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Abstract
Globally distributed observations of size-fractionated chlorophyll a and temperature were

used to incorporate temperature dependence into an existing semi-empirical model of phy-

toplankton community size structure. The additional temperature-dependent term signifi-

cantly increased the model’s ability to both reproduce and predict observations of

chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements

were in the smallest (picoplankton) size-class, for which overall model fit was more than

doubled, and predictive skill was increased by approximately 40%. The model was subse-

quently applied to generate global maps for three phytoplankton size classes, on the basis

of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar

waters were associated with marked decline in the chlorophyll a biomass of the smallest

cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a

complementary increase was seen in the chlorophyll a biomass of larger size classes.

These findings suggest that a warming and stratifying ocean will see a poleward expansion

of the habitat range of the smallest phytoplankton, with the possible displacement of some

larger groups that currently dominate. There was no evidence of a strong temperature

dependence in tropical or sub-tropical regions, suggesting that future direct temperature

effects on community structure at lower latitudes may be small.

Introduction
The structure and function of marine plankton communities are strongly influenced by organ-
ism size. Tiny picoplankton (0.2 to 2 μm diameter) comprise a widespread and relatively con-
stant background community that is associated with rapid recycling of nutrients in the
microbial loop. The larger nanoplankton (2 to 20 μm) and microplankton (20 to 200 μm)
groups are restricted to more productive regions, facilitating both the export of carbon from
the atmosphere into the ocean interior [1], and the transfer of energy and biomass to higher
trophic levels [2].
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The clear positive relationship between ecosystem biomass, productivity and phytoplankton
size has been attributed to the strong size-dependence of key plankton traits. In particular, allo-
metric scaling rules suggest that smaller cells benefit from higher resource affinities [3], such
that they can exclude larger, less competitive, size classes when nutrients are scarce [4]. Larger
groups can only avoid competitive exclusion where nutrients accumulate, either as a conse-
quence of an intermittent nutrient supply [5], or because top-down control by zooplankton
and viruses prevents full nutrient drawdown by the smaller groups [6, 7].

This view has been implicitly incorporated into diagnostic models of phytoplankton com-
munity structure, through which the relative chlorophyll a biomasses of pico-, nano- and
microplankton are estimated as a function of total community chlorophyll a [8–10]. Larger
size classes are assumed to become established alongside smaller ones, and hence picoplankton
are typically shown with relatively unrestricted biogeography from low to high latitudes. It is,
however, important to note that while semi-empirical models based on total chlorophyll a con-
centrations [8, 9] typically assume that phytoplankton communities are organised solely as a
function of total productivity and biomass, community structure has also been shown to vary
as a function of temperature [11], and clear exceptions to general chlorophyll-based trends
have been recorded at high latitudes [8]. Measurements along a meridional transect in the Ross
Sea, for example, have shown a counterintutive shift towards larger cells with increasing nutri-
ent stress and decreasing temperatures polewards of 60°S [12]. More recently, warmer temper-
atures in the Arctic have been associated with increased abundance of picoplankton at the
expense of nanoplankton, while total chlorophyll concentrations remained unchanged [13].
Similarly, measurements in the northwest Atlantic have shown a temperature-dependent
increase in the mean size of the picoplankton that appears to be driven by the exclusion of very
small cells in colder waters [14]. At the global scale, a reanalysis of*70,000 Prochlorococcus
and Synechococcus abundance measurements showed a strong decline in the abundance of
these two picoplankton groups at cold temperatures and high latitudes, but found only a weak
relationship with nutrient availability [15].

In this study, a global dataset of size-fractionated chlorophyll a and temperature measure-
ments [4] is used to show that an existing, temperature-independent, model of phytoplankton
community size structure [9, 16] tends to overestimate picoplankton chlorophyll a concentra-
tions at temperatures below*2°C. From this standpoint, temperature dependence is incorpo-
rated into the model, allowing a significant improvement in the model’s ability to represent
and predict cold-water chlorophyll a concentrations in all three phytoplankton size classes.
The observed trends are subsequently extrapolated to the global scale using satellite estimates
of sea surface temperature and chlorophyll a concentration, and the ecological and biogeo-
chemical implications are discussed.

