
RESEARCH ARTICLE
10.1002/2015JC010759

Assessing the abilities of CMIP5 models to represent the
seasonal cycle of surface ocean pCO2

Darren J. Pilcher1, Sarah R. Brody2, Leah Johnson3, and Benjamin Bronselaer4

1Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA, 2Division
of Earth and Ocean Sciences, Duke University, Durham, North Carolina, USA, 3School of Oceanography, University of
Washington, Seattle, Washington, USA, 4Department of Physics, University of Oxford, Oxford, UK

Abstract The ability of Earth System Models to accurately simulate the seasonal cycle of the partial pres-
sure of CO2 in surface water (pCOSW

2 ) has important implications for projecting future ocean carbon uptake.
Here we develop objective model skill score metrics and assess the abilities of 18 CMIP5 models to simulate
the seasonal mean, amplitude, and timing of pCOSW

2 in biogeographically defined ocean biomes. The mod-
els perform well at simulating the monthly timing of the seasonal minimum and maximum of pCOSW

2 , but
perform somewhat worse at simulating the seasonal mean values, particularly in polar and equatorial
regions. The results also illustrate that a single ‘‘best’’ model can be difficult to determine, despite an analy-
sis restricted to the seasonality of a single variable. Nonetheless, groups of models tend to perform better
than others, with significant regional differences. This suggests that particular models may be better suited
for particular regions, though we find no evidence for model tuning. Timing and amplitude skill scores dis-
play a weak positive correlation with observational data density, while the seasonal mean scores display a
weak negative correlation. Thus, additional mapped pCOSW

2 data may not directly increase model skill
scores; however, improved knowledge of the dominant mechanisms may improve model skill. Lastly, we
find skill score variability due to internal model variability to be much lower than variability within the
CMIP5 intermodel spread, suggesting that mechanistic model differences are primarily responsible for dif-
ferences in model skill scores.

1. Introduction

Anthropogenic emissions of CO2 since the Industrial Revolution are a significant perturbation to the global
carbon cycle. Of the 555 PgC (1 PgC 5 1015 gC) emitted due to human industrial activities, approximately half
has remained in the atmosphere, increasing atmospheric CO2 concentrations from 278 ppm in 1750 to 390.5
ppm by 2011 [Ciais et al., 2013]. The remaining emissions have been absorbed into both the terrestrial and
ocean carbon sinks. However, the terrestrial biosphere has only acted as a net carbon sink since the 1940s,
and is a net source of CO2 when integrating over the entire industrial period [Khatiwala et al., 2009], leaving
the ocean as the only long-term sink over this period. Anthropogenic CO2 emissions are projected to con-
tinue to increase, indicating that the ocean will have to increase CO2 uptake in order to continue offsetting
roughly 25% of human emissions. However, climate-carbon feedbacks associated with ocean warming and
changing wind stress are projected to decrease ocean CO2 uptake [Friedlingstein et al., 2006].

Atmosphere-Ocean Global Climate Models (AOGCMs) are mathematical models that simulate the general
circulation of the atmosphere-ocean system. Recent Intergovernmental Panel on Climate Change (IPCC)
assessment reports has utilized a developing category of AOGCMs called Earth System Models (ESMs).
Although there is not yet a universal definition for an ESM, a fully coupled carbon cycle is often used as a
defining characteristic [Lindsay et al., 2014]. ESMs are utilized to determine historical and future ocean car-
bon uptake and offer spatial and temporal resolution unavailable in observational data. Additionally, they
provide experimental earth systems that can be tested under future scenarios of atmospheric greenhouse
gas emissions. Projections reported in the IPCC fifth assessment report (IPCC AR5) were produced from the
Coupled Model Intercomparison Project phase-5 (CMIP5) [Taylor et al., 2011].

Validating and testing the accuracy of these models is vital toward identifying key processes that are miss-
ing and ultimately improving how representative they are of the Earth system. Previous studies tend to
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base model skill on the accuracy of hindcast simulations [Lin, 2007; Gleckler et al., 2008; Radić and Clarke,
2011]. Many of these studies find that models that are best in simulating a specific region are often not as
skillful in other regions [Schneider et al., 2008; Scherrer, 2011; Anav et al., 2013]. However, these differences
are substantially reduced on the global mean scale. For example, models simulate the global ocean CO2

flux reasonably well, despite much larger model spread in simulating specific regions or variables [Anav
et al., 2013]. However, model spread increases for projections of global ocean carbon uptake over the 21st
Century, due to carbon-climate feedbacks and regional differences in ocean carbon storage and circulation
[Friedlingstein et al., 2006]. There is also growing interest in differentiating between model inaccuracies due
to systematic or process-based errors and errors related to the impact of internal variability [Deser et al.,
2012a]. The former is indicative of model deficiencies, whereas the latter is the influence of natural variabili-
ty as simulated within the Earth system. The degree to which internal variability can influence model skill
and rankings is an important question that has often not been addressed.

