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1- Models and simulations description 

1-1- The reconstructions: RECCAP simulations 

The pseudo-observations or reconstructions datasets have been provided by the 

RECCAP project [Canadell et al., 2011]. In this project, reconstructions of the 

evolution of the carbon uptake by the oceans have been performed by seven ocean 

biogeochemical models forced by NCEP atmospheric reanalyses [Kalnay et al., 1996] 

from 1959 to 2005. These seven models are listed in Table S1.  

Model name Available variables References 

MICOM-HAMOCCv1 fgCO2, pCO2 [Assmann et al., 2010] 

CCSM-BOGCM fgCO2, pCO2 [Matear and Lenton, 2008] 

CCSM-BEC fgCO2, pCO2 [Doney et al., 2009] 

CCSM-ETHk15 fgCO2, pCO2 [Graven et al., 2012] 

CCSM-ETHk19 fgCO2, pCO2 [Graven et al., 2012] 



NEMO-PISCES fgCO2 [Aumont and Bopp, 2006] 

NEMO-Planktom5 fgCO2, pCO2 [Buitenhuis et al., 2010] 

Table S1: Ensembles of ocean biogeochemical models forced with atmospheric 

observations used as reconstructions of oceanic carbon uptake from 1959 to 2005. 

Simulated ocean carbon fluxes (fgCO2) and partial pressure of CO2 (pCO2) used in 

this study are provided on the RECCAP website (http: 

//www.globalcarbonproject.org/reccap/products.htm) or the OCMIP5 website 

(http://ocmip5.ipsl.fr). 

Trends estimated from these seven ocean biogeochemical models have been assessed 

in several studies combining atmospheric and ocean in situ data as well as 

reconstructions provided by inverse modeling [Schuster et al., 2013; Wanninkhof et 

al., 2013; Tjiputra et al., 2014]. 

1-2- The fingerprints simulations: CMIP5 simulations 

In this study, we have employed outputs from several Earth System Models that have 

contributed to CMIP5. The geochemical ensemble (GEO) gathers all of the available 

esmFixClim2 simulation of the CMIP5 database. In this kind of simulation, carbon 

dioxide is treated as a non-radiative gas implying only the geochemical response to 

rising CO2 on marine biogeochemistry is considered. The climate ensemble (CLIM) 

gathers on the other hand all of the available esmFdbk2 simulation of the CMIP5 

database. For these ensembles of simulations, the geochemical response of CO2 is 

shunted down by fixing atmospheric CO2 seen by biogeochemistry at its preindustrial 

level. The coupled ensemble (ALL) combines these two responses. It is composed by 

all of the available historical simulation of the CMIP5 database. The last ensemble 

gathers all of the preindustrial control simulation (piControl and esmControl) of the 

CMIP5 database. This dataset allows us to characterize the internal variability (IV). 

The number of models and their name are given in Table S2 for each ensemble of 

simulations.  

 

 



 

Name of 

CMIP5 

simulations 

piControl and 

esmControl 

historical esmFixClim2 esmFdbk2 

Response 

induced on 

Ocean 

carbon 

uptake and 

abbreviation 

Internal variability (IV) Coupled (ALL) Geochemical (GEO) Climate (CLIM) 

Number Of 

Models 

21 21 7 5 

CMIP5 Earth 

system 

models 

bcc-csm1-1, bcc-csm1-

1-m, CanESM2, 

CMCC-CESM, CNRM-

CM5, inmcm4, IPSL-

CM5A-LR, IPSL-

CM5A-MR, IPSL-

CM5B-LR, MIROC-

ESM-CHEM, MIROC-

ESM, HadGEM2-CC, 

HadGEM2-ES, MPI-

ESM-LR, MPI-ESM-

MR, GISS-E2-H-CC, 

GISS-E2-R-CC, 

NorESM1-ME, GFDL-

ESM2G, GFDL-

ESM2M, CESM1-BGC 

bcc-csm1-1, bcc-

csm1-1-m, 

CanESM2, CMCC-

CESM, CNRM-

CM5, inmcm4, 

IPSL-CM5A-LR, 

IPSL-CM5A-MR, 

IPSL-CM5B-LR, 

MIROC-ESM-

CHEM, MIROC-

ESM, HadGEM2-

CC, HadGEM2-ES, 

MPI-ESM-LR, MPI-

ESM-MR, GISS-E2-

H-CC, GISS-E2-R-

CC, NorESM1-ME, 

GFDL-ESM2G, 

GFDL-ESM2M, 

CESM1-BGC 

bcc-csm1-1, CanESM2, 

IPSL-CM5A-LR, 

MIROC-ESM, 

HadGEM2-ES, GFDL-

ESM2M, CESM1-BGC 

bcc-csm1-1, 

CanESM2, IPSL-

CM5A-LR, 

HadGEM2-ES, 

GFDL-ESM2M 

Table S2: Ensembles of Earth system models simulations used for evaluating the 

response to external forcings. The CMIP5 name of each ensemble, the number of runs 



available and the external forcings accounted for are specified for each ensemble. 

