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Supplement S1: Model description 

The biological model for phytoplankton growth is a modified form of that in  Evans and Parslow (1985) 
and Fasham et al (1990).  In this case, there is only one nutrient, nitrate, and phytoplankton are lost to 
coagulation as in Jackson (1995) and Jackson et al. (2005).  There are no grazing losses.  Values for 
constants are given in Table 1. 

 

Nitrate concentration 

Change in nitrate concentration N: 
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where Kz=vertical mixing coefficient, G is the phytoplankton specific growth rate, and φ is the 
phytoplankton concentration. 

 

Phytoplankton growth 

Phytoplankton growth rate at any given irradiance and nutrient concentration is given by  

 𝐺 = 𝐺!"#   min(𝑟!, 𝑟!) (A2.)  

where Gmaxis the maximum specific growth rate, rp and rn are the relative growth rates possible growth for 
photosynthesis and nutrient limitation at I and N.  They are calculated by 
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(A3.)  

where r is the phytoplankton loss rate and α   is the slope of the PI curve. 
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𝑁
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(A4.)  

where KD is the half saturation constant for nitrate uptake. 

Irradiance I given by 

 𝐼 = 𝐼!𝑒 !"#!
!  (A5.)  

where I0 is the surface irradiance, k = kw+ φ kr, kw is the attenuation coefficient for water and 0.04 m-1 and 
kr is the light absorption coefficient for plants.  The value of kr was chosen so that k equaled the observed 
attenuation at A3 (k=0.048 m-1 for P = 0.6 µg chl/L).  Surface irradiance was calculated using the 
relationships of Evans and Parslow (1985) for a latitude of 50°S and a starting time 120 d after winter 
solstice.  

A single phytoplankton cell was assume to have a diameter of 20 um and a density of 1.0637 g cm-3 

(compared to a fluid density of 1.0275 g cm-3), for a resulting settling speed of 1.05 m d-1. 



 

Describing particle size distributions 

Standard coagulation theory describes particle size distributions using a number spectrum n(s), where s is 
particle size, such as mass m or equivalent spherical diameter d.  Number spectra in terms of m and d can 
be related  

 
𝑛 𝑑 = 𝑛 𝑚
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(A6.)  

 

The total number of particles in a small size interval dl < d ≤ d +Δd  is approximately n Δd. For a 
sufficiently small Δd, all particles have the same individual volume 𝑉 𝑑 = !

!
𝑑!.  The total particle 

volume in the interval is then V(d) n Δd.  The total particle volume for any large particle range dl < d ≤ du  
is  
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(A7.)  

which is proportional to the area under the curve when nV is plotted as a function of d.  Plotting nV versus 
the logarithm of d destroys the relationship between the area under the curve and the total particle 
volume; plotting nVd as a function of log d restores it.  We will discuss particle size distributions in terms 
of the nVd form of the distribution, but note that it contains the same content as n. 

How coagulation changes size distributions 

Coagulation destroys small particles and creates new ones in a way that is mathematically expressed as  
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where β(m1,m2) is the coagulation kernel and describes the collision rate between particles of masses m1 

and m2 and α is the stickiness, the probability of a collision destroying the two colliding particles and 
forming a larger particle.   

One of the techniques for solving this equation numerically is to break the size distribution n into 
segments, called sections, each with a fixed shape but a variable magnitude, such that  
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within a range of  𝑚!    > 𝑚 ≥ 𝑚!!!,   where Qi(t) is the total particulate mass within the bounds (e.g., 
Jackson 1995) and the range represents the section boundaries.  This approximation breaks n(m,t) into 
separate time and mass varying parts.  Gelbard et al. showed that doing so allows Eq. A8 to be 
transformed from an integer-differential equation to a series of ordinary differential equations: 
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where 𝛽!,!,!! , 𝛽!,!! , 𝛽!,!! , and 𝛽!,!!  are sectional coefficients and lmax is the total number of sections. The 
equations simplify if the mass of the upper boundary of a section is twice that of its lower boundary. 

Jackson (1995) added a disaggregation term to Eq. A10 which moved mass from section i to the next 
lower section i-1 at a rate λiQi, where λi is a size dependent disaggregation coefficient.  We used the 
values for λi from Jackson(1995).  

The algae were assumed to be occupy the first section: φ=Q1.  The equation describing their 
concentration is  
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For particles in larger sections, the equation describing their concentration becomes 
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where vl is the settling rate for particles in the lth section. 

  

Measures of aggregate size. 

Because aggregate porosity increases with size, particle density decreases as particle size increases.  The 
relationship between the diameter assigned to a particle from analysis of an image da is frequently 

described using a fractal dimension Df: 𝑚 ∝ 𝑑!
!!.  Increasing Df decreases the porosity of large particles 

and results in smaller values of da for a given m.  An apparent volume for a sphere with diameter da is 
then 𝑉! =

!
!
𝑑!!. A conserved volume Vc can be calculated from a particle’s mass and the density of the 

single cell.  Its diameter dc can be calculated assuming it is a sphere. 

 

Numerical solution of equations 

The equations were solved numerically for a 150 m mixed layer using a centered-difference scheme, no-
flux boundary conditions at the surface, fixed nitrate concentration= 30 µM and no diffusive particle flux 
at the bottom boundary (150 m).  Equations were solved at a vertical spacing of 2 m. Particle 
concentrations were calculated in terms of the conserved volume.  

Parameter values are given in Table 2. 