The direction of the air-sea flux of CO2 is determined by the gradient in the partial pressure of CO2 (pCO2)
between the atmosphere and the surface ocean. To first order, surface ocean pCO2 (pCOSW

2 ) will tend
toward equilibrium with the atmosphere. However, pCOSW

2 is also a function of temperature, salinity, alka-
linity, and dissolved inorganic carbon (DIC). Thus, oceanic physical and biological processes can substan-
tially modify pCOSW

2 and generate regions of both net carbon uptake and efflux. Equatorial regions are
supersaturated in pCOSW

2 due to DIC upwelling and are therefore annual net sources of CO2 to the atmos-
phere [Takahashi et al., 2009; Landsch€utzer et al., 2014a, 2014b]. Conversely, midlatitude to high-latitude
regions are generally undersaturated in pCOSW

2 due to colder water temperatures and greater biological
productivity, and are annual net CO2 sinks. An exception is the Polar Southern Ocean, where observational
data suggest a slight annual source of CO2, albeit with a relatively sparse observational record [Takahashi
et al., 2009; Landsch€utzer et al., 2014a, 2014b]. Seasonality plays a much greater role in high-latitude
regions, with areas such as the North Pacific alternating between a CO2 source in winter and a CO2 sink in
summer [Landsch€utzer et al., 2014a, 2014b]. Significant seasonality combined with limited wintertime
observations can bias estimates of ocean anthropogenic carbon uptake [Rodgers et al., 2008]. Furthermore,
future ocean carbon uptake may become more dependent on the seasonal drawdown of pCO2 by biologi-
cal productivity, due to reduced ocean buffer capacity [Hauck and V€olker, 2015]. Considering, for example,
that the MPI models strongly overestimate the high-latitude Southern Hemisphere CO2 sink in austral
summer [Anav et al., 2013], this seasonal bias may become amplified at reduced buffer capacity. Thus, dif-
ferences in the seasonal cycle of pCOSW

2 between CMIP5 models may impact projections for the evolution
of ocean carbon uptake over the 21st Century, and highlight needed areas of improvement in the physi-
cal or biological components of the models.

Here we design and implement model skill metrics to assess the abilities of CMIP5 models to reproduce the
seasonal mean, timing, and magnitude of pCOSW

2 . We expand upon previous model skill score studies by
focusing specifically on the seasonality of a single variable (pCOSW

2 ), by incorporating biogeographically dis-
tinct ocean biomes, and providing a quantitative estimate for the impact of internal variability on our model
skill scores.

2. Methods

2.1. CMIP5 Models
We utilized output from 18 global simulations for the recent IPCC Fifth Assessment Report (AR5) as part of
CMIP5. The CMIP5 archive includes a wide range of experiments using historical and projected 21st Century
forcing. The archived data can be accessed via the Program for Climate Model Diagnosis and Intercompari-
son (PCMDI) and is freely available to the research community (http://cmip-pcmdi.llnl.gov/cmip5/). Details
of these models and their relevant ocean components are listed in Table 1.

We specifically analyze models that contain monthly output of pCOSW
2 over the historical period. Within

these models, only a subsection of them provided an ESM historical run (refer to Table 1). These data are
used to generate a monthly pCOSW

2 climatology for each model by averaging over a 10 year window
between 1995 and 2005, to match the observational climatology. This monthly climatology is then
regridded to the coarser 48 3 58 grid of the observational climatology using an objective analysis interpola-
tion scheme [Barnes, 1994].
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2.2. Observational pCO2 Data
Modeled monthly pCOSW

2 climatology is compared to the monthly pCOSW
2 climatology of Takahashi et al.,

[2009]. This climatology is constructed from over 3 million pCOSW
2 shipboard measurements collected since

the 1970s. The climatology has a spatial resolution of 48 latitude 3 58 longitude and is referenced to the
year 2000. Measurements from coastal regions, as well as those from the Equatorial Pacific collected during
El Ni~no years are excluded [Takahashi et al., 2009].

