Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

Type Article
Date 2014
Language English
Author(s) Ciais P.1, Dolman A. J.2, Bombelli A.3, Duren R.4, Peregon A.1, Rayner P. J.5, Miller C.4, Gobron N.6, Kinderman G.7, Marland G.8, Gruber N.9, 10, Chevallier F.1, Andres R. J.11, Balsamo G.12, Bopp L.1, Breon F. -M.1, Broquet G.1, Dargaville R.5, Battin T. J.13, Borges A.14, Bovensmann H.15, Buchwitz M.15, Butler J.16, Canadell J. G.17, Cook R. B.11, Defries R.18, Engelen R.12, Gurney K. R.19, Heinze C.20, 21, 22, Heimann M.23, Held A.24, Henry M.25, Law B.26, Luyssaert S.1, Miller J.16, 27, Moriyama T.28, Moulin C.1, Myneni R. B.29, Nussli C.30, Obersteiner M.7, Ojima D.31, Pan Y.32, Paris J. -D.1, Piao S. L.33, Poulter B.1, Plummer S.34, Quegan S.35, Raymond P.36, Reichstein M.23, Rivier L.1, Sabine C.37, Schimel D.38, Tarasova O.39, Valentini R.3, Wang R.1, Van Der Werf G.2, Wickland D.40, Williams M.41, Zehner C.42
Affiliation(s) 1 : CEA CNRS UVSQ, Lab Sci Climat & Environm, UMR8212, F-91191 Gif Sur Yvette, France.
2 : Vrije Univ Amsterdam, Amsterdam, Netherlands.
3 : CMCC, Euromediterranean Ctr Climate Change, Div Climate Change Impacts Agr Forests & Nat Ecos, I-73100 Lecce, Italy.
4 : CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
5 : Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
6 : Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Global Environm Monitoring Unit, I-21020 Ispra, Italy.
7 : IIASA, Laxenburg, Austria.
8 : Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA.
9 : Swiss Fed Inst Technol, Inst Biogeochem & Pollutant Dynam, Zurich, Switzerland.
10 : Swiss Fed Inst Technol, Ctr Climate Syst Modeling, Zurich, Switzerland.
11 : Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37831 USA.
12 : European Ctr Medium Range Weather Forecasts ECMWF, Reading RG2 9AX, Berks, England.
13 : Univ Vienna, Dept Limnol, A-1090 Vienna, Austria.
14 : Univ Liege, Chem Oceanog Unit, Inst Phys B5, B-4000 Cointe Ougree, Belgium.
15 : Univ Bremen, Inst Environm Phys IUP, D-28359 Bremen, Germany.
16 : NOAA, ESRL, Boulder, CO 80305 USA.
17 : CSIRO Marine & Atmospher Res, Canberra, ACT 2601, Australia.
18 : Boston Univ, Dept Geog & Environm, Boston, MA 02115 USA.
19 : Arizona State Univ, Sch Sustainabil, Sch Life Sci, Tempe, AZ 85287 USA.
20 : Univ Bergen, Inst Geophys, N-5007 Bergen, Norway.
21 : Bjerknes Ctr Climate Res, Bergen, Norway.
22 : Uni Res, Uni Bjerknes Ctr, Bergen, Norway.
23 : Max Planck Inst Biogeochem, D-07745 Jena, Germany.
24 : CSIRO, AusCover Facil, TERN, Canberra, ACT 2601, Australia.
25 : UN, Dept Forestry, Food & Agr Org, I-00153 Rome, Italy.
26 : Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA.
27 : Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
28 : Japan Aerosp Explorat Agcy JAXA, Tokyo, Japan.
29 : Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
30 : Thales Alenia Space, Toulouse, France.
31 : Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA.
32 : US Forest Serv, USDA, Newtown Sq, PA 19073 USA.
33 : Peking Univ, Dept Ecol, Beijing 100871, Peoples R China.
34 : European Space Agcy Harwell, ESA Climate Off, Didcot OX11 0QX, Oxon, England.
35 : Univ Sheffield, Ctr Terr Carbon Dynam, Sheffield S3 7RH, S Yorkshire, England.
36 : Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
37 : NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
38 : Natl Ecol Observ Network, Boulder, CO 80301 USA.
39 : World Meteorol Org, CH-1211 Geneva, Switzerland.
40 : NASA, Washington, DC 20546 USA.
41 : Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland.
42 : ESA ESRIN, Frascati, Italy.
Source Biogeosciences (1726-4170) (Copernicus Gesellschaft Mbh), 2014 , Vol. 11 , N. 13 , P. 3547-3602
DOI 10.5194/bg-11-3547-2014
WOS© Times Cited 154
Note Special issue REgional Carbon Cycle Assessment and Processes (RECCAP)
Abstract A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.
Full Text
File Pages Size Access
Publisher's official version 56 3 MB Open access
Discussion paper 135 6 MB Open access
Top of the page

How to cite 

Ciais P., Dolman A. J., Bombelli A., Duren R., Peregon A., Rayner P. J., Miller C., Gobron N., Kinderman G., Marland G., Gruber N., Chevallier F., Andres R. J., Balsamo G., Bopp L., Breon F. -M., Broquet G., Dargaville R., Battin T. J., Borges A., Bovensmann H., Buchwitz M., Butler J., Canadell J. G., Cook R. B., Defries R., Engelen R., Gurney K. R., Heinze C., Heimann M., Held A., Henry M., Law B., Luyssaert S., Miller J., Moriyama T., Moulin C., Myneni R. B., Nussli C., Obersteiner M., Ojima D., Pan Y., Paris J. -D., Piao S. L., Poulter B., Plummer S., Quegan S., Raymond P., Reichstein M., Rivier L., Sabine C., Schimel D., Tarasova O., Valentini R., Wang R., Van Der Werf G., Wickland D., Williams M., Zehner C. (2014). Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11(13), 3547-3602. Publisher's official version : https://doi.org/10.5194/bg-11-3547-2014 , Open Access version : https://archimer.ifremer.fr/doc/00293/40398/