Observations andmodels
A total of 620 concurrent depth-resolved observations (Table 1) for water temperature and size-
fractionated chlorophyll a biomass (picophytoplankton, nanophytoplankton and microphyto-
plankton) were taken from a previously published database [4] (see also [11, 17]). The observa-
tions span latitudes from 52°N to 68°S, across a temperature range of more than 30°C (-1.8°C to
28.9°C). Contrary to these earlier studies, the dataset used here includes all available measure-
ments regardless of depth (maximum depth was 170 m), because it was found that limiting the
observations to those taken above either 40 or 15 m had very little effect on the results (see Fig 1
and legend). Seven observations from the highly eutrophic and coastal Straits of Johor and Singa-
pore Strait were excluded on the grounds that they are clear outliers from the rest of the data (the
seven points located above and to the right of the main sequence in Fig 1A of reference [11]).
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Existing temperature-independent model
Following previous authors [16, 29], Brewin et al. [9] developed a semi-empirical model
through which the log-transformed chlorophyll a biomass in the picoplankton and combined
picoplankton+nanoplankton size classes (subscript s = pico or nano,pico) can be estimated
solely as functions of Ctotal.

log 10ðCsÞ ¼ log 10ðCm
s Þ þ log 10 1� e

� Ds
Cms

Ctotal

� �
ð1Þ

Note that while Eq 1 is functionally identical to Eqs 13 and 15 in reference [9], the inverse of
Cs is here included in the exponent [29, 30]. This allows Ds to constrain the relative contribu-
tion of Cs to Ctotal at low total chlorophyll concentrations (Ctotal ! 0), while Cm

s independently
describes the maximum value of Cs at high total chlorophyll concentrations (Ctotal !1). The
log transformation was applied to reflect the fact that chlorophyll a concentrations in the
ocean follow an approximately log-normal distribution, and to avoid excessive influence of
large chlorophyll a concentrations on the model parameters. These were estimated from the
data by linear least-squares regression, using the “fit” package in Matlab (R2012a). Prior

Table 1. Index of the studies fromwhich the size-fractionated chlorophyll a and temperature measurements were taken. All data were compiled by
[4].

Project Subset T � s n Source

Rothera Time Series Winter -1.7 ± 0.08 7 [18]

Rothera Time Series Autumn -1.3 ± 0.38 13 [18]

Rothera Time Series Spring -1.1 ± 0.66 26 [18]

SSAAC - 0.0 ± 0.13 6 [19]

SAAMES Marginal ice zone 0.2 ± 0.15 4 [20]

Rothera Time Series Summer 0.8 ± 0.36 12 [18]

Southern Ocean - 1.4 ± 1.01 10 [21]

SOIREE Inside patch 2.6 ± 0.13 36 [22]

SOIREE Outside patch 2.6 ± 0.10 14 [22]

Station KNOT Winter 2.7 ± 0.99 2 [23]

SAAMES Polar Front 4.4 ± 2.84 8 [20]

SEEDS Inside patch 6.3 ± 2.66 28 [24]

SEEDS Outside patch 6.7 ± 2.57 19 [24]

AMT 2 Temperate 10.5 ± 2.58 19 [25]

AMT 3 Temperate 11.1 ± 5.26 32 [25]

Station KNOT Summer 11.1 ± 4.09 4 [23]

Station KNOT Autumn 11.6 ± 0.42 2 [23]

TPR project - 14.3 ± 1.66 94 [26]

AMT 3 Oligotrophic 21.2 ± 3.13 81 [25]

AMT 2 Oligotrophic 21.7 ± 3.29 59 [25]

AMT 2 Equatorial 23.1 ± 5.27 29 [25]

AMT 3 Equatorial 24.2 ± 4.09 40 [25]

Tehuanos II - 24.8 ± 1.49 7 [27]

Arabian Sea - 25.9 ± 2.26 68 [28]

Abbreviations: SSAAC—Scandinavia-South Africa Antarctic Cruise; SAAMES—South African Antarctic Marine Ecosystems Study; SOIREE—Southern

Ocean Iron RElease Experiment; KNOT—Kyodo North Pacific Ocean Time-series; SEEDS—Subarctic-Pacific iron Experiment for Ecosystem Dynamics

Study; AMT—Atlantic Meridional Transect; TPR—Tamaño, Producción y Respiración del Fitoplancton.

doi:10.1371/journal.pone.0135581.t001
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parameter constraints were applied in accordance with the ecological meaning of the parame-
ters (Cm

s � 0 and 0� Ds � 1). Chlorophyll a biomass within the nano and micro size fractions
were estimated under the assumption that the total biomass is equal to the combined biomass
of all three size fractions (Cmicro = Ctotal − Cnano,pico and Cnano = Cnano,pico − Cpico).