2.3. Model Biomes
Because pCOSW

2 is controlled by biological and physical processes that vary regionally, we use the Fay and
McKinley [2014] criteria to define biomes consistent with the global biogeography of the ocean. Boundaries
of these 17 biomes are derived from sea surface temperature (SST), maximum mixed layer depth, sea ice
concentration, and chlorophyll a concentrations (Figure 1). We downloaded the Fay and McKinley [2014]
mean biome definitions (http://doi.pangaea.de/10.1594/PANGAEA.828650) and regridded the definitions to
a 48 3 58 grid.

Most (although not all) of the CMIP5 models in our study also output the variables needed to define the Fay
and McKinley [2014] biomes. We tested the effect of using variable biome definitions (i.e., biomes calculated
from the output of a specific CMIP5 model) as opposed to fixed biome definitions (i.e., biomes calculated
from observational data). The goal of this experiment was to determine if model skill scores were biased by
the specific boundaries of the biomes in each model. We tested a subset of the CMIP5 models that con-
tained monthly SST, chlorophyll, and mixed layer depth output data (GFDL-ESM2G, GFDL-ESM2M, and MRI-
ESM1). The results of this test (Figure 2) produced a slight (generally <0.1), albeit discernible difference in
model skill score between the fixed and variable biome definitions, but revealed no clear bias. With no evi-
dence for an underlying bias and in the interest of keeping the comparison consistent across the CMIP5

Table 1. CMIP5 Models Included in This Study and Corresponding Ocean Model, Vertical Coordinate Specification, Biological Model, and Chemical Versus Ecosystem Framework

Full Name Model Name Model Type Ocean Physics

Isopycnal
Versus
Z-Level Ocean Biology

Chem Versus
Ecosystem

Beijing Climate Center, China Meteorological Administration BCC-CSM1.1 ESM Historical MOM (4) z-level MOM based
on OCMIP2

Chemical

Community Earth System Model Contributors (NFS, DOE, NCAR) CESM1(BGC) ESM Historical POP2 z-level BEC Ecosystem
Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CESM Historical NEMO z-level PELAGOS/BFM Ecosystem
Canadian Center for Climate Modelling and Analysis CanESM2 ESM Historical OGCM4/CanOM4 z-level CMOC Ecosystem

(NPZD)
The First Institute of Oceanography, SOA, China FIO-ESM ESM Historical POP2 z-level OCMIP2 Chemical
NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M ESM Historical MOM z-level TOPAZ2 Ecosystem
NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G ESM Historical GOLD isopycnal TOPAZ2 Ecosystem
NASA Goddard Institute for Space Studies GISS-E2-H-CC Historical HYCOM isopycnal/

z-level
hybrid

Chemical

NASA Goddard Institute for Space Studies GISS-E2-R-CC Historical Russell ocean
Model

z-level Chemical

Met Office Hadley Centre HadGEM2-CC Historical NEMO z-level Diat-HadOCC Ecosystem
Met Office Hadley Centre HadGEM2-ES ESM Historical NEMO z-level Diat-HadOCC Ecosystem
Institute for Numerical Mathematics INM-CM4 ESM Historical INMCM4 z-level
Japan Agency for Marine-Earth Science and Technology,

Atmospheric and Ocean Research Institute
(the University of Tokyo) and National Institute for
Environmental Studies

MIROC-ESM ESM Historical COCO r/zlevel
hybrid

NPZD Ecosystem

Japan Agency for Marine-Earth Science and Technology,
Atmospheric and Ocean Research Institute
(the University of Tokyo) and National Institute
for Environmental Studies

MIROC-ESM-CHEM Historical COCO r/zlevel
hybrid

NPZD Ecosystem

Max-Planck Intitut fur Meteorologie MPI-ESM-LR Historical MPIOM z-level HAMOCC5 Ecosystem
Max-Planck Intitut fur Meteorologie MPI-ESM-MR Historical MPIOM z-level HAMOCC5 Ecosystem
Meteorological Research Institute MRI-ESM1 ESM Historical MRI.COM4 isopycnal/

zlevel
hybrid

Norwegian Climate Centre NorESM1-ME ESM Historical MICOM isopycnal HAMOCC Ecosystem
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models, which employ varied criteria to defined the MLD and do not all output the same set of variables,
we use the fixed rather than variable biome definition.

