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ABSTRACT: The proverbial blue colour of the Mediterranean reflects some of the most extreme oligo- 
trophic waters in the world. Sea-surface Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satelhte 
data show the relatively clear, pigment poor, surface waters of the Mediterranean with a generally 
increasing oligotrophy eastward, apparent even from space. Integrated over depth, however, the east 
and west Mediterranean show similar amounts of phytoplankton and bacterial biomass. By contrast, 
primary production and bacterial production are 2 to 3 times lower in the eastern Mediterranean than 
in the west. However, the relationship between bacterial production and primary production in the east 
and west are significantly different. While bacterial production is hrectly proportional to primary pro- 
duction in the east, in the west it increases as approximately the square root of primary production. This 
suggests that the bacteria in the west are relatively decoupled from local contemporaneous primary 
production. In contrast, the gradient of close to 1 in the log bacterial production versus log primary pro- 
duction relationship in the east suggests less temporal decoupling and, therefore, less seasonal accu- 
mulation of DOC. In addition, the constant proportionahty between bacterial and primary production 
of 0.22, whlch, if all primary products are respired, gives an estimated geometric mean bacteria growth 
efficiency of 22% (95% confidence limits of 17 and 29%) for data in the eastern Mediterranean. Our 
data suggest that the degree of bacteria-phytoplankton coupling has an important effect on apparent 
trends between bacterial and phytoplankton production in high frequency data. The combination of 
low primary production and bacterial dominance of secondary production in the east is also of signifi- 
cance as it could account for the low fisheries production, the low vertical flux of material and low bio- 
mass of benthic organisms in the region. 

KEY WORDS: Bacteria . Phytoplankton . Bacterial growth efficiency . Ocean productivity . OLigotrophy - 
Mediterranean 

INTRODUCTION 

The Mediterranean Sea has high evaporation rates 
and low land run-off, resulting in a deficit in its hydro- 
logical balance. Nutrient-depleted Atlantic water flows 
into the Mediterranean through the narrow (ca 4 km2) 
Strait of Gibraltar (Bethoux et al. 1992) and, after cir- 

culating the basin, exits the same way with nearly 10 % 
more salt content (Milliman et al. 1992). There is 
increasing nutrient depletion from west to east, with 
a particularly pronounced gradient for phosphorus 
(Krom et al. 1991). The basin-wide cyclonic circulation 
of nutrient-depleted water (Dugdale & Wilkerson 1988), 
hot, dry and seasonal climate and low land run-off con- 
tribute to the low productivity of the sea and the west- 
east trend in oligotrophy (Fig. 1, Table 1). The aim of 
this paper is to investigate the coupling between bac- 
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Fig. 1. Ocean colour Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from Orbital Sciences Coorporations' SeaStar satehte 
estimates of chlorophyll a concentrations (mg m-3) in a monthly composite during (a) October 1997, (b) April 1998 and (c) May 1998 

terial and primary production in the western and east- 
ern Mediterranean and evaluate its significance to the 
west-east trend in productivity. 

METHODS 

Basin-wide and regional sea-surface chlorophyll a 
concentrations were estimated using a Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS) Version 2 chloro- 
phyll product from NASA (Fig. 1) in order to examine 
seasonal sea surface concentrations in the western and 
eastern Mediterranean basins (Table 1). 

Chlorophyll was determined from water samples 
using a fluorometric method (Yentch & Menzel 1963, 
Holm-Hansen & Riemann 1978). Primary production 
was measured using the NaH14C03 method (Steeman- 
Nielsen 1953, Dandonneau & Le Bouteiller 1992) and 
the phytoplankton efficiency (PE) estimated by pri- 
mary production/chlorophy11. 

Bacteria were enumerated directly by epifluorescent 
microscopy and staining with the DAPI fluorochrome 
(Porter & Ferg 1980) on freshly preserved, filtered 
(Turley & Hughes 1992) and sonicated samples (Turley 
et al. 1996). Bacterial biomass was calculated from cell 
numbers using the conversion factor 20 fg C cell-' (Lee 
& Fuhrman 1987). 

