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Recent theories for glacial–interglacial climate transitions call on
millennial climate perturbations that purged the deep sea of se-
questered carbon dioxide via a “bipolar ventilation seesaw.” How-
ever, the viability of this hypothesis has been contested, and
robust evidence in its support is lacking. Here we present a record
of North Atlantic deep-water radiocarbon ventilation, which we
compare with similar data from the Southern Ocean. A striking
coherence in ventilation changes is found, with extremely high
ventilation ages prevailing across the deep Atlantic during the last
glacial period. The data also reveal two reversals in the ventilation
gradient between the deep North Atlantic and Southern Ocean
during Heinrich Stadial 1 and the Younger Dryas. These coincided
with periods of sustained atmospheric CO2 rise and appear to have
been driven by enhanced ocean–atmosphere exchange, primarily
in the Southern Ocean. These results confirm the operation of a bi-
polar ventilation seesaw during deglaciation and underline the
contribution of abrupt regional climate anomalies to longer-term
global climate transitions.
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The apparent ubiquity of abrupt millennial-scale climate
anomalies on Pleistocene glacial–interglacial transitions (1)

has prompted some to suggest these events may represent a nec-
essary component of the deglacial process, primarily through their
effect on atmospheric CO2 (2–4). According to this hypothesis
(hereafter referred to as the “millennial purge” hypothesis), in-
cipient deglaciation triggers a transient collapse of the North
Atlantic overturning circulation, as well as a warming around
Antarctica via the “thermal bipolar seesaw”mechanism (5). This,
in turn, is proposed to drive the release of previously sequestered
“marine” CO2 to the atmosphere via increased upwelling and/or
air–sea exchange in the Southern Ocean, which would have resulted
from changes in the density stratification (6), sea ice cover (4) or
wind forcing (2) around Antarctica.
Despite the promise of this new theory for deglacial CO2 re-

lease, and despite emerging data in its support (4, 7, 8), it rests
on two key premises that have yet to be confirmed. The first
premise is the existence before deglaciation of a deeply seques-
tered, and hence radiocarbon-depleted (9), marine carbon pool
of significant extent. The existence of such a carbon pool con-
tinues to be questioned (e.g., ref. 10). The second premise is
a necessary (or at least conditional) alternation between north-
ern and southern Atlantic ventilation anomalies, broadly in line
with the bipolar seesaw in deep ocean ventilation that was ini-
tially proposed by Broecker (11). Direct evidence for this is still
lacking. At this time, the strongest support for the bipolar ven-
tilation seesaw of ref. 11 comes from Southern Ocean opal
productivity pulses that occur in time with the deglacial stadial
events Heinrich Stadial 1 (HS1) and the Younger Dryas (YD)
(2). However, even these data strictly remain mute on the anti-
correlation or otherwise of southern versus northern (hemisphere)

ventilation of the Atlantic interior. Indeed, most other available
proxy reconstructions have been interpreted as showing that
Southern Ocean ventilation (as inferred, often ambiguously, from
radiocarbon, stable carbon isotopes, carbonate preservation, or
water mass sourcing) was reduced during North Atlantic stadials
when CO2 was increasing (e.g., refs. 12–14), in apparent conflict
with the millennial purge hypothesis.

Results
To assess possible links between North and South Atlantic
ventilation, we generated a continuous record of deep-water ra-
diocarbon ventilation from the Northeast Atlantic, which we
compare with similar data from the Atlantic sector of the sub-
Antarctic Southern Ocean (4). Deep-water radiocarbon ventilation
records specifically constrain the extent of isotopic equilibration
between the deep-ocean and atmospheric carbon pools and
therefore bear directly on the role of the ocean circulation on
ocean–atmosphere carbon exchange. Here, radiocarbon meas-
urements have been performed on paired samples of rigorously
cleaned (15) monospecific planktonic and mixed benthic fora-
minifera from core MD99-2334K (37°48′N, 10°10′W; 3,146 m).
The site of MD99-2334K, on the Iberian Margin in the North-
east Atlantic, is currently bathed in northward recirculating North-
east Atlantic DeepWater, which includes ∼47% Lower DeepWater
(derived from Antarctic Bottom Water) (Fig. S1). The chronology
for core MD99-2334K is based on the alignment of local surface
temperature trends [recorded in foraminiferal δ18O and Mg/Ca
measurements (16)] to the uranium-series dated speleothem
records from Hulu Cave (17–19) (Fig. S2). This alignment is
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in near-perfect agreement with the North Greenland Ice Core
Project (NGRIP) ice-core chronology (Fig. 1C), although the
timing of events between the LGM and HS1 is not obviously
constrained by the NGRIP event stratigraphy. For this reason,
we consider a range of possible calendar age constraints that
permit the construction of a best guess and a maximum/minimum
bounding range of sediment age-depth models (20) for core
MD99-2334K (see Supporting Information). These age models
are constructed to be consistent with the various possible spe-
leothem calendar age-constraints while also taking into account
the down-core radiocarbon dating constraints. Surface- and deep-
water reservoir ages are then derived from the offset between
down-core foraminifer radiocarbon ages in MD99-2334K (on
the range of possible calendar age-scales) versus contemporary
atmospheric radiocarbon ages recorded in the Hulu Cave
deposits (19).
The resulting surface reservoir ages are in excellent agreement