Temperature-dependence
For each of the two directly estimated size fractions (s = pico and nano,pico), the relative resid-
ual errors (�s = model� observation) of the calibrated model are plotted as a function of tem-
perature in Fig 1. While the model residuals show no temperature-dependence in waters
warmer than approximately 2°C, there is an increasing tendency to overestimate picoplankton
chlorophyll as temperatures fall below this threshold (Fig 1a). A similar but much weaker trend
is apparent at cold temperatures in the combined picoplankton and nanoplankton size class
(Fig 1b).

The trends in Fig 1 suggest that the addition of a temperature-dependent term would allow
the size class model to better reproduce the observations at low temperatures. The appropriate
form for this additional term was examined by fitting three alternative (linear, quadratic and
exponential) temperature-dependent functions to the log-transformed model residuals, as out-
lined in Table 2.

The resulting fits are shown in Fig 1, with coefficients and goodness-of-fit metrics given in
Table 2. While the linear function has a weak but significant negative slope for both size frac-
tions (95% confidence level), it is outperformed in both cases by the quadratic and exponential
functions. Between these two higher order functions, there is little to differentiate them with
regard to the picoplankton + nanoplankton residuals, but the exponential function is clearly

Fig 1. Relative errors of the temperature-independent model, plotted as a function of temperature. The
three coloured lines in each plot represent linear (blue), quadratic (green) and exponential (red) functions that
were fit to the residuals as a function of temperature (Table 2). The dashed black lines indicate the fit of the
exponential function, with the exclusion of all observations taken below either 15 or 40 m depth. Data were
generously made available by E. Marañón [4].

doi:10.1371/journal.pone.0135581.g001
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the best in terms of reproducing the picoplankton residuals. Given its good overall perfor-
mance, and the fact that it better captures lack of a clear trend in warm waters, the exponential
form was used to incorporate temperature dependence into Eq 1.

log 10ðCsÞ ¼ log 10ðCm
s Þ þ log 10 1� e

� Ds
Cms

Ctotal

� �
� ase

�bsT ð2Þ

The model parameters were estimated as for the temperature-independent model. An addi-
tional constraint (as � 0) ensured that the estimated biomass in each size fraction did not
exceed Cm

s .

Results
The observations and resultant calibrated functions for the pico-, nano- and micro-plankton
size classes are plotted as a function of total chlorophyll a and temperature in Fig 2a–2c. The
same observations and functions are plotted in terms of the fractional contribution of each size
class to total biomass in Fig 2d–2f. Coefficients and goodness-of-fit metrics for the temperature-
independent and temperature-dependent models are shown for each size fraction in Table 3.

Temperature-independent relationships
The temperature-independent model (Eq 1) conforms to the relationships between size-frac-
tionated chlorophyll a and total chlorophyll a found by [9]. The picoplankton function
accounts for a large fraction (Dpico = 0.85) of low total chlorophyll a concentrations, but satu-
rates at a maximum value of Cm

pico ¼ 0:162mg chlorophyll am−3, and thus represents a very

small fraction of the total community at high total biomasses. The monotonic function cannot
reproduce the decline in picoplankton biomass that is seen in the data at very high total bio-
masses (although the declining trend may be somewhat artificial, as it is not seen if picoplank-
ton biomass is measured in terms of carbon [31]).

The nanoplankton function initially represents a much smaller fraction (0.13) of the total
community biomass, but rapidly increases in both absolute and relative terms, to briefly domi-
nate the community at intermediate biomasses. The nanoplankton function eventually satu-
rates at a maximum value of just over 0.6 mg chlorophyll am−3, such that it also represents a
small fraction of high total biomasses.