Finally, we calculate the density of observations in each biome by dividing the number of observations
from the Takahashi et al. [2009] database by the number of 48 3 58 grid cells in each biome, to obtain the
number of observations per grid cell.

Figure 1. Global ocean divided into the biomes used in the present study, defined using the criteria outlined in Fay and McKinley [2014]. Sea
surface temperature and ice data obtained from the Hadley Centre Sea Ice and Sea Surface Temperature data set, averaged over 1998–2010.
Chlorophyll data obtained from the SeaWiFS sensor, also averaged over 1998–2010, and mixed layer depths obtained from the Holte and
Talley [2009] climatology, which uses ARGO float data collected between 2002 and 2008. Eq refers to equatorial; STPS refers to subtropical
permanently stratified; STSS refers to subtropical seasonally stratified; SPSS refers to subpolar seasonally stratified; ICE refers to ice covered.

Figure 2. Model skill metrics created using biomes defined with observed SST and chlorophyll minus model skill metrics created using bio-
mes defined with the SST and chlorophyll output from each model, for three representative models. Because each metric is on a [0, 1]
scale, 21 and 1 represent the minimum and maximum of this difference.
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2.4. Model Metric
We create model metrics for seven variables describing the pCOSW

2 seasonal cycle: the mean pCOSW
2 over

the spring (MAM), summer (JJA), fall (SON), and winter (DJF) seasons, the timing of the minimum pCOSW
2 ,

the timing of the maximum pCOSW
2 , and the amplitude of the yearly pCOSW

2 cycle (Figure 3a). For each vari-
able and each biome, we calculate values for both modeled and observed pCOSW

2 at each 48 3 58 grid cell
within the biome. We then use all grid cells within each biome to calculate Kernel Density Estimates (KDEs)
for the modeled and observed values. KDEs are discrete distributions, where each point is replaced by a dis-
tribution, or kernel, scaled to 1 and centered at the location of the original point [Rosenblatt, 1956; Parzen,
1962]. The KDEs smooth discrete distributions and incorporate the uncertainty inherent in each grid cell’s
value. We use the ksdensity Matlab function [Bowman and Azzalini, 1997] with a normal kernel to calculate
the KDEs. The model metric for each category is then the degree of overlap between the model and the
observational KDEs, found by dividing the area common to both KDE curves with the total area under the
KDE curves. A value of 1 represents complete overlap, while a value of 0 represents no overlap (see sche-
matic, Figure 3).

To further summarize model performance, we then calculate a seasonal mean metric as the average of the
four seasonal metric values and a timing metric as the average of the minimum timing and maximum tim-
ing metric values at each biome. As a result, for each model and each biome, we determine three summary
metrics for the pCOSW

2 seasonal cycle: seasonal mean, amplitude, and timing.

We also calculate model rankings in order to condense the information of all the metric skill scores for each
model in each biome and to determine models that are generally performing the best across the entire
domain. These rankings are calculated by taking the average skill scores of each metric across all ocean
basins within each biome type (e.g., SPSS, STPS, ICE, etc.). This allows us to rank all 18 CMIP5 models for
each metric and in each biome. Within these rankings, we group the models into separate ‘‘tiers’’ that distin-
guish between relative scores within the rankings. This tier structure results from the general observation
that several models will perform comparatively, before a substantial jump down to the next grouping of
models. Models are grouped into the same tier if their skill score is within 5% of the next highest ranked
model.

