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Abstract :   
 
The concentrations of rare earth elements (REEs) in seawater display systematic variations related to 
weathering inputs, particle scavenging and water mass histories. Here we investigate the REE 
concentrations of water column profiles in the Atlantic sector of the Southern Ocean, a key region of the 
global circulation and primary production. The data reveal a pronounced contrast between the vertical 
profiles in the Antarctic Circumpolar Current (ACC) and those south of the ACC in the Weddell Gyre (WG). 
The ACC profiles exhibit the typical increase of REE concentrations with water depth and a change in the 
shape of the profiles from near linear for the light REEs to more convex for the heavy REEs. In contrast, 
the WG profiles exhibit high REE concentrations throughout the water column with only the near surface 
samples showing slightly reduced concentrations indicative of particle scavenging. Seawater normalised 
REE patterns reveal the strong remineralisation signal in the ACC with the light REEs preferentially 
removed in surface waters and the mirror image pattern of their preferential release in deep waters. In the 
WG the patterns are relatively homogenous reflecting the prevalence of well-mixed Lower Circumpolar 
Deep Water (LCDW) that follows shoaling isopycnals in the region. In the WG particle scavenging of 
REEs is comparatively small and limited to the summer months by light limitation and winter sea ice cover. 
Considering the surface water depletion compared to LCDW and that the surface waters of the WG are 
replaced every few years, the removal rate is estimated to be on the order of 1 nmol m− 3 yr− 1 for La 
and Nd. The negative cerium anomalies observed in deep waters are some of the strongest found globally 
with only the deepest waters in parts of the Pacific having stronger anomalies. These deep waters have 
been isolated from fresh continental REE inputs during their long journey through the abyssal Indo-Pacific 
Ocean, which suggests that the high REE concentrations found in the ACC and WG reflect contributions 
from old deep waters. 
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Highlights 

► Distinct rare earth element profiles across southern boundary of Antarctic Circumpolar Current ► Low 
particle concentrations and strong vertical exchange cause homogenous vertical profiles. ► Pronounced 
deepwater Ce anomalies reflect isolation from new continental sources to seawater. 
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ocean and suggests that the high REE concentrations found in the ACC and WG 

reflect contributions from old deep waters. 

 

Highlights 

Distinct rare earth element profiles across southern boundary of Antarctic 

Circumpolar Current 

 

Low particle concentrations and strong vertical exchange cause homogenous vertical 

profiles 

 

Pronounced deepwater Ce anomalies reflect isolation from new continental sources to 

seawater  

 

 

1. Introduction 

 

The isotopic composition of the rare earth element Nd in seawater is a GEOTRACES 

key parameter because it is frequently applied as a chemical tracer of present and past 

ocean circulation (e.g. Piepgras and Wasserburg, 1980; Frank 2002; Piotrowski et al., 

2005; Pena and Goldstein 2014). It is clear that the source of rare earth elements 

(REEs) to seawater is continental from dust, rivers and margin sediments but 

contributions from these sources are not well quantified, mainly because of poor data 

coverage in large parts of the global ocean (e.g. Rempfer et al., 2011). A number of 

studies have recently contributed to filling these data gaps (see Lacan et al., 2012 for 

the global database before most of these new efforts; Grenier et al. 2013; Haley et al., 

2014; Osborne et al., 2014; Molina-Kescher et al., 2014), many of which were 

conducted within the framework of the international GEOTRACES program, (Singh 

et al., 2012; Stichel et al., 2012a, b; Chen et al., 2013b; Garcia-Solsona et al., 2014, 

Goswami et al., 2014). However, not all of these studies reported the complete set of 

REEs thus not exploring their full potential. 

The REEs - defined here by the lanthanide group of elements - have similar chemical 

properties while their ionic radii decrease with increasing atomic number (e.g. 