The microplankton are extremely scarce at low total biomass (*2.4%), but increase very
rapidly across the entire range of total biomass, eventually reaching concentrations of*10 mg
chlorophyll am−3 within the observed range. This increasing trend leads to the total

Table 2. Coefficients and goodness-of-fit statistics for the functions fit to the temperature-independent model residuals (�s), as shown in Fig 1.
Goodness-of-fit metrics: SSE = Sum of Squared Errors; r2 = coefficient of determination (significant at p = 0.01); RMSE = Root Mean Squared Error.

Function as bs cs SSE r2 RMSE

log10(�pico) =

bsT + cs - -0.023 0.33 83.00 0.26 0.37

asT
2 + bsT + cs 0.0018 -0.072 0.49 71.24 0.37 0.34

ase
−bsT + cs 0.67 0.31 -0.15 62.12 0.45 0.32

log10(�nano,pico) =

bsT + cs - -0.0045 0.065 7.96 0.13 0.11

asT
2 + bsT + cs 0.00035 -0.014 0.096 7.54 0.17 0.11

ase
−bsT + cs 0.14 0.15 -0.039 7.57 0.17 0.11

doi:10.1371/journal.pone.0135581.t002
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Fig 2. Absolute (left) and relative (right) chlorophyll a biomass in (a,d) picoplankton, (b,e) nanoplankton and (c,f) microplankton size-classes, as a
function of total chlorophyll a (x-axis) and temperature (colours). The thick black lines represent the best-fit temperature-independent functions (Eq 1).
The coloured lines represent the best-fit temperature-dependent functions (Eq 2) at discrete temperatures (see legend).

doi:10.1371/journal.pone.0135581.g002
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dominance of microplankton in high biomass systems, although this may also be, at least in
part, an artefact of filter clogging, with some nanoplankton incorrectly retained in the micro-
plankton fraction [31].

The temperature-independent model explains just over 20% of the variance of picoplankton
biomass, rising to 78 and 83% for the nanoplankton and microplankton, respectively (Table 3).

Temperature-dependent relationships
At any given temperature, estimates of size-fractionated chlorophyll a from the temperature-
dependent model (Eq 2) are qualitatively similar to those of the temperature-independent
model. There are however clear temperature effects, especially at cold temperatures, and these
are particularly clear when viewed in terms of the biomass fractions (Fig 2d–2f). The pico-
plankton function varies relatively little between 10 and 30°C, but there is a marked reduction
in picoplankton chlorophyll a at lower temperatures. For any given total chlorophyll a concen-
tration, picoplankton biomass may be up to an order of magnitude lower in sub-zero waters,
relative to tropical latitudes. In very low biomass systems the picoplankton community fraction
declines by almost 100% from warm to very cold waters.

In contrast, for any given total biomass, cold waters support a larger proportion of both
nanoplankton and microplankton, especially in low to intermediate biomass systems. Below 1
mg total chlorophyll am−3, the biomass within either size class may be between 3 and 10 times
higher at 0°C relative to 10 or 30°C. Among highly oligotrophic systems, the nanoplankton and
microplankton size-fractions are very scarce in warm waters, but together completely dominate
communities where the temperature is less than 5°C.

Adding temperature dependence explains a further 35% of the variance in picoplankton
chlorophyll a, relative to the temperature-independent function (21 to 56%). The same statistic
is improved by only 2% for the nanoplankton (78 to 80%), and by 3% for the microplankton
(83 to 86%). In terms of the (interdependent) fractional contributions to total chlorophyll a,
the temperature dependent function explains an additional 24% of variance in the picoplank-
ton fraction (42 to 66%) and a further 18% for the nanoplankton fraction (8 to 26%). The sta-
tistic is improved by only 6% for the microplankton fraction (74 to 80%).

The parameter Ds describes the contribution of Cs to Ctotal at low total chlorophyll con-
centrations, and takes the upper bound value of 1 in the temperature-dependent model for
both Cpico and Cpico+nano. This indicates two-things. Firstly, in warmer waters where the tem-
perature effect is negligible (effectively T > 5°C), picoplankton biomass tends towards the
total community biomass as total biomass tends towards zero. That is to say, picoplankton
completely dominate warm ultra-oligotrophic systems, but not cold ones. Secondly, Ds can

Table 3. Coefficients and goodness-of-fit statistics for the temperature-independent (Eq 1) and temperature-dependent (Eq 2) functions.
pSSE = predictive SSE from cross-validation experiment; AIC = Akaike Information Criterion. Coefficients of determination are significant at p = 0.01.