with previous estimates from the Northeast Atlantic (21, 22)
(Fig. 1A). These results demonstrate a degree of coherence be-
tween regional ocean–atmosphere radiocarbon disequilibration
(in the subsurface habitat of planktonic foraminifera) and the
general climatic trends of the North Atlantic region, which may
result from a combination of changes in the ventilation of the
thermocline, the thickness of the mixed layer (e.g., the presence
of a seasonal/perennial halocline), the presence of a radiocar-
bon-depleted subsurface water mass (e.g., from the Nordic
Seas), and/or local upwelling effects. The significant variability
of surface reservoir ages in this context (and others like it) has
clear implications for marine radiocarbon-based chronologies
(21); however, it also serves as a reminder that the a priori
assumption of a constant surface reservoir age begs the question

of air–sea CO2 exchange efficiency across the uppermost sur-
face ocean under glacial climate conditions. This, in turn, has
implications for our interpretation of the atmospheric radio-
carbon (Δ14Catm) record (9) and for deep-water radiocarbon
reconstructions (e.g., refs. 4, 22).
Whereas the benthic–planktonic (B-P) ventilation ages in

MD99-2334K already suggest a significant increase (by ∼1,000 y)
in the age of deep water filling the Northeast Atlantic during the
last glacial period, benthic–atmosphere (B-Atm) ages indicate an
increase, versus the atmosphere, that is up to 2.5 times larger.
The radiocarbon reservoir age of the deep northeast Atlantic
may thus have increased to between ∼2,250 and ∼3,400 y during
the last glacial maximum. These results confirm the existence of
a glacial marine carbon reservoir that was at least as radiocar-
bon-depleted as the oldest deep-water masses in the modern
ocean, which extended from the deep North Atlantic (22) to the
deep Southern Ocean (4, 7) and likely also contributed to a greater
volume of the deep ocean “downstream” of these basins.
Recent estimates suggest that ∼25–30% of the modern ocean

interior >1,500 m in depth is sourced from the North Atlantic
(roughly >40°N) and that essentially the remainder (∼56–61%)
is sourced from the Southern Ocean (roughly >40°S) (23, 24). If
the surface reservoir age changes recorded at MD99-2334K and
MD07-3076 (4) were broadly representative of their wider North
Atlantic and Southern Ocean regions [which remains unproven
but is not implausible, given the regional consistency of modern
and paleo reservoir age estimates (4, 7, 21, 22)], a circulation
geometry similar to today’s would already require a significant
change in the marine radiocarbon inventory during the late
glacial period.