Figure 3. Schematic illustrating model skill metrics for the CESM model in the STSS North Atlantic. (a) Seasonal cycle of observed (black line) and CESM (gray line) pCO2, averaged over
the STSS-NA biome, with observed pCO2 curve annotated to show the mean, amplitude, and timing metrics. (b) Kernel density estimates (KDEs) for the amplitude metric. The solid black
and gray curves represent the observed and modeled KDEs, i.e., the distribution of pCO2 seasonal amplitudes seen over all grid cells within the STSS-NA biome in the observational data
and CESM model data. The black dashed curve represents the total area encompassed by both KDEs; including both the areas of overlap and the areas encompassed by only 1 KDE. The
dotted curve represents the area of overlap between the KDEs only. The model skill metric is calculated by dividing the area under the overlap curve by the area under the total curve.
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2.5. CESM Large Ensemble
In an effort to distinguish between model metric variability due to mechanistic differences within the
CMIP5 spread and variability due to internal variability, we utilize 24 ensemble members from the Commu-
nity Earth System Model Large Ensemble (CESM-LE) project [Kay et al., 2015]. Although this version of the
CESM is similar to the version submitted to CMIP5, the CESM-LE uses the updated atmosphere model
CAM5, as opposed to CAM4 in CMIP5. Output from the CESM-LE is available via the Earth System Grid
(https://www.earthsystemgrid.org/home.htm). Each ensemble member consists of the same model with
identical external forcing, but is generated with a slight perturbation (�10214 K) to the initial air tempera-
ture field. This sets each ensemble member on a unique climate trajectory. Thus, differences in the evolu-
tion of the Earth system in each ensemble member are taken to be representative of internal variability
within the modeled climate system.

For each ensemble member, we create a monthly pCOSW
2 climatology using monthly pCOSW

2 data from the
11 year timeframe between 1995 and 2005. Each climatology is then regridded to the 48 3 58 spatial resolu-
tion using the same methodology as the CMIP5 model climatologies. Next, model metrics are calculated
using the same methodology as for the CMIP5 models. Due to the difference in the number of simulations
analyzed between the CMIP5 and CESM-LE projects (18 versus 24, respectively), we utilize a Monte-Carlo
approach to randomly sample 18 of the 24 CESM-LE members. From these 18 randomly sampled members,
the standard deviation across the ensemble is computed for each metric and biome. The Monte-Carlo simu-
lation was run 1000 times, at which point the maximum change in the standard deviation for any given
metric or biome was <0.1%. Thus, we consider the magnitude of the variability in model metric skill score
computed across the CESM-LE to be representative of the differences between CMIP5 model metrics that
may be attributable to internal variability.

3. Results

3.1. Overview of Metrics and Model Performance
Figure 4 illustrates how the CMIP5 models compare to the observations when examining annual, globally
averaged pCOSW

2 . Most CMIP5 models fall within 50 matm of the observed average value, with the majority
slightly greater than the observed. The variability across the biomes is also similar in many of the CMIP5

Figure 4. Global mean annual average pCOSW
2 in the observed Takahashi et al. [2009] climatology and the CMIP5 models. Errorbars denote

the spatial variability across the biomes as the 1 sigma standard deviation.
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models, though a few models contain substantially greater variability (e.g., GISS-E2-R and the MPI models),
while the INMCM4 model contains substantially lower variability. Thus, many of the CMIP5 models simulate
annual, globally averaged pCOSW

2 reasonably well, with comparable biome-scale spatial variability.

The results of all model metric scores in all ocean biomes are summarized in Figure 5. In most biomes and
for most metrics, model skill scores tend to vary by up to 0.5, with somewhat lower variance in the timing
metric. The variability across both biomes and metrics makes it difficult to determine the relative perform-
ance of models based on the raw metric scores alone; therefore, we calculate model rankings and divide
models into separate tiers based on average performance (Table 2). The GFDL models contain the greatest
number of average skill scores in the top tiers, with particularly strong average scores in the SPSS biomes.
The CanESM2 also falls within the top tiers for many of the biomes. The CESM1 generally falls in the top tiers
for the amplitude and timing metrics, but does not perform as well for the mean metric. Some models such
as BCC CSM1 top the rankings for a specific metric within a specific region (e.g., mean STPS and ICE), but do
not score as well in other categories.

We conducted an additional assessment to test for evidence of model tuning, by examining whether mod-
els that performed significantly better in any biome than the mean of all models (>1 standard deviation)
then performed worse than the mean of metrics for all other biomes. We only found one instance in which
a model with unusually good performance in one region performed worse than the mean in more than half
of the other regions (HadGEM2-CC for the timing metric in the North Pacific ICE biome) so do not see wide-
spread evidence of model tuning.

3.2. Comparison Across Biomes
Figure 6 shows model metric scores for each biome, averaged across all 18 CMIP5 models used. The mean
and amplitude metric scores are generally greater in biomes located within the subtropical and midlatitude
regions (0.3–0.5), while metric scores in equatorial and polar regions are generally lower (0.2–0.4 and
0.2–0.3, respectively). This pattern does not hold in the timing metric, as the greatest scores are in the equa-
torial and subtropical biomes. Taken as a collective group, the CMIP5 models perform the best at the timing
metric, with metric skill scores that are generally twice as greater than the amplitude and mean metric skill
scores. The amplitude and mean metric skill scores are comparable for the collective CMIP5 models, with
the amplitude metric scoring slightly better overall.

