
Supplementary TextS1: Bayesian Calculation

To take the uncertainty in the calibration of Mg/Ca to SST into account, the error in the 
calibration must be known. The form of the Mg/Ca-based temperature calibration is exponential:

Mg/Ca=BeAT

where T is temperature in °C and A is the sensitivity to temperature. Numerous calibrations for 
the planktonic foraminifer Globigerinoides ruber have been proposed, and are based on samples 
obtained from culturing study [Kisakürek et al., 2008], sediment trap [Anand et al., 2003; 
McConnell and Thunell, 2005], and core top material [Dekens et al., 2002]. For uncertainty 
quantification using the Bayesian approach, culturing studies present the advantage that the 
independent variable (in this case temperature) is precisely known. This motivates our choice of 
using the Kisakürek et al. [2008] dataset to develop a calibration equation for use in this study. 

Here, we develop the calibration equation using the Bayesian approach, which allows us the 
obtain all the possible solutions of the coefficients A and B, and compare the results to the more 
traditionally  used least-square procedure. Bayesian statistics employs algorithms to draw a set of 
samples from prior probability distributions and update the probability of the set of parameters in 
light of the current data [Bolstad, 2010]. The characteristics of the prior distribution is 
determined by information available before the current data has been analyzed, and can even 
reflect the analyst’s subjective judgement about the parameter [Wilks, 2011]. Bayes’ theorem then 
combines the prior density distribution and the current data in the posterior probability 
distribution of the parameter, which measures how plausible the prior value of the parameter is 
after we have observed the data [Bolstad, 2010]. 

1. Least-Square Regression

A nonlinear least-square regression between the G. ruber Mg/Ca and temperature leads to the 
following equation (95% confidence level included in parenthesis):

Mg/Ca=0.45(±0.3)e0.09(±0.02)T

A plot of the measured values with the least-square solution and its 95% confidence interval is 
provided in Figure S1a. It should be noted that randomly drawing a new values for the pre-
exponential and exponential coefficients from a Gaussian distribution [Marcott et al., 2013] does 
not necessarily provide valid equations that could represent the data since in a regression, the A 
and B coefficients are correlated.

2. Bayesian Approach

We used uniform distributions as prior distributions for the A and B coefficients. The [min,max] 
values were set at [0.05, 0.15] for A and [0.2, 0.8] for B. The Bayesian calculation enables us to 



enumerate sets of the unknown coefficients that allow the observational temperature to a fit a 
model of Mg/Ca measurements to within the analytical precision. And it  does this through  a 
Markov Chain Monte Carlo (MCMC) that includes random sampling and a transition probability 
that is related to the error in any one model fit. The frequency of the sample selected provides an 
estimate of the joint probability  for the parameters considered. The joint probability for each 
parameter can be visualized by  constructing a histogram of how often each parameter was 
selected. In this study, we used the Metropolis-Hastings algorithm [Hastings, 1970]. The basic 
idea behind this algorithm is to use a random walk on the proposed density distribution to 
generate a series of samples that are linked in a Markov Chain (i.e., each sample is correlated 
only directly to the previous one) and a method for rejecting or accepting the proposed moves:
- Step 1:Values for the regression coefficients were randomly drawn from the prior distributions. 
- Step 2: The cost function (cost1) was then calculated as:

cost =
Mg /Ca( )modeled − Mg /Ca( )measured( )2∑

2σ
where the modeled Mg/Ca is obtained from the regression equation, the measured Mg/Ca is the 
observed foraminiferal Mg/Ca value, σ is the ±1σ error on the Mg/Ca estimate (±0.15mmol/mol 
[Kisakürek et al., 2008]. 
- Step 3: Step from the current position in parameter space to a new point and a new cost (cost2) 

is calculated. The ideal step size is problem specific, which mainly determines convergence 
rates rather than the result of the calculation. 

- Step 4: If cost1>cost2, the new coefficients were accepted and these new coefficients were then 
used as the basis for the next iteration. If cost2>cost1, the new parameters were then accepted 
with probability p=exp(cost1-cost2). That  is, a random sample r was drawn from a uniform 
distribution with [min,max]=[0,1]. If p>r, these new parameters would be accepted and used as 
the point to step  from for the next iteration. Else, the new parameters would be rejected and the 
previously-accepted parameters would be used as the starting point for the next iteration. This 
process is repeated 50,000 times. The final distribution neglects the first 1000 trials (Figure 
S1c,d). 

For the purpose of this study, we randomly selected 10,000 of these models for used in 
uncertainty quantification. 

We used a similar process to generate possible solutions to the Bemis et al. [1998] equation to 
estimate the uncertainty in the δ18Osw record. In this case, the model takes the form:

δc-δw=aT+b

The prior distributions for the a and b coefficients were also set as uniform distributions with 
[min,max] values of [-0.25, -0.15]  and [2.5 3.5] respectively. The error estimate on the δc-δw is 

estimated as the combined error on the δc and δw measurements as 0.052 + 0.032 . 



3. Comparison to least-square solution

The solution set that minimizes the cost function is equivalent to the least-square solution 
derived previously (Figure S1a). This results is not surprising since the minimum cost represents 
the solution that minimizes the residuals between the model and the data. However, plotting the 
solution sets that  fall within the lower 95% of the cost does not fill the 95% confidence interval 
for the least square solution.

This discrepancy is due to the small sample size used to derive the least-square solution, which is 
based on minimizing the residuals. For a large number of datapoints, the sum of the residuals, 
expressed as the root mean square error (RMSE) would approximate the error in the data (in this 
case the analytical uncertainty). However, with only 5 data points, the residuals are not a good 
approximation of the analytical uncertainty. 

The correlation between the A and B coefficients estimated from the Bayesian calculation is 
-0.99 (p<0.01), highlighting the fact that randomly selecting coefficients from their error 
envelope in not appropriate. 



Figure S1: a. Measured Mg/Ca vs temperature (triangles) obtained from the temperature-only 
experiment of Kisakürek et al. [2008].  The red solid line represents the 95% confidence interval of the 
fit while the dashed line represents the 95% prediction interval. The black solid line represents the 
Bayesian solution that minimizes the cost function, which is equivalent to the least square solution. b. 
The red solid line represents the least-square solution while the red dashed line corresponds to the 
95% confidence interval of the least-square solution. The black lines represent the 95% lowest cost of 
the Bayesian solutions. c. Histograms of possible values for coefficient A. d. Same as c. for 
coefficient B. 
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Figure S2: a. Measured δc-δw vs temperature (triangles) obtained from the Bemis et al. [1998] culturing 
study. The red solid line represents the 95% confidence interval of the fit while the dashed line represents 
the 95% prediction interval.  The black solid line represents the Bayesian solution that minimizes the cost 
function, which is equivalent to the least square solution. b. The red solid line represents the least-square 
solution while the red dashed line corresponds to the 95% confidence interval of the least-square 
solution. The black lines represent the 95% lowest cost of the Bayesian solutions. c. Histograms of 
possible values for coefficient A. d. Same as c. for coefficient b. 
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