B-A HS1 (Pleniglacial)YD(Holocene)
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Fig. 1. (A) Surface reservoir ages in MD99-2334K (solid black stars with 1 sigma dating uncertainties and dashed b-spline, with shaded range of possible
values implied by different viable calendar chronologies) compared with other Northeast Atlantic surface reservoir age estimates [open circles (21) and gray
stars (22), with solid black 5-point smoothed b-spline]. (B) MD99-2334K benthic–planktonic age offsets (B-P, gray open diamonds and line) and deep-water
reservoir ages (i.e., benthic–atmosphere age offsets, B-Atm) (solid black diamonds and line, with shaded max/min range). (C) Planktonic δ18O in core MD99-
2334K (solid black line), shown on two distinct calendar chronologies that encompass the range of reservoir ages in A and B (shaded range) compared with
the NGRIP δ18O record (fine gray line) (16, 35). All uncertainties are 1σ. Vertical lines show the timing of the YD, Bølling–Allerød, and HS1 [onset based on dust
content in Greenland ice (36)].
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Fig. 2 compares the surface- and deep-water radiocarbon ven-
tilation history of the northeast Atlantic (this study, MD99-2334K;
3,146 m) and the sub-Antarctic Atlantic (MD07-3076; 3,777 m)
(4). For consistency, the sub-Antarctic records are shown here
referenced to the same Hulu atmospheric radiocarbon values as
used for MD99-2334K (see Supporting Information). The co-
herence between the surface and deep-water records in each
hemisphere is striking, with similar patterns of variability and
amplitudes of change exhibited at each location for all three
measures of radiocarbon ventilation (surface reservoir ages, B-P
age offsets, and deep-water reservoir ages; Fig. 2 A–C). How-
ever, important differences between the North Atlantic and
Southern Ocean records emerge during HS1, and the YD in
particular, when the radiocarbon ventilation gradient between
the two sites collapsed. This is apparent in both surface- and
deep-water reservoir ages and is expressed as a reversal of the
north–south radiocarbon ventilation gradient on the “best guess”
MD99-2334K calendar chronology. Benthic–planktonic offsets
(Fig. 2B) also exhibit a clear reversal in the apparent venti-
lation gradient, although without a return to the “normal” north–
south gradient seen in the B-Atm and surface reservoir age
records during the Bølling–Allerød interstadial.

Discussion
These results confirm the operation of a bipolar “ventilation
seesaw” across the last deglaciation, whereby the radiocarbon
ventilation of the deep Southern Ocean increased during HS1
and the YD to a level commensurate with, or even above, that
observed concurrently in the deep North Atlantic. This is further
supported by the antiphase variability in shallow subsurface
reservoir ages observed in each hemisphere (Fig. 2A). Fig. 3
shows how the reversal of the ventilation gradient between the
North and South Atlantic corresponded with periods of sharply
rising atmospheric CO2 (25), as well as periods of inferred

Atlantic meridional overturning circulation “collapse” (26). New
planktonic δ13C measurements from core MD07-3076 in the
Southern Ocean (Supporting Information and Fig. 3B) further
demonstrate a close correspondence between increased nutrient
supply to the surface ocean and pulses in opal accumulation from
across the Southern Ocean (2), as well as pulses in the ventilation
age of the deep Southern Ocean (4), a strong indication that
enhanced upwelling was indeed the driver of the observed export
productivity pulses. This inference is further supported by silicon
and nitrogen isotope evidence for enhanced nutrient supply to
the surface ocean during HS1 and the YD (27). Together with
the radiocarbon data from the North Atlantic, these findings
provide strong evidence of enhanced ventilation specifically of
the ocean interior’s carbon pool, and specifically via the South-
ern Ocean in time with rapid atmospheric CO2 rise during HS1
and the YD. Indeed, the sequence of events illustrated in Fig. 3
is essentially as required by the millennial purge hypothesis that
has been advanced to explain the rapid and pulsed rise of at-
mospheric CO2 across the last deglaciation (2, 3). According to
the revised dating of the Antarctic ice cores (28), our data and
chronologies indicate an overlap between the first indication of
deep ocean hydrographic/circulation change in the Southern
Ocean (at ∼19.7 ± 0.6 ka) and the initiation of Antarctic tem-
perature and CO2 rise (at ∼18.6 ± 1.9 ka; full absolute un-
certainty). Given the chronological uncertainties, the apparent
lag of ∼1,000 y between the marine and atmospheric changes is
not strictly significant, although superficially it might be seen as
corroborating a proposed delay in the response of atmospheric
CO2 versus the onset of hydrographic change in the Southern
Ocean (29). The suggested delay in the carbon cycle response
would remain unexplained, and although our data cannot con-
firm or refute the speculation that it represents a threshold de-
pendence of CO2 rise on overturning circulation change (29), it
is notable that a qualitatively similar threshold response does