3.3. Comparison with Density of Observations
We compute correlation coefficients between model skill score and observational data density within each
biome for the 18 CMIP5 models to determine the impact that the number of observational data points has
on model skill score (Figure 7). We find that model performance is generally weakly correlated with the den-
sity of observations in each biome. Mean metric skill scores display a weak negative correlation with obser-
vational data density (i.e., lower model performance in regions with more observations). Correlation
coefficients between 20.25 and 20.50 occur most frequently, and all correlation coefficients fall between
20.75 and 0 for the mean metric. Conversely, the timing and amplitude metrics display weak positive corre-
lations with data density (i.e., higher model performance with more observations). Correlation coefficients
fall between 20.50 and 0.75 with the greatest frequency between 0 and 0.25 for the amplitude metric. For
the timing metric, correlation coefficients fall between 20.50 and 0.50 with the greatest frequency between
0 and 0.25.

3.4. Assessing the Contribution of Interannual Variability
The intermodel variability across the CMIP5 models is compared to the variability in a large ensemble of a
single model (CESM-LE) in Figure 8. Variability is described as the standard deviation for the two model
ensembles. Variability across CMIP5 is considerably greater than variability within the CESM-LE. For the
mean metric, CESM-LE variability is generally less than 10% of the CMIP5 variability, except in the Equatorial
West Pacific biome where CESM-LE variability is greater than 25% of the CMIP5 variability. CESM-LE variabili-
ty is somewhat greater in the amplitude metric and is comparable to greater than 10% of the CMIP5 vari-
ability in roughly half of the biomes. CESM-LE variability is greatest in the timing metric, while CMIP5
variability is smallest. Therefore, for selected regions, notably the STPS South Atlantic and STSS North Atlan-
tic, CESM-LE variability in the timing metric is greater than 20% of the CMIP5 variability. A few biomes, such
as the Equatorial East and West Pacific, have relatively greater CESM-LE variability for all three model
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Figure 5. Summary of metrics scores for all biomes and models. Each plot represents the metric scores of all models in a biome environment and for each type of metric. The marker col-
ors and x axis in each plot represent the different models, the y axis represents the metric score (on a scale of 0–1 for all plots), and the different markers represent the ocean basins
within each biome type.
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metrics. Other biomes, such as the STPS South Atlantic, have moderately high CESM-LE variability for one
metric (timing), but relatively low variability for the other metrics.

4. Discussion

In this study, we assessed the ability of CMIP5 models to simulate the seasonal cycle of pCOSW
2 in different

regions based on a comparison of the seasonal mean, amplitude, and timing with an observational climatol-
ogy. We expand on previous work [e.g., Anav et al., 2013] by focusing on the seasonality of a specific vari-
able, the use of biogeographically constrained ocean biomes, comparisons to observational density, and a
quantitative analysis of the impact of internal variability on model skill scores.

Table 2. Ranking of Top 5 Models for Each Metric and Biome Typea

EQ STPS STSS SPSS ICE

Mean
1. GISS-E2-R 1. BCC-CSM1 1. MIROC-CHEM 1. GFDL-ESM2M 1. BCC-CSM1
1. CanESM2 1. MIROC-CHEM 2. GFDL-ESM2G 1. MIROC-CHEM 2. MIROC-ESM
2. GISS-E2-H 2. MPI-ESM-LR 2. CanESM2 2. GFDL-ESM2G 2. HadGEM2-ES
3. BCC-CSM1 2. CanESM2 2. MPI-ESM-MR 2. CCMC-CESM 2. MIROC-CHEM
3. GFDL-ESM2G 2. HadGEM2-CC 2. BCC-CSM1 2. MPI-ESM-LR 2. CCMC-CESM
Amplitude
1. BCC-CSM1 1. FIO-ESM 1. GISS-E2-R 1. GFDL-ESM2G 1. NorESM1
1. CCMC-CESM 2. NorESM1 2. CESM1 1. GFDL-ESM2M 2. CCMC-CESM
1. CanESM2 2. GISS-ES-R 3. GFDL-ESM2M 1. GISS-E2-R 3. HadGEM2-CC
2. HadGEM2-CC 2. CESM1 4. FIO-ESM 2. CESM1 4. CESM1
2. GFDL-ESM2G 3. MPI-ESM-LR 4. GFDL-ESM2G 2. BCC-CSM1 5. HadGEM2-ES
Timing
1. CCMC-CESM 1. CCMC-CESM 1. INMCM4 1. CESM1 1. GFDL-ESM2M
1. CESM1 1. MIROC-CHEM 1. GISS-E2-H 1. GFDL-ESM2G 1. FIO-ESM
1. GISS-E2-H 1. GFDL-ESM2M 1. CCMC-CESM 1. GISS-E2-R 1. BCC-CSM1
1. BCC-CSM1 1. MIROC-ESM 1. CESM1 1. GFDL-ESM2M 1. GFDL ESM2G
1. GFDL-ESM2M 1. GISS-E2-R 1. GFDL-ESM2M 1. INMCM4 1. CanESM2