Raymond et al. 2010). This results in a systematic variation of speciation in seawater 

dominated by complexes with carbonate ions (Chantrell and Byre, 1987). The 
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dissolved REEs are mostly found in the 3+ oxidation state and are particle reactive 

exhibiting nutrient like depth profiles in seawater (e.g. Elderfield, 1988). The element 

specific complexation with carbonate ions and affinity for negatively charged sites of 

organic molecules can explain the different concentrations of the REEs in seawater 

(e.g. Byrne and Kim, 1990). With more free metal ions in seawater, the light REEs 

(LREE), such as La and Nd, are preferentially adsorbed to particles compared to 

heavy REEs (HREE), such as Er and Yb, which are almost entirely bound in stable 

carbonate complexes (e.g. Byrne and Sholkovitz, 1996). Cerium is exceptional in that 

it is oxidized, although mediated by microbial activity, to highly insoluble Ce(IV)O2 

(e.g. Moffett 1990). This preferentially removes Ce from the dissolved phase 

(operationally defined by filter size) and results in shale (as an approximation of the 

continental crust composition) normalized Ce concentrations ~ 10 times lower than 

the neighbouring REEs. This “Ce anomaly” is variable throughout the oceans and has 

been linked to the oxygenation state of seawater (e.g. Nozaki et al., 1999) although 

there should be a threshold level of low oxygen, at which Ce remains dissolved, 

which is strongly pH dependant (de Baar et al., 1985). The Ce anomaly has also been 

related to the successive removal of Ce(IV)O2 over time as a function of the age of 

water masses (e.g. German and Elderfield, 1990b).  

Yttrium (Y), also present in the 3+ oxidation state, is often grouped together with the 

REEs because it has an ionic radius and a chemical behaviour very close to that of Ho 

(Shannon 1976). Fractionation of Y and Ho has been observed in hydrothermal 

systems and marine sediments (e.g. Bau 1996) and has been related to the preferential 

sorption of Ho (and REEs) onto Fe hydroxides in marine (Bau et al., 1996) and soil 

settings (Thompson et al., 2013). Generally, a relatively small fraction of the REEs 

found in seawater is bound to particles with the particulate portion of Nd being 4-5 

times that of Yb (Bertram and Elderfield, 1993; Sholkovitz et al. 1994; Alibo and 

Nozaki, 1999). Many studies have concluded that Mn and Fe oxides are the most 

important particulate phases carrying REEs (Sholkovitz et al., 1994; Bau and 

Koschinsky, 2006, 2009) although potentially important roles of diatoms (Akagi et 

al., 2011) and organic ligands (e.g. Haley et al., 2014) have recently been suggested. 

For the REEs to be exported from the surface and be remineralised at depth similar to 

nutrients, the size of the particles is also important. Smaller suspended particles 

advect REEs through the ocean while only larger aggregates of sinking particles, such 

as faecal pellets contribute to the vertical flux (Jeandel et al., 1995). Studies 
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employing ultrafiltration (0.04 µm) report REE concentrations similar to unfiltered or 

conventionally (0.4 µm) filtered samples (Alibo and Nozaki 1999, 2000, 2004; 

Nozaki and Alibo 2003a) suggesting a negligible colloidal component. However, 

recent sorption experiments using ultrafiltration to <30 and <3 kDa suggest that this 

may not always be the case (Schijf and Zoll, 2011). The combined properties 

described above make the Y and REE compositions of seawater a powerful tool to 

investigate the inputs and cycling of trace metals in seawater. 

 

The cycling of trace metals in the Southern Ocean is of interest because it is amongst 

the most productive areas of the global ocean and has been recognized as vitally 

important for global climate and the carbon cycle (e.g. Sigmann et al., 2010). For 

example, changes in the biological carbon pump associated with diatom productivity 

have been related to atmospheric CO2 changes on glacial-interglacial time scales (e.g. 

Martinez-Garcia et al., 2014). Changes in nutrient utilization in the distinct zones of 

the Antarctic Circumpolar Current (ACC) have been modelled to have distinct effects 

on primary productivity and global atmospheric CO2 drawdown (e.g. Marinov et al., 

2006). Therefore the influence of the modern biological pump on the trace metal 

distribution in this region is important for our understanding of the processes driving 

climatic changes. Here we present REE and Y concentration data for seawater profiles 

that cover the Subantarctic and Antarctic zones near the Zero Meridian, the Weddell 

Gyre, and the Drake Passage. These data clearly reflect the drastic changes in the 

particulate vertical flux of REEs across the “biogeochemical divide” (Marinov et al., 

2006) between the Subantarctic and Antarctic Zones of the ACC.  