Bacterial production was calculated using the theo- 
retical approach of Kirchman (1993) by measuring leu- 
cine incorporation into bacterial protein after the addi- 
tion of 10 nM 3H-leucine (Chin-Leo & Kirchman 1988). 

The above analyses were carried out at the sites in 
the western and eastern Mediterranean basins shown 
in Fig. 2.  

T-tests were carried out on logged data, where 
appropriate, to test for significant differences for west- 
ern and eastern integrated data used in Table 2. 
Regression analysis (Table 3) was applied to the west- 
ern and eastern bacterial and primary production data 
in Fig. 3 to test for a significant difference between the 
2 regressions of the data from the 2 regions. 

RESULTS AND DISCUSSION 

Both nitrogen and phosphorous can be limiting nut- 
rients for phytoplankton and bacterial growth in the 
Mediterranean during summer (Dugdale & Wilkerson 
1988, Bhthoux et al. 1992, Berland et al. 1990, Krom et 
al. 1991, Estrada et al. 1993, Thingstad & Rassoulzade- 
gan 1995). Despite the deep chlorophyll maximum 
(DCM) characteristic of the Mediterranean (Estrada et 
al. 1993, Lef&vre et al. 1997), there is a west-east trend 
in surface chlorophyll a concentration seen from space 
during spring and summer (Fig. 1, Table 1). This is 
even more apparent if the anthropogenically enriched 
waters of the Adriatic are excluded from the eastern 
basin (Table 1). The DCM is, in general, over 30 m 
deeper in the east but, in contrast to the SeaWiFS 
images of surface chlorophyll, the integrated chloro- 
phyll is similar in the west and east (Table 2). The 
integrated primary production in the west, however, 

Table 1. Comparison of sea surface chlorophyll a (cN a) concentrations between the western and eastern Medterranean. The re- 
gional sea-surface chl a data were extracted from the SeaWiFS images shown in Fig. 1 using hand drawn masks. W Med. is the 
geometric mean of all data west of a line between Sicily and Africa. E Med is the geometric mean of all data east of the line. E 
Med (no Adriatic) is the E Med excluding the Adriatic (area north of a Line between the closest point of the heel of Italy and 
the Balkans). The raw scaled data were converted to logchl a and statistics calculated for data points greater than zero 
(logchl a > 0.01). SD (sqrt variance) is in units of logchl a. Data used is from SeaWiFS Version 2 chlorophyll product from NASA 

Image Mean units mg chl a m-3 SD in units of logchl a W:E W:E (no Adriatic) 

October 1997 W Med 0.170 0.12 1.07 1.16 
E Med 0.159 0.24 
E Med (no Adriatic) 0.147 0.19 

April 1998 W Med 0.250 0.24 1.49 1.60 
E Med 0.168 0.23 
E Med (no Adriatic) 0.156 0.20 

May 1998 W Med 0.212 0.19 1.29 1.40 
E Med 0.164 0.23 
E Med (no Adriatic) 0.151 0.17 
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is over 3 times that in the east (Table 2). In other 
words, the phytoplankton efficiency in the eastern 
Mediterranean is a third of that in the west (Table 2). 
The phytoplankton efficiency may be an indication 
of the degree of nutrient and light limitation. 

Similarly, the biomass of bacteria integrated to the 
base of the DCM (DCMb) is only slightly higher 
in the east than the west, but their growth rate is 
significantly lower in the east than in the west 
(Table 2). Hence, measures of biomass (chlorophyll a 
and bacterial counts) are similar in the east and 
west, but activities (production and growth rates) are 
different. 