aFor each type of biome, metrics are multiplied together across ocean basins and northern/southern latitudes. Models that score
within 5% of each other are classed in the same tier, as indicated by the numbers.

Figure 6. Comparison of model skill metrics, averaged over the 18 models, for each biome. The lines and filled circles represent the aver-
age mean, amplitude, and timing metric for each biome. The open symbols represent the mean, amplitude, and timing metrics further
averaged over the type of biome (Eq, STPS, STSS, SPSS, and ICE). The shading separates the different types of biomes.
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The model skill scores and rankings presented show that the models are most accurate when simulating
the timing of the seasonal cycle, and least accurate when simulating the overall mean. However, because
models can achieve a timing skill score of 1 if they correctly reproduce the month of the pCOSW

2 minimum

Figure 7. (a) Average number of observations per grid cell for each biome. (b) Histogram of the correlation between model metrics for each biome versus the density of observations in
each biome, for all 18 models. The histogram for each metric is shown separately.

Figure 8. Comparison of CMIP5 model variability versus CESM ensemble member variability for each metric (mean, amplitude, and timing)
and biome. The total height of each bar represents the standard deviation (1 sigma) among the 18 CMIP5 models for each metric and
biome. The gray shading at the top of each bar represents the average standard deviation among 18 CESM large ensemble members,
calculated using a Monte-Carlo simulation of successive randomly selected groups of 18 ensemble members.
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and maximum in each grid cell of a biome, whereas models can only achieve an amplitude or mean metric
score of 1 if they reproduce the exact value of mean/amplitude pCOSW

2 in each region, the higher timing skill
scores can be expected. Although the models perform the worst on the mean skill score, many of the mod-
els produce annual, globally averaged pCOSW

2 values that are comparable to the observations. However, it is
possible for a model to output a comparable annual pCOSW

2 value, but simulate a seasonal cycle that differs
greatly from the observations, and thus perform poorly in our skill score metric. This distinction has poten-
tial implications for CO2 flux and ocean carbon uptake, since the flux is also dependent on seasonally vary-
ing wind speed.

The GFDL models score well across many of the metrics and regions, consistent with the high skill scores of
the GFDL models in simulating ocean CO2 flux in Anav et al. [2013]. Yet there are still biomes such as the
STPS and ICE where the GFDL models do not rank as high. The MIROC, BCC CSM1, CanESM2, GISS, CESM1,
and CCMC CESM also perform well for particular metrics or biomes. These results make it difficult to denote
a particular model as the most accurate, considering that this grouping of models all rank highly. Addition-
ally, we do not find evidence that models have been tuned to better perform in a given biome or for a
given aspect of the seasonal cycle.

A comparison of average model skill scores across biomes reveals that models generally perform best in
midlatitude regions (STPS, STSS, SPSS) and worst in the equatorial and ICE biomes. The poor performance in
the equatorial region is at least partly due to the exclusion of El Ni~no years in the observational climatology,
while similar El Ni~no patterns are retained in the models (if they occurred during the 1995–2005 timeframe).
Furthermore, within each type of biome, there can be a wide range in the density of observations used to
compute the pCOSW

2 data set (e.g., the STPS North Atlantic has a higher density of observations than the
STPS South Atlantic by a factor of >10). It might be expected that in regions with more observations and
better-constrained estimates of the pCOSW

2 seasonal cycle, models would perform better, due to more suffi-
cient knowledge of the dominant physical and biological processes for models to incorporate. This appears
to be the case for the timing and amplitude metrics, which display weakly positive correlations to the den-
sity of observations. However, the mean metric is weakly negatively correlated with observational density,
denoting slightly worse model performance in areas with more measurements per grid cell. Thus, for the
seasonal mean metric, the greater density of observations may provide sufficient process information with
which to invalidate the models. However, the seasonal mean, timing, and amplitude metrics are generally
very weakly correlated with model density (r< 0.25 for over 50% of models); therefore, these proposed
explanations may not play a large role in explaining differences in model skill between biomes.