 

2- Methods 

2-1- Detection & Attribution algorithm 

The method used in this study for climate change attribution is an adaptation of the 

regularized optimal fingerprint method detailed in [Allen and Tett, 1999; Ribes et al., 

2009; 2010]. State-of-the-art optimal fingerprints, first introduced by [Allen and Tett, 

1999], have been largely used in the context of the IPCC. Optimal fingerprint 

methods consist in a generalized linear regression. It usually relies on a strong 

assumption considering that models represent accurately the responses to external 

forcings (i.e., the fingerprints). Here, the uncertainty related to the models response to 

an external forcing has been estimated from the simulated internal variability. In this 

framework, proposed by [Ribes et al., 2009; 2010; 2013], best fit is estimated by 

minimizing “Total least squares” (TLS) of the statistical model detailed as follows: 

€ 

Y = βigi
i=1

N

∑ +εY   (1) 

€ 

˜ g i = gi +εg    (2) 

 

where  are the observations,  is  the response of ocean carbon uptake to the ith  

external forcing,  is an unknown scaling factor and  denotes the internal climate 

variability. The response  simulated by the various Earth System Models is 

composed by the “true” response  —considered unknown— and a noise  

corresponding to simulated internal variability.   

  

Therefore, statistical inference performed with the model (1) requires additional 

assumptions with respect to the internal variability ( ) and the uncertainties related 

to external forcing responses ( ). It is first assumed that  follows a Gaussian 

distribution, with a covariance C.  This matrix C is estimated from control simulations 

as in [Ribes et al., 2009; 2010]. In this study, the covariance matrix C has been 

estimated from more than 13 000 years of control simulations. 



 

2-2- Trends analysis 

In this study, climate impacts include simultaneously the contribution of the natural 

variability (e.g., volcanoes, solar constant) and the contribution of the anthropogenic 

forcing (e.g., greenhouse gases, aerosols). The contribution of the natural variability 

has little consequences on the ocean carbon fluxes [Tjiputra and Otterå, 2011] 

compared to those of the anthropogenic forcings which induce substantial long-term 

changes [Friedlingstein and Prentice, 2010]. 

On this assumption, we have proceeded to an analysis of a long-term trend of each 

ensemble (RECCAP, ALL, GEO and CLIM) to identify the contribution of the 

anthropogenically-induced climate forcing on ocean carbon uptake.  

We have computed linear long-term trend from the time series of ocean carbon uptake 

of each member of the four ensembles. Of these trends, we have estimated the 

probability density function (pdf) presented on the Figure 3 based on the assumption 

of a Gaussian distribution. The p-value (panel g of Figure 3) results from a 

consistency test comparing a set of trends, 

€ 

y , of a given ensemble to a reference 

distribution, 

€ 

X , as follows: 

 

€ 

y − x 

σx
n +1

n

~ Tn−1  

where 

€ 

x  and  are the mean and standard deviation of the sample 

€ 

X .   

 

3- Detection of the ALL forcing 

In this section, we apply a 1-forcing D&A analysis, in order to estimate the 

anthropogenic influence (ALL forcing) from the RECCAP pseudo-observations. The 

analysis is based on the CMIP5 historical simulations multi-model mean, and the 

RECCAP multi-model mean. Figure S1 shows the scaling factors best estimated 



(diamond) and their associated 5%-95% confidence interval (90% significance level). 

p-values bracketed indicate if the linear fits performed with the TLS algorithm pass a 

residual consistency test (which consists in comparing the distribution of residuals of 

the fit to the distribution of the internal variability). 

It appears that all scaling factors are significantly different from zero and positive, 

translating that the representation of the evolution of the carbon uptake by the oceans 

as simulated by the 21 CMIP5 models is comparable in average with that 

reconstructed by the 7 RECCAP models. Yet, only scaling factors of two oceanic 

domains are statistically equal to 1. It demonstrates that the representations of the 

ocean carbon uptake evolution between the CMIP5 models and the RECCAP 

reconstructions are similar in amplitude in the high-latitude Atlantic and the low-

latitude Pacific. In other regions, scaling factors are smaller than 1. This means that 

CMIP5 models overestimate in average the ocean carbon uptake between 1960 and 

2005 compared to the RECCAP ensemble mean. Nonetheless, scaling factor’s 

confidence intervals get larger and include 1 if each CMIP5 model is taken 

individually.  