Organic matter flux into bacteria is one of the ma- 
jor pathways of material and energy flow in pelagic 
foodwebs (Azam et al. 1983, Cole et al. 1988, Azam & 
Smith 1991, Azam et al. 1992, Ducklow & Carlson 
1992). Dissolved organic carbon (DOC) generated 
from primary production by a variety of means is 
taken up by bacteria and used for their growth and 
metabolism (Azam & Smith 1991, Azam et al. 1992, 
Ducklow & Carlson 1992). The proportion of pri- 
mary production supporting bacterial production in 
marine environments is reported to vary from 10% 
to over 100 % with a mean of 30 to 40 % (Cole et al. 
1988, Ducklow & Carlson 1992). In the western 
Mediterranean, bacterial production integrated to 
the DCMb comprises 9 to 46% (mean 21 %) of the 
integrated primary production (Table 2). Assuming a 
bacterial growth efficiency of 20% (del Georgio et al. 
1997 calculated a global median value of 24 %), then 
44 to 228 % (mean 110 %) of primary production may 
be routed through the DOC reservoir and support the 
bacterial carbon demand (BCD). Significantly, when 
primary production is low, BCD may therefore ex- 
ceed primary production in the western Mediter- 
ranean (Fig. 3). Similar calculations for the east re- 
veal integrated bacterial production of 18 to 54 % 
(mean 34 %) of the integrated primary production 
(Table 2) and suggest that at a bacterial growth effi- 
ciency (BGE) of 20%, around 89 to 268% (mean 
170%) of primary production is required to support 
the BCD. Hence, net heterotrophy may be observed 
in both east and west during certain times of the year. 
The calculations suggest that either a greater propor- 
tion of the primary production may flow to the micro- 
bial food web in the eastern Mediterranean than in 
the western Mediterranean despite lower rates of 
bacterial production or that BGE is generally lower in 
the east than the west. These estimates are conserva- 
tive as BGEs in oligotrophic waters may be lower 
(Kirchman et al. 1991, Carlson & Ducklow 1996). 

The direct proportionality of bacterial production 
and primary production in the eastern Mediter- 
ranean, demonstrated in Fig. 3, suggests that bacte- 
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Table 2. Concentrations and rates of measurements integrated from the sea surface to the base of the deep chlorophyll maximum 
(DCMb) in the western and eastern Medterranean Sea. The depths of the DCMb are also glven. T-tests were carried out to 
indicate the significance of the difference between western and eastern data using logged data where appropriate. Original 
data sets are available in the EMPS (Bianchi et al. 1997) and CINCS (Tselepides et al .  1997) Mediterranean Targeted Project 

Final Reports 

Variable (unit) Western Eastern West:East t P 

Depth of DCMbd Range 60-110 100-150 

(m) Mean 79.0 113.3 -34.3 -3.74 0.002 
SD 15.2 21.6 
n 10 6 

Bacterial biomass Range 653-1589 1042-1828 
(mg C m-') Mean 1026 1372 0.75 -2.41 0.029 

SD 314 274 
n 10 7 

Bacterial producbon Range 26.5-191.6 8.0-130.6 
(mg C m-2 d-') Mean 90.4 48.5 1.87 1.93 0.072 

SD 54.2 39.2 
n 10 7 

Bacterial growth rate Range 0.040-0.130 0.006-0.086 

(d-') Mean 0.080 0.035 2.27 3.15 0.007 
SD 0.035 0.026 
n 10 7 

Primary production Range 144.0-1 143.1 39.3-243.4 
(mg C m-' d- ' ) Mean 502.7 151 0 3.33 2.74 0.018 

SD 342.2 91.6 
n 10 4 

Chlorophyll Range 5.6-58.7 15.0-64.3 
(mg m-2) Mean 29.2 25.7 1.13 0.16 0.875 

SD 19.46 19.3 
n 10 6 

Phytoplankton efficiency Range 0.66-2.96 0.21-1.12 
(mg C mg chl-' h-') Mean 1.75 0.58 1.17 2.42 0.032 

SD 0.92 0.41 
n 10 4 

aIn the case of 1 eastern station, in the absence of chlorophyll, the depth of the DCMb was taken to correspond with that 
of the nearest comparable station 