Taken together, these findings imply that model performance is more sensitive to the physics and biology
controlling pCOSW

2 in a given region of the ocean, rather than the degree to which the pCOSW
2 seasonal cycle

has been studied and constrained. Because our skill scores do not assess a model’s ability to simulate impor-
tant physical or biological ocean variables, such as sea surface temperature, chlorophyll, or dissolved inor-
ganic carbon concentration, it is probable that model deficiencies in simulating pCO2 in a given region can
be traced to deficiencies in one or more of these variables due to missing or poorly constrained processes
in the models. For example, while model skill is generally high in the SPSS biomes, models perform poorly
in the Southern Ocean SPSS biome compared with the North Atlantic and North Pacific SPSS biomes, and
compared with average model performance globally for all three metrics. Inaccuracies in modeled physical
processes (e.g., upwelling and outgassing of CO2) due to the location and strength of the westerly winds in
the Southern Ocean, a known issue in CMIP5 models [Bracegirdle et al., 2013], provide a potential explana-
tion for this relatively poor performance. Conversely, strong model scores may be connected to simulating
a particular field accurately. While this detailed analysis is left to future work, we note the potential for the
model skill metrics developed here to highlight specific processes relevant to the global carbon cycle that
should be further developed and improved in the CMIP5 models.

The lack of a relationship between observational density and model skill score further implies that our cal-
culated model skill scores are relatively insensitive to our choice of the observational data set selected.
However, we note that other pCO2 data sets have become available that offer greater spatial and temporal
resolution than the Takahashi et al. [2009] climatology that is used here and is widely used in the research
community [e.g., Anav et al., 2013; Fay and McKinley, 2013; Long et al., 2013]. Version 2 of the SOCAT data-
base [Bakker et al., 2014] contains approximately 10.1 million measurements of fCO2 compared to the
approximately 3 million measurements of pCO2 in the Takahashi et al. [2009] data set. An additional
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climatology using a two-step neural network technique with the SOCAT database was released at 18 3 18

resolution [Landsch€utzer et al., 2014a, 2014b]. If these additions and modifications result in significant differ-
ences in the value of pCOSW

2 regionally or seasonally, we might expect our model skill scores to change
when calculated with a different observational data set.

Model internal variability does not appear to significantly affect our assessment of model skill. This is most
likely because we compared modeled and observed pCOSW

2 climatologies, created from a 10-plus year time-
frame. We therefore conclude that assessments of the seasonal cycles of ESM variables are likely consistent
across model ensembles and not substantially impacted by internal variability, provided that a multiyear cli-
matology is used to examine the seasonal cycle. However, we note that our quantitative analysis of internal
variability is based entirely on the CESM-LE, since this is one of the few CMIP5 models that have completed
a large ensemble experiment. It is unknown how the internal variability within the CESM compares to other
CMIP5 models. For example, ENSO cycles in CCSM4 (the precursor of the CESM) are approximately 30%
greater in magnitude compared to observed ENSO cycles [Deser et al., 2012b]. If other CMIP5 models have
an ENSO cycle closer to observed, then they may contain a lower magnitude of internal variability com-
pared to the CESM.

Our model rankings are not presented as definitive support of a particular model’s skill or predictive power
in simulating pCOSW

2 . Rather, our goal is to present a novel method for calculating model skill scores that
can provide vital information for researchers deciding which model they may wish to select for a particular
research study. Our results suggest that certain models may be better suited for different research ques-
tions, even when exclusively considering a single variable, and can inform the choice of CMIP5 model used
for future research. Additionally, this method can be exported to the assessment of the seasonal cycle of
other CMIP5 ESM variables with a global observational database to shed further light on global model per-
formance and use for predicting large-scale changes in the global carbon cycle.
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