FN Archimer Export Format PT J TI Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age BT AF MOFFA-SANCHEZ, Paola HALL, Ian R. BARKER, Stephen THORNALLEY, David J. R. YASHAYAEV, Igor AS 1:1;2:1;3:1;4:1;5:2; FF 1:;2:;3:;4:;5:; C1 Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AX, S Glam, Wales. Fisheries & Oceans Canada, Bedford Inst Oceanog, Ocean Sci Div, Ocean Circulat Sect, Dartmouth, NS B2Y 4A2, Canada. C2 UNIV CARDIFF, UK MPO, CANADA IF 3.738 TC 40 UR https://archimer.ifremer.fr/doc/00290/40167/39108.pdf https://archimer.ifremer.fr/doc/00290/40167/39109.txt https://archimer.ifremer.fr/doc/00290/40167/39110.docx LA English DT Article CR IMAGES V LEG 1-MD114 IMAGES V LEG 4-MD114 BO Marion Dufresne DE ;planktonic foraminifera;δ18O;Mg;Ca;surface Labrador Sea;last millennium AB Despite the relative climate stability of the present interglacial, it has been punctuated by several centennial-scale climatic oscillations; the latest of which are often colloquially referred to as the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA). The most favored explanation for the cause of these anomalies is that they were triggered by variability in solar irradiance and/or volcanic activity and amplified by ocean-atmosphere-sea ice feedbacks. As such, changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) are widely believed to have been involved in the amplification of such climatic oscillations. The Labrador Sea is a key area of deep water formation. The waters produced here contribute approximately one third of the volume transport of the deep limb of the AMOC and drive changes in the North Atlantic surface hydrography and subpolar gyre circulation. In this study, we present multiproxy reconstructions from a high-resolution marine sediment core located south of Greenland that suggest an increase in the influence of polar waters reaching the Labrador Sea close to MCA-LIA transition. Changes in freshwater forcing may have reduced the formation of Labrador Sea Water and contributed toward the onset of the LIA cooling. PY 2014 PD MAR SO Paleoceanography SN 0883-8305 PU Amer Geophysical Union VL 29 IS 3 UT 000334349800003 BP 160 EP 175 DI 10.1002/2013PA002523 ID 40167 ER EF