 

4- Evaluation of the fits as estimated by the TLS algorithm 

Figure S2 compares evolution of ocean carbon uptake anomalies as fitted by the TLS 

algorithm to those represented by the ensemble mean of GEO (in green), CLIM (in 

red) and RECCAP (in black). This allows us to assess the accuracy of the TLS 

regression and to better understand why the residuals consistency test fails in the low-

latitude Pacific. Figure S2 shows, in addition, that the TLS regressions fit closely to 

the RECCAP ensemble mean in most cases. Yet, discrepancies between the TLS fit 

and the RECCAP ensemble mean have to be regarded with respect to internal 

variability. Our results suggest that these discrepancies are well within the range of 

internal variability except over the low-latitude Pacific, where the residual consistency 

test is (moderately) rejected with a p-value of 0.08.  

To test the robustness of the TLS fit to the spatiotemporal information, we have re-

played our detection and attribution procedure by considering two regional time series 

together in the optimal fingerprints analysis (instead of only one as performed for 



Figure 2). In this spatio-temporal analysis, we have combined the regions zonally, i.e., 

the high-latitude Pacific with the high-latitude Atlantic and the low-latitude Pacific 

with the low-latitude Atlantic (with a spatial dimension of 2). The Southern Ocean 

(South of 30°S) has been divided in two oceanic basins corresponding respectively to 

the Atlantic and Pacific oceans before the zonal combination. 

Figure S3 illustrates the robustness of our results since the optimal fingerprints 

analysis performed with this pre-processing leads to the same conclusions. That is, the 

climate influence on the ocean carbon uptake is only detected within the low-latitude 

oceans, while the influence of rising atmospheric CO2 is detected at global scale. 

 

5- Sensitivity of D&A results to data pre-processing 

In this section, we evaluate the sensitivity to D&A analysis to the ensemble size. For 

this purpose, we have re-run TLS algorithm with different estimate of the ensemble 

mean increasing step by step the size of the ensemble size. 

We found that contribution of the geochemical forcing is not sensitive to the ensemble 

size demonstrating how strong is the response of ocean carbon uptake to rising 

anthropogenic CO2. This is not the case for the climate forcing, which requires an 

ensemble of 3 members minimum to detect its contribution to the recent changes in 

the carbon uptake by the low-latitude oceans. For this forcing, the ensemble size does 

not play in other regions demonstrating the robustness of our findings. 
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Figure 1: Evaluation of the historical (ALL) ocean CO2 uptake evolution over the 1960-
2005 period as estimated by the ensemble mean of the 21 CMIP5 models. Scaling factors
(β) best estimates and their 5%-95% confidence intervals as computed from the optimal fingerprint
analysis applied at regional and global scale. Regional scaling-factors are estimated from time series
of ocean carbon uptake anomalies, while global scaling factor integrates spatiotemporal information
by performing all of the regional time series at once in the ROF analysis. Bracketed p-values give
information of the accuracy of the fit; if p is larger than 0.2, fit passes the residual consistency test.
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(d) Southern Ocean

Figure 2: Evaluation of reconstructed time-series of ocean CO2 uptake anomalies over the
1960-2005 period. Annual anomalies (in Pg C y−1) averaged over 10 non-overlapping periods of the
RECCAP ensemble mean and the ensemble mean of simulation accounting solely geochemical forcing
(GEO) and solely the climate forcings (CLIM) as used in the optimal fingerprint analysis are given
in solid black, green and red lines. Time-series fitted by TLS algorithm for the RECCAP, GEO and
CLIM ensemble mean are respectively given in dashed black, green and red lines.
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Figure 3: Scaling factors (β) best estimates and their 5%-95% confidence intervals as
computed from the optimal fingerprints analysis applied to the RECCAP datasets. Scaling-
factors are estimated zonally from regional time series of ocean carbon uptake anomalies. These
estimations integrates spatiotemporal informations by performing at least two regional time series at
once in the optimal fingerprints analysis. Optimal fingerprints analysis were used on the 1960-2005
ensemble mean time series (The number of models for each ensemble used is bracketed). p-values assess
if residuals of the regression fit pass a residual consistency test.
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