 

1.2 Hydrography  

 

The samples analysed here, and their hydrographic context, were described in detail in 

Stichel et al., (2012a) and therefore the hydrography is only briefly summarised here. 

The hydrography of the study area and its variability have been the subject of many 

dedicated studies (e.g. Orsi et al., 1995; Stramma and England, 1999; Orsi et al., 

2002; Meijers et al., 2010) and the reader is referred to these for more detail. The 

circulation in the Atlantic sector of the Southern Ocean (Figure 1) is dominated by the 

eastward flowing ACC, which is bounded to the north by the Subtropical Front (STF) 

and to the south by the boundary (BDY) with the Weddell Gyre (WG). The ACC 
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extends from the surface to abyssal depths and is divided into Upper Circumpolar 

Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) with neutral 

densities for CDW of 27.55 kg/m
3
 ≤ γn ≤ 28.27 kg/m

3
. Southward flowing North 

Atlantic Deep Water (NADW) enters the south western Argentine Basin as part of the 

Deep Western Boundary Current before it merges eastward with the ACC (Stramma 

and England, 1999). Along this pathway of the ACC, NADW mixes with less dense 

waters returning from the southeast Pacific and the Indian Ocean to form UCDW but 

NADW is clearly identified by its characteristic deep salinity maximum within 

LCDW in the entire Atlantic sector of the Southern Ocean (Reid and Lynn, 1971). 

Antarctic Intermediate Water (AAIW), marked by relatively high dissolved oxygen 

and low salinities with a neutral density range of 27.13 kg/m
3
 ≤ γn ≤ 27.55 kg/m

3
 

(Whitworth III and Nowlin, 1987), originates from cooled surface waters of the ACC 

and is subducted northward at the Polar Front (Fig. 1).  

Next to the Antarctic continent the WG circulates cyclonically in the Weddell Sea 

(WS) and is fed by UCDW and LCDW from the ACC flowing in at intermediate 

depths forming the water mass commonly referred to as Warm Deep Water (WDW). 

Above WDW, Antarctic Surface Water (AASW) periodically gains density by brine 

rejection during sea ice formation. Along the continental slopes of the WS these dense 

and cold surface waters sink down and mix with WDW. The fraction of these waters 

dense enough to reach the bottom forms the Weddell Sea Bottom Water (WSBW), 

which is characterized by neutral densities of γn ≥ 28.40 kg/m
3
 (Carmack and Foster, 

1975). The less dense parts mix with WDW and form the Weddell Sea Deep Water 

(WSDW) which is the densest water mass originating in the WS exported to many 

parts of the world ocean as AABW (28.40 kg/m
3
 ≥ γn ≥ 28.27 kg/m

3
 (e.g. Orsi et al., 

1999, 2002; Heywood and King, 2002; Klatt et al., 2005 and references therein). 

About 60% of the AABW in the Southern Ocean forms in the western WS with the 

remainder produced in the Amery Ice shelf region, the Ross Sea and west of Prydz 

Bay (Gordon, 1971; Orsi et al., 1999; Stramma and England, 1999; Meijers et al., 

2010). Orsi et al. (1999) pointed out that AABW is not circumpolar because it is so 

dense that it is restricted to certain areas in the Atlantic sector, such as the Argentine 

Basin. The bottom water of southern origin that covers the remainder of the Atlantic 

sector of the Southern Ocean is less dense LCDW, often termed ACC bottom water 

(Orsi et al., 1999). 
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2. Methods 

During Polarstern Expedition ANTXXIV/3 (PS71) in February and March 2008 an 

extensive GEOTRACES sampling campaign was conducted in the frame of the 

International Polar Year (IPY). The cruise track (GIPY5) formed a transect from 

South Africa along the Greenwich (zero) meridian from 52°S to the ice shelf before 

crossing the Weddell Sea and Drake Passage. The exact same samples analysed here 

were used for the studies of Stichel et al. (2012a,b), where they are described in detail. 

