_•- T•+• 2A• 

OT 

w 0•' (7) 

Using classical Taylor expansion, the leading order terms 
are 

The first two terms on the right-hand side resemble ones 
found in YF's equation (3). YF single out the second 
term and label it "numerical diffusion.. We do not 

think it is appropriate to do so. 
Again expanding the grid spacings in a Taylor series 

using the mapping (3), we obtain 

f'" OT H f" OaT 
4f•N •' Oz 2N 2 

+ (Hf') 2 OaT 1 + )' 
We note that all three terms are of order N -2 and 

therefore all three terms on the right-hand side of (8) are 
formally of the same order; this leads us to suspect that 
these terms should not be considered independently. 

It is convenient to work with a quantity related to 
the advection term (1) that more closely reflects the 
quantity actually being used in the code' 

wk Oz 2 

[A•_•+A•+•+2A•] 0T 4 + (to) 

96 Oz a ' 

where w was considered to be constant. Note the close 

resemblance between the terms in (8) and (10). Taking 
the coordinate transformation (3) into account, this can 
be rewritten as 

T•_ x - T• + x OT 
• dz 

2 Oz 

+ a uf,,0, 
aT (dr/) a O3T 

-- dr/•-•r/+ • ar/a , (11) 
where dz = H f•N -1 and dr/ = -N -1. This demon- 
strates that the 02T/Oz 2 term arises purely when trans- 
forming the OaT/Or/a truncation error term from r/- 
coordinates to z- coordinates. In other words, the 
02T/Oz 2 term is part of a metric term arising as a re- 
suit of the coordinate transformation. This reempha- 
sizes the point made in section 2 that discreti•,ation on 
a nonuniform grid is equivalent to working with a coor- 
dinate transformation and discretizing the transformed 
equationso Therefore the appearance of 02T/Oz 2 in 
the truncation error does not necessarily imply diffu- 
sive properties in the discretization. 

To test for diffusive properties in a coordinate-indep- 
endent manner, we note that the identity 

f T(V. •VT)dV = 
- f IVTI'av + f Tn. VTaS (12) 

is a coordinate-independent statement about a generic 
diffusion term. Thus diffusion terms must necessarily 
lead to negative-definite internal dissipative contribu- 
tions such as the first term on the right-hand side of 
(12)o The second term on the right-hand side is a pure 
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boundary term. This is related to the conservation of 
second moments in ocean models. Numerical schemes 
used in most ocean models conserve second moments 

[Br•tan, 1969; Blurnber# and Mellor, 1987; Marti et al., 
1992]. The conservation of T 2 by advection is readily 
demonstrated for the simplified case (10) by multiply- 
ing the operator waT/az by T and summing over the 
domain: 

N 

_ w (T•2r,•_ 1 T•2r'• ). (13) o _ H az 

The terms in the discrete sum cancel except for even- 
tual boundary contributions. A similar demonstration 
of second order moment conservation by the three- 
dimensional advection operator of the G FDL model is 
given by, for example, Bryan [1989]. Expression (13) 
is the equivalent of expression (12) when applied to the 
advective flux. Since this contains only boundary terms, 
we conclude that the a•'T/az •' term in the truncation 
error (10) does not have the properties of a physical 
dissipative process. 

As pointed out in the introduction, in a nonuni- 
form coordinate system, it is not possible to associate 
a•'T/az •' with diffusion in a straightforward manner. 
Rather, one has to consider the magnitude and relative 
importance of all the terms in the truncation error. The 
relative importance of the terms in (9) clearly depends 
on the mapping and on the temperature profile T(z). 
In the case of a regular grid, only the third term exists, 
but the total error may be larger than with the irregu- 
lar grid. For example, let us consider a sharp exponen- 
tial temperature profile (such as may be found in the 
tropics), T(z) -- To exp(z/A), with A = 300 m. We de- 
fine a quadratic stretching, f• (7) = (1- s -•)•2 + s-•. 
A stretching factor of s = I corresponds to a regular 
grid. Note that because fm= 0, the first term in (9) 
is zero. We have shown in Figure 2 the relative rms 
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Figure 2. Relative rms error, calculated over the 
depth, for the numerical estimation of aT/az for three 
different stretched grids (see text). 

error as a function of the number of grid points N for 
different stretching factors. The error ultimately al- 
ways decreases like N -•' for a sufficiently large number 
of points (since the scheme remains of second order on 
the irregular grid). As one would expect from intuition, 
the stretched grid has smaller error because it captures 
the large variations of the temperature near the surface 
better. In this particular case the last two terms on 
the right-hand side of (9) tend to cancel and reduce the 
erroro One must not overdo the stretching, however; in 
our example the error again grows for stretchings larger 
than five. For each choice of T(z) and f(o) there is an 
optimal stretching factor. All these issues arise for vari- 
able grids in the horizontal, as well as the vertical, for 
example when using curvilinear coordinates as in the 
models of Blurnberg and Mellor [1987] or Marti et al. 
[1992]. 

4. Conclusions 

In the ocean, sharp gradients of properties exist in 
the near-surface layers and in the thermocline. Ocean 
modelers traditionally use irregular grids in the vertical 
to better resolve these features. This is a good practice. 
Contrary to YF's claim, this does not modify the order 
of the numerical scheme, nor does it render an advection 
scheme diffusive. It is best to define the irregular grid 
using a smooth stretching function as in the work by 
Marti et al. [1992]. Only in that case can one be sure 
that increasing the number of grid points in the vertical 
will decrease the truncation error. However, this does 
not necessarily give the smallest truncation error. The 
truncation error depends on the solution, as well as on 
the position of the grid points. 

Global ocean models must represent regions with very 
different vertical profiles, and therefore the stretching 
of the grid is necessarily a compromise. A stretching 
appropriate for midlatitudes may not work as well in 
the tropics (e.g., a stronger stretching could decrease 
the truncation error even further). Conversely, even a 
moderate stretching may be too strong for the polar re- 
gions and could actually increase the truncation error 
there compared with a regular grid. Owing to the com- 
plexity of the ocean circulation, the design of vertical 
grids for global ocean models is an empirical process 
that must rely on the modeler's good judgment. This 
is also the reason why improvements may be achieved 
with adaptive meshes. 
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