FN Archimer Export Format PT J TI Impact of oceanic circulation changes on atmospheric δ13CO2 BT AF MENVIEL, L. MOUCHET, A. MEISSNER, K. J. JOOS, F. ENGLAND, M. H. AS 1:1,2;2:3,4;3:1,2;4:5,6;5:1,2; FF 1:;2:;3:;4:;5:; C1 Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia. ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia. IPSL CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. Univ Liege, Dept Astrophys Geophys & Oceanog, Liege, Belgium. Univ Bern, Inst Phys, Climate & Environm Phys, Bern, Switzerland. Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. C2 UNIV NEW S WALES, AUSTRALIA ARC, AUSTRALIA CNRS, FRANCE UNIV LIEGE, BELGIUM UNIV BERN, SWITZERLAND UNIV BERN, SWITZERLAND IF 4.495 TC 34 UR https://archimer.ifremer.fr/doc/00293/40406/38965.pdf https://archimer.ifremer.fr/doc/00293/40406/38966.tex LA English DT Article CR OISO 8 OISO1 OISO2 OISO3-NIVMER98 OISO4 (VT 46) OISO5 (VT 49) VT 105 / OISO 17 VT 108 / OISO-18 VT 114 / OISO-19 VT 117 / OISO-20 VT 120 / OISO-21 VT 127 / OISO-22 VT 136 / OISO-23 VT 142 / OISO-24 VT 51 / OISO 6 VT 57 / OISO 9 VT 60 / CARAUS - OISO 10 VT 62 / CARAUS - OISO 11 VT 79 / OISO 12 VT 80 / OISO 13 VT 81 / OISO 14 VT 85 / OISO 15 VT 94 / OISO 16 BO Marion Dufresne AB δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C. PY 2015 PD NOV SO Global Biogeochemical Cycles SN 0886-6236 PU Amer Geophysical Union VL 29 IS 11 UT 000368907500006 BP 1944 EP 1961 DI 10.1002/2015GB005207 ID 40406 ER EF