 

Along the cruise track a full nutrient, dissolved inorganic carbon and alkalinity dataset 

has been obtained (van Heuven et al., 2011). For this cruise, full water depth profiles 

have also been analysed for Al and Mn concentrations (Middag et al., 2011a, b), Fe 

concentrations (Klunder et al., 2011), organic complexation of Fe (Thuróczy et al., 

2011), Zn concentrations (Croot et al., 2011), and Ba concentrations (Roeske and 

Rutgers van der Loeff, 2014) and radiogenic isotope compositions of Nd and Hf 

(Stichel et al., 2012a,b), as well as and 
234

Th activities (Rutgers van der Loeff et al., 

2011). The French “Bonus Good Hope” GEOTRACES cruise GIPY4 with the RV 

Marion Dufresne (MD166) sampled the same section from Cape Town to 57°S just 2 

weeks after the Polarstern cruise. Samples from that cruise have been analysed for 

REE concentrations and Nd isotope compositions by Garcia-Solsona et al. (2014) and 

a detailed comparison of the cross-over stations occupied by both cruises is presented 

here.   

 

Surface water samples were collected using a towed steel fish or the seawater intake 

system during transit time, pumping seawater from 2-5 m water depth (see Stichel et 

al. 2012b for details). Deeper samples were collected from Niskin bottles mounted on 

a CTD-rosette (see Stichel et al. 2012a for details). All samples were filtered through 

0.45 µm Millipore® or Supor® filters into acid cleaned 2L LDPE bottles and 

acidified to pH ~2 using double distilled concentrated nitric acid within 12 hours after 

collection. 

 

The concentrations of Y and all REEs were analysed by ICP-MS (Agilent 7500-CE) 

using an ESI SeaFAST online-preconcentration system following a method adapted 

from Hathorne et al. (2012). The main modifications to improve the method were the 

use of an 8 mL sample loop and the preparation of calibration standards with a mixed 
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REE solution of a seawater-like composition in a natural seawater matrix. Trace 

metals, including the REEs, were removed from this seawater matrix by FeOOH co-

precipitation. Although the original method performed satisfactorily during the 

GEOTRACES intercalibration exercise (van de Flierdt et al., 2012), the improved 

method offers significantly better precision for many elements while still consuming 

only a small amount of sample (only 11 mL required per analysis). The precision and 

accuracy of the method during data acquisition for this study was assessed by 

repeated analysis of GEOTRACES inter-calibration samples obtained at the Bermuda 

time series station; BATS 15m and 2000m (Table 1). These data are presented along 

with the consensus values from the GEOTRACES intercalibration exercise (van der 

Flierdt et al., 2012) in Table 1. Since the publication of the original SeaFAST method 

some studies have published offline methods using the Nobias-chleate PA-1® resin to 

preconcentrate REEs from seawater before ICP-MS analysis (Rousseau et al., 2013; 

Hatje et al., 2014). In other studies the traditional method of FeOOH co-precipitation 

has been preferred (Pahnke et al., 2012; Zheng et al., 2014). Hatje et al. (2014) used 

70-80 mL of sample and obtained relative standard deviations (2) for five replicate 

analyses of a Pacific Deep Water reference sample between 8.4% for La and 1.3% for 

Nd (personal communication 2014). Zheng et al. (2014) used 100 mL samples and 

obtained a precision of 3% (1 using a three element (Ce, Nd and Yb) spike isotope 

dilution technique. Rousseau et al. (2013) employed a ten-element spike isotope 

dilution technique and obtained a precision of around 2% (2) on two measurements 

of 250 mL of a BATS 2000 m sample. Pahnke et al. (2012) used an eight-element 

spike (not spiking La and Lu) isotope dilution technique to measure the REEs in 50-

100 mL aliquots and obtained an external reproducibility (2) better than 3%, except 

for Ce, which was 3.8%. Clearly our method that gives an estimated external 

precision (2) ranging from 4% to 18% (Table 1), consumes at least 5 times less 

sample, and requires no additional sample preparation, compares favourably with 

these methods. Additional improvements have been made to the measurement 

technique since most of the data presented here were measured (Table 1: station 113, 

1000 m sample by Time Resolved Analysis; also Osborne et al. this volume), which 

now enable the seaFAST online preconcentration technique to achieve a precision 

similar to the other methods mentioned above while still consuming significantly less 

sample material. 
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3. Results 

Yttrium and REE concentrations in the < 0.45 µm filtered seawater generally increase 

with water depth (Figure 2), for example Lu increases from 0.4 pmol/kg in the surface 

waters to 1.4 pmol/kg Lu at 4500 m depth. Over the same depth range La and Y 

concentrations increase from 12 and 90 pmol/kg to 45 and 190 pmol/kg, respectively. 