B-A HS1 (Pleniglacial)YD(Holocene)
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Fig. 2. Ventilation records from the North Atlantic (MD99-2334K) and Southern Ocean (MD07-3076). (A) Surface reservoir ages, as for Fig. 1. (B) Deep-water
reservoir ages (i.e., benthic-atmosphere age offsets; B-Atm). (C) Benthic-planktonic age offsets (B-P) compared with the NGRIP δ18O record (fine gray line) (35).
Data from MD99-2334K are shown by black symbols and heavy lines; data from MD07-3076 are shown by gray symbols and heavy lines. B-A, Bølling–Allerød.
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appear in numerical model simulations (6). Determining the
veracity of this lag and its implications for the triggering
mechanisms of the bipolar ventilation seesaw and CO2 release
during HS1 will be an important future research goal.
It is important to note that if our observations confirm the

operation of a ventilation seesaw in the deep Atlantic, they only
do so in relation to “ventilation” as defined as a means of in-
troducing radiocarbon (i.e., water with a dissolved inorganic
carbon pool that has equilibrated with the atmosphere) into the
ocean interior. This definition of ventilation is of particular
relevance to ocean–atmosphere carbon exchange but is strictly
not identical to definitions based on, for example, stable carbon
isotope fractionation (14), carbonate preservation (12), or the
direction/rate of mass transport (26) in the ocean interior. The
suggestion of continued deep-water export from the North
Atlantic to the Southern Ocean during late HS1, based on neo-
dymium isotopes (13, 30), underlines this fact and may imply the
existence of an “aged” (radiocarbon-depleted) water mass of North
Atlantic origin.
The results presented here confirm two necessary and hitherto

contested aspects of the millennial purge hypothesis for deglacial
CO2 rise; namely, the existence of a deeply sequestered carbon

pool in the glacial ocean and the operation of a bipolar venti-
lation seesaw in the Atlantic. However, although these results
indicate that the millennial purge hypothesis for deglacial CO2
rise is indeed viable, they do not yet prove that this mechanism
was necessary for late Pleistocene deglaciations (1, 3), in which
global field insolation anomalies and albedo feedbacks will have
played leading roles. Nevertheless, our findings indicate that via
their carbon cycle effects, these potentially stochastic millennial
events might have played a critical role in shaping the character and
exact timing of Pleistocene deglaciations, the predictability of which
would therefore be extremely limited on the millennial time frame.

Materials and Methods
Mixed benthic foraminifera (excluding agglutinated and broken shells) and
monospecific samples of the planktonic foraminifer Globigerina bulloides or
Neogloboquadrina pachyderma were picked from 1-cm slices of core MD99-
2334K, supplementing previous radiocarbon dates reported by Skinner and
Shackleton (31). Samples were cleaned according to the Mg/Ca cleaning
method of ref. 15 before drying and sealing in evacuated septum “blood
vials” for hydrolysis in 0.5 mL dry phosphoric acid at 60 °C. Carbon dioxide
evolved from the samples was graphitized at the Research School of Earth
Sciences (Australian National University), using a standard hydrogen/iron-
catalyst protocol (32). Samples were graphitized in parallel with Iceland Spar

A

B

C

D

Fig. 3. (A) North–south offsets in deep-water reservoir ages (solid circles and heavy black line, with shaded range) compared with reconstructed North
Atlantic overturning circulation strength derived from excess protactinium-231 to thorium-230 ratio (231Pa/230Thxs) measurements [heavy gray line (26)]. (B)
Southern Ocean upwelling, derived from planktonic δ13C measured in core MD07-3076 (solid black circles and line), and opal flux measured in core TNO57-
13PC4 (2) (solid gray line). (C) The rate of change of B-Atm ventilation ages in MD07-3076. (D) Atmospheric CO2 concentrations from the European Project for
Ice Coring in Antarctica ice-core, placed on the AICC2012 age-scale (28). Vertical lines indicate the timing of rapid CO2 rise, broadly coinciding with HS1 and
the YD.
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calcite backgrounds, as well as primary and secondary standards for nor-
malization and quality control. Pressed graphite targets were analyzed by
single-stage accelerator mass spectrometry at the Australian National
University (33). An additional suite of (similarly cleaned) samples were
graphitized and analyzed by accelerator mass spectrometry at the Natural
Environment Research Council/Scottish Universities Environmental Research
Centre (SUERC) radiocarbon facility. Radiocarbon ages are reported according
to the standard protocol of ref. 34.
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