Function Cm
s Ds as bs SSE r2 RMSE pSSE AIC

log10(Cpico) = f(Ctotal) 0.162 0.849 - - 112.5 0.21 0.43 121.8 11254

log10(Cpico) = f(Ctotal, T) 0.2414 1.00 0.668 0.302 62.1 0.56 0.32 74.8 6218

log10(Cnano,pico) = f(Ctotal) 0.794 0.976 - - 9.11 0.88 0.12 9.43 9114

log10(Cnano,pico) = f(Ctotal, T) 0.921 1.00 0.129 0.173 7.57 0.90 0.11 8.62 7578

log10(Cnano) = f(Ctotal) - - - - 57.3 0.78 0.30 63.6 -

log10(Cnano) = f(Ctotal, T) - - - - 44.2 0.80 0.27 46.5 -

log10(Cmicro) = f(Ctotal) - - - - 136.5 0.83 0.47 143.8 -

log10(Cmicro) = f(Ctotal, T) - - - - 114.3 0.86 0.43 116.1 -

doi:10.1371/journal.pone.0135581.t003
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be omitted from the model when it takes a value of 1, and so the temperature-dependent
model can be effectively re-written in terms of only three free parameters (i.e.

log 10ðCsÞ ¼ log 10ðCm
s Þ þ log 10ð1� e

�Ctotal
Cms Þ � ase

�bsT).

Model selection
The temperature-dependent model represents an extension of the temperature-independent
model, and requires the estimation of (one or) two extra unknown parameters. With their
additional degrees of freedom, the more complex functions are guaranteed to fit the data at
least as well or better than the simpler functions, and it is important to know whether any such
improvements reflect a genuine increase in the model’s ability to explain the data. A simple test
of this is provided by the Akaike Information Criterion (AIC), which quantifies the balance
between a model’s complexity and its ability to fit the data. The AIC can be calculated from the
optimised χ2 value, and the number of model parameters, p,

AIC ¼ w2 þ 2p

Here χ2 is defined as

w2s ¼ log 10ðs2Þ�1
XN
i¼1

ð log 10ðCs;iÞ � fsðCtotal;TÞÞ2

with fs(Ctotal, T) representing either Eqs 1 or 2, depending on whether T is included as an input
variable. A conservative relative error estimate of σ2 = 10 was assigned, and N = 620 is the total
number of observations. The AIC was calculated under the conservative assumption that the
temperature-dependent function contains four (rather than three) free parameters, and was
found to be smallest when fitting the temperature-dependent function to both Cpico and Cnano,

pico (Table 3). This indicates that the temperature-dependent function has more explanatory
power, and that it should be preferred [32].

A more practical test of a model’s skill is to establish if any improvements in fit are also
matched by increased predictive skill in relation to independent data. This was done in a cross-
validation experiment, in which observations were divided into training data and test data. To
ensure the independence of the test data from the training data, the observations were catego-
rised into 24 subsets according to the research programme and the prevailing oceanographic
conditions (regional or seasonal—see Table 1). The regressions were then repeated 24 times,
each time omitting one of the 24 observation subsets. In each case the fitted functions were
used to predict the size-fractionated biomasses in the omitted test datasets on the basis of
observed chlorophyll a and, optionally, temperature. The combined sum-of-squared-errors for
all iterations provides a quantitative estimate of the predictive skill for each model (Table 3).

The results from this experiment are shown in Fig 3. At temperatures below*2°C the tem-
perature-independent model dramatically overestimates picoplankton biomass, while underes-
timating nanoplankton and microplankton biomass. Switching to the temperature-dependent
model allows a marked improvement in the ability to predict the community structure at very
cold temperatures. Overall, the temperature-dependent model has 39% (pico-), 27% (nano-)
and 19% (micro-) better predictive skill in terms of the sum-of-squared-errors for the indepen-
dent data, relative to the temperature-independent model.