Table 3. Regression analysis of log bacterial production on log primary produc- 
tion relationships shown in Fig. 3. In each case the top line gives the vanance 
due to the regression, whose significance is tested by the Fratio to the variance 
withln regions. The second line gives the additional variance accounted for by 
using separate regressions for east and west. The significance is obtained here 
by lookmg at the ratio between this and the additional amount accounted for by 
using a separate regression for each site within either region (within region vari- 
ance). Finally, the significance of the variation between hauls (vertical sections) 
at the same site (within region variance) is tested by taking the ratio of this to the 
pooled error variance for individual regressions on each haul (within haul vari- 
ance). This variation within regions is always significant, i.e. all the relations are 
different for each haul you take. Compared with this variation between hauls, 
the relation of bacterial production to primary production is highly significantly 

different between east and west 

Source of variation df SS Variance F P 

Regression 1 13.21278 13.21278 90.35963 <0.001 
Between regions 2 1.757998 0.878999 6.011301 <0.01 
Within regions 24 3.509385 0.146224 2.460079 <0.005 
Within hauls 51 3.031384 0.059439 

rial production is entirely dependent 
on primary production products. The 
regression line in Fig. 3 for the east 
shows a constant proportionality be- 
tween bacterial and primary produc- 
tion of 0.22, which, if all primary 
products are bacterially respired, is 
equivalent to a geometric mean BGE 
of 22 % (95 % confidence limits are 17 
and 29 %). This novel method of esti- 
mating bacterial growth efficiencies 
gives a BGE value similar to that used 
in the above calculations and by del 
Giorgio et al. (1997) and supports the 
recent measurements of lower esti- 
mates (Carlson & Ducklow 1996, del 
Giorgio et al. 1997). Bacteria therefore 
play a major role in organic carbon 
flow in both the east and west, but this 
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because bacterial populations may be 
Fig. 3. The relation of log bacterial production to log primary production above 
the base of the deep chlorophyll maximum. The difference between west and respond the 
east is significant (F2,24 = 6.01, p c 0 01, Table 3). Regression equations, statis- production of DOC, due, perhaps, to 
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tics and lines are given for western (*; -) and eastern (U; ----) Mediterranean nutrient limitation or predation result- 
data collected at different times of year (see Fig. 2 legend). Also see Table 3 for ing in DOC ( ~ i ~ k i ~  & 

further statistical analysis 
Anderson 1997, Thingstad et al. 1997). 
In contrast, the gradient of close to 1 in 

role is greater in the east, where microheterotrophs to- the log bacterial production versus log primary pro- 
tally dominate the food web. In addition, small photo- duction relationship in the east (Fig. 3) suggests very 
trophs dominate photosynthesis in oligotrophic waters little spatio-temporal decoupling of this kind and, 
favouring the dominance of a microbial loop, acting as hence, little seasonal accumulation of DOC. 
an energy sink in the foodweb (Hagstrom et al. 1988). One explanation for the tight coupling between pri- 