Global patterns
Noting that the temperature-dependent model was consistently better in terms of fit to the
data and predictive skill, the two models were used to estimate annual mean global

Temperature-Correlated Changes in Phytoplankton Community Structure
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phytoplankton community structure from climatological satellite estimates of surface chloro-
phyll a (SeaWiFS, e.g. [8, 10]) and sea-surface temperature (SST) (NOAA Optimum Interpola-
tion SST V2 [33]), for the years 1998 to 2003. (Given the non-linearities of Eqs 1 and 2, results
based on these composite inputs should be considered as illustrative only—a more quantitative
analysis should be based on daily input data.)

Global maps of the surface biomass in each size fraction are shown for the temperature-
independent model in Fig 4a–4c, and for the temperature-dependent model in Fig 4d–4f. The
third column shows only the temperature-dependent component of Eq 2, which gives the rela-
tive effect of that term on the biomass in each size fraction. Fig 5 shows the estimated contribu-
tion of each size class to the total surface chlorophyll a, for the temperature-independent
(panels a-c) and temperature-dependent (panels d-f) models.

Direct temperature (or other correlated) effects lead to estimates of Southern Ocean and
Arctic picoplankton biomass that are as much as an order of magnitude lower relative to
higher-latitude regions with equivalent total biomass (Fig 4g). Microplankton and nanoplank-
ton biomass each show a modest compensatory increase in the same regions (Fig 4h and 4i).
The lack of any direct temperature dependence at low latitudes indicates that any differences

Fig 3. Relative error of the temperature-dependent and temperature-independent functions when
used to predict size-class biomasses for independent, unassimilated observations. Dots represent the
mean temperature and geometric mean relative error for each data subset, with error bars showing ±1
standard deviation for temperature, and �

�1 geometric standard deviation for the relative error.

doi:10.1371/journal.pone.0135581.g003
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between the two functions at low latitudes are attributable to differences in the temperature-
independent parameters Cm

s and Ds (Table 3). The temperature-dependent function, for exam-
ple, correctly predicted slightly higher picoplankton chlorophyll concentrations at low latitudes
(Fig 3a), because it was not so strongly constrained by the low picoplankton chlorophyll con-
centrations at high latitudes. This conclusion is supported by the fact that the higher values at
low latitudes were also returned by the temperature-independent function when all observa-
tions taken at temperatures below*2°C were excluded from the analysis (result not shown).

In terms of the relative contribution of each size class to total biomass (Fig 5), the tempera-
ture-dependent model suggests that the picoplankton contribute a much greater fraction of
total chlorophyll a at low latitudes (i.e.≲ 40° N or S) than is indicated by the temperature-inde-
pendent model. At the same time, the exclusion of picoplankton at very cold temperatures
increases the relative importance of the nanoplankton and microplankton classes at higher lati-
tudes. Given that the estimates shown in Fig 5 are based on annual mean total surface chloro-
phyll a, the relative contribution of different groups is likely to change throughout the year.

Satellite-derived estimates of zonal geometric mean biomasses (��1 geometric standard devi-
ation) are shown for the temperature-independent and temperature-dependent functions in
Fig 6. For the purposes of comparison, zonal geometric means and standard deviations from
two other, temperature-independent functions are also shown [9, 10], using the parameter val-
ues reported in those studies.

The four functions follow generally similar trends. Picoplankton are the least variable with
latitude, with a range of*1 order of magnitude. Variability is progressively greater in the
larger size classes, with nanoplankton and microplankton varying by*2 and*3 orders of

Fig 4. Satellite-derived estimates of annual mean surface chlorophyll a biomass in three phytoplankton size classes. Panels (a-c): Temperature-
independent functions (Eq 1). Panels (d-f): Temperature-dependent functions (Eq 2). Panels (g-i): Relative change in biomass attributable to temperature,
calculated by removing the two chlorophyll-dependent terms from Eq 2.

doi:10.1371/journal.pone.0135581.g004
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magnitude, respectively. There are however distinct qualitative differences in the picoplankton
estimates from the temperature-dependent and temperature-independent functions. The tem-
perature-dependent function is unique in showing a general decline in picoplankton biomass
polewards of 40° N or S, contrary to the overall trend in total biomass. The temperature-depen-
dent estimates are thus markedly lower than all the temperature-independent estimates in the
Southern and Arctic Oceans.

Fig 5. Satellite-derived estimates of the fractional contribution of the three phytoplankton size classes
to annual mean total surface chlorophyll a biomass. Panels (a-c): Temperature-independent functions
(Eq 1). Panels (d-f): Temperature-dependent functions (Eq 2).

doi:10.1371/journal.pone.0135581.g005

Fig 6. Four satellite-derived estimates for the zonal geometric mean surface chlorophyll a biomass (��1 geometric standard deviation) in (a)
picoplankton, (b) nanoplankton, and (c) microplankton size classes.

doi:10.1371/journal.pone.0135581.g006
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Discussion
The analysis presented above conforms with the view that the size-structure of marine phyto-
plankton communities is very strongly dependent on total community biomass, primarily as a
function of nutrient supply and primary production [4, 17]. Nonetheless, there is also a signifi-
cant additional effect that becomes apparent at cold temperatures. In cold and dark high-lati-
tude environments, small cells become disproportionately rare relative to the total community
biomass. While it should be noted that the dataset used in this study includes only a limited
number of observations representative of these extreme environments, the observed trends are
supported by a number of independent studies from high latitudes that have shown a decline
in picoplankton biomass at low temperatures [12–15]. Nonetheless, of the 76 observations
taken in waters below 2°C, 58 come from the same time-series location off the west coast of the
Antarctic Peninsula [18], and further observations will therefore be required to increase confi-
dence in the proposed trends over the broader polar regions.

It is also important to note that while temperature was found to be an important predictive
variable, this does not necessarily mean that the observed changes in phytoplankton commu-
nity structure were directly attributable to temperature, per se. Cold temperatures are well cor-
related with a range of other environmental factors that have a detrimental effect on
phytoplankton growth, including weak incident solar radiation and deep mixing, and the
observed effects may be attributable to any one or many such factors. This uncertainty is not
helped by the fact that the temperature-dependent term added in Eq 2 is simply an ad hoc
extension that provides no mechanistic insight into the cause of the observed trends. Nonethe-
less, the statistical analysis presented here indicates that algorithms designed to provide global
scale estimates of phytoplankton community structure from satellite estimates of total chloro-
phyll biomass [8, 9] may show significant improvement at high latitudes if remotely-sensed
SST data are included as an input variable. Again, the lack of an equivocal causative role for
temperature suggests that the observed trends might also be captured through other
approaches based on alternative input variables, such as directly observed light absorption and
backscattering properties [34–36]. This possibility was not investigated here.

The observed anomalies at high latitudes also have implications for the estimation of total
chlorophyll a concentrations from satellite data. Ocean colour algorithms typically operate on
the basis of an assumed relationship between total chlorophyll a concentrations and the ratio
of blue-to-green reflected light (the remote sensing reflectance, Rrs). This ratio is driven by the
absorption and backscattering of different wavelengths of light, which both vary as a function
of cell size [16]. Microplankton, for example, may absorb up to eight times less light per mole-
cule of chlorophyll a than picoplankton [37]. Changes in community structure can therefore
cause Rrs to vary independently of total chlorophyll a. The disproportionately low abundances
of picoplankton in the Southern Ocean may therefore help to explain the tendency of some sat-
ellite algorithms to yield unrealistically low chlorophyll a estimates in this region [38]. In future
a better representation of biomass-independent changes in phytoplankton community struc-
ture may help to reduce these discrepancies.

At present there remains little evidence of a large temperature dependence at latitudes
below*40° N or S, where community structure appears to be very well determined by nutrient
supply alone [4, 9]. Temperature effects in a warming world may therefore be restricted to the
biogeographical spread of smaller size classes to higher latitudes [15]. Such changes may none-
theless have important implications with regard to the biogeochemical function of marine eco-
systems in these areas, as the observed exponential decline of picophytoplankton at cold
temperatures reflects a similar decrease in the efficiency of nutrient recycling [39]. An exten-
sion of picoplankton habitats to higher latitudes with warmer temperatures and stronger
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stratification could potentially lead to strengthening of the microbial loop and diminished
export efficiency in regions previously characterised by larger phytoplankton and the efficient
vertical export of biomass. Similarly, the encroachment of picoplankton into higher latitudes
currently characterised by short, direct food chains based on fast-growing nanoplankton [2]
could potentially lead to diminished trophic-transfer to larger size classes and a decline in pro-
ductivity at higher trophic levels.
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