The highly significant positive relationships between mary and secondary production in the east, may be 
log bacterial production and log primary production exudation of carbon as mucopolysaccarides by nutrient 
(Fig. 3) for both the west and east Mediterranean indi- stressed phytoplankton. Under extreme P-deficiency, 
cate that primary production is a significant source of as occurs particularly in the eastern Mediterranean 
DOC for bacterial production in both areas. However, (Krom et al. 1991), such production can be the main 
the relationship between bacterial production and pri- photosynthetic activity (Myklestad 1977). This may 
mary production in the east and west are significantly provide a better substrate for bacteria than for larger 
different (Table 3). While bacterial production is di- organisms (Azam & Smith 1991). Indeed, bacterial 
rectly proportional to primary production in the east, in nutrient regeneration coupled with phytoplankton 
the west it increases as approximately the square root production of cell surface polysaccharides on this 
of primary production (Fig. 3). Integrated primary pro- micrometer scale has been proposed as a self-sustain- 
duction in the west is over 3 times higher than in the ing mutualism between bacteria and phytoplankton 
east (Table 2) and a DOC and DON reservoir is known especially in oligotrophic waters (Azam & Smith 1991). 
to accumulate in the west during the summer (Copin- In contrast, the higher surface pigment concentration 
Montegut & Avril 1993, Pujo-Pay et al. 1997). The rela- off southern France and Spain (Fig. la-c), due to high 
tion observed in Fig. 3 is consistent with periods or nutrient input from the Rhone, other rivers and local 
areas of high primary production effectively subsidis- upwelling (Minas & Minas 1989), may act as a further 
ing bacterial production in periods or areas of low pri- source of DOC for bacteria in the western Mediter- 
mary production. In the west, when primary produc- ranean. In addition, the decoupling in the west may be 
tion is low, bacterial production is higher than it is in exacerbated by high dispersion rates, seasonal vertical 
the east. If we assume the ecological efficiency of the mixing, high settling rates, the production of relatively 
conversion from photosynthetic products to bacteria to refractory DOC and changes in BGE. 
be similar in the east and west and that bacteria in the Despite the strong coupling between individual mea- 
east are uslng essentially all the current primary pro- surements of bacterial production and primary pro- 
duction, this suggests that, when primary production duction, the average integrated measurements of bac- 
in the west is low, bacteria are using some additional terial and primary production (Fig. 3) for the eastern 
source of carbon. Conversely, when primary produc- Mediterranean fall on the general relationship de- 
tion is high, bacterial production in the west tends to scribed for a range of freshwater, estuarine and marine 

remains to be utilised when or where 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

2'0 primary production is low. 
LOG Primary Production (mg C m-3 d-l) This decline in efficiency may occur 
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be lower than would be predicted 
fromthe relation found in the east. It is 
notable that the maximum primary 
production in the east roughly corre- 
sponds with the point of intersection of 
the 2 lines. 

The explanation we would suggest 
for these observations is that, when 
primary production is high (exceeding 
about 0.8 mg C m-3 d-l), the ecological 
efficiency of its bacterial utilisation de- 
clines and the excess organic carbon 
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habitats (del Giorgio et al. 1997), where there is net 
heterotrophy during oligotrophy. In contrast, the west- 
ern Mediterranean appears to support a biological 
system in which primary production and bacterial pro- 
duction are on average more balanced, despite being 
decoupled in spacehime. As del Giorgio et al. (1997) 
suggest, some caution is required in such generalisa- 
tions as  the averaged integrated data used in their 
analysis masks the small spatial and temporal variabil- 
ity as seen in our high frequency data (Fig. 3) (see also 
Williams 1998). In the terms used by del Giorgio et al. 
(1997), the region we have sampled in the western 
Mediterranean may be regarded as in balance or as a 
net sink of CO2, whereas the eastern Mediterranean 
may be regarded as a net source, reflecting the net 
autotrophic and heterotrophic oceanic provinces men- 
tioned by Duarte & Agusti (1998), respectively. 

Given that the bacteria above the DCMb in the east 
are utilising such a high proportion of the primary pro- 
duction, it is not surprising that there is little material 
remaining for the higher trophic levels and that there 
is a substantial west-east decrease in vertical mass flux 
which has also been linked to the increasing degree of 
oligotrophy (Heussner & ~Monaco 1996, Bianchi et al. 
1996). Therefore, the degree of coupling between bac- 
terial and primary production, in combination with the 
west-east decrease in primary production and the size 
of primary producers, may determine the lower pelagic 
and demersal fisheries (W:E ratio in fish production of 
2.7:l) (Caddy & Oliver 1996), the lower vertical particle 
flux (W:E ratio about 9: l )  (Heussner & Monaco 1996) 
and consequently the lower benthic biomass (W:E ratio 
in benthic biomass between 200 and 1000 m of 46:l)  
(Sara 1983) in the east. 
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