The shape of the increase with depth varies from near linear for LREEs to more 

convex for HREEs with relatively constant HREE concentrations in intermediate and 

deep waters (Figure 2). The vertical distribution (or profile) of the HREEs is very 

similar to that of the hard part (i.e. skeletal opal or CaCO3) forming nutrients silicic 

acid (silicate) and alkalinity (Figure 3). Similar to silicate, the depth distribution of the 

REEs evolves along the zero meridian section in that the difference between the 

surface and deep water concentrations decreases southward. The stations in the 

Weddell Gyre (131, 161, 193) exhibit virtually constant silicate concentrations below 

1000 m and constant alkalinity below 500 m. Similarly, the REE concentrations are 

high and constant in intermediate and deep waters within the WG. The Drake Passage 

station (241) has an alkalinity profile (and silicate, not shown) intermediate between 

the WG stations and those from within the ACC near the Zero meridian (101, 104) 

and also exhibits REE concentration profiles intermediate between the WG and ACC 

extremes. 

 

Comparison of crossover data 

One central component of the GEOTRACES program is to ensure that crossover 

stations between cruises are sampled at similar depths and the resulting data are 

compared as a cross calibration exercise while also providing some information on the 

short term variability of some parameters. The Southern Ocean cruises of the IPY 

achieved this and stations 101, 104 and 113 were sampled at almost identical 

locations as stations S2, S3, and S4 from the “Bonus Good Hope” GIPY4 cruise, for 

which REE concentrations were published by Garcia-Solsona et al. (2014). The 

GIPY4 cruise sampled these locations only 2 weeks after the Polarstern cruise and 

the crossover data, measured following different pre-concentration techniques, 

generally agree within uncertainties (Figure 4 and supplementary figure 1). In a few 

instances there are differences in REE concentrations at similar depths but in most 

cases careful comparison of the silicate data suggests that these differences are related 
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to real short-term variations of the water masses sampled. A good example is station 

113 which shows higher silicate concentrations and slightly elevated LREE 

concentrations compared to GIPY4 station “super 4” at intermediate depths (Figures 3 

& 4). The deepest sample of GIPY4 station “super 3” has much lower REE 

concentrations than all other samples at such depths. While near bottom scavenging of 

Nd has been reported in the Pacific sector of the Southern Ocean (Carter et al., 2012), 

removal of essentially half the bottom water REE inventory, including Ce (Figure 4), 

within two weeks seems unlikely. Instead this most likely indicates a leaking Niskin 

bottle, but this cannot be independently confirmed as nutrient concentrations were not 

measured on the same bottle.  

 

4. Discussion  

4.1 Particle scavenging and REE patterns 

Given that REEs in seawater originate from continental sources, it is common practice 

to normalise seawater REE concentrations to those of shale as an approximation of 

the average composition of the continental crust (e.g. Elderfield and Greaves 1982; 

Alibo and Nozaki, 1999). This approach reveals the seawater REE fractionation from 

the continental source through preferential scavenging of LREEs compared to 

HREEs, as well as the enhanced removal of Ce (Figure 5). These typical seawater 

REE patterns have been modelled to result from the combined effects of HREEs 

preferentially forming stable carbonate complexes and the affinity of REE
3+

 to 

negatively charged sites of organic molecules (e.g. Byrne and Kim, 1990). The 

patterns therefore indicate significant interaction of the REEs with particles since their 

introduction into seawater. The unique oxidation of Ce(III)
 
to insoluble Ce(IV)O2  and 

the resulting Ce anomalies will be discussed separately below (section 4.4). 

The similarity of the HREE concentration depth profiles with those of the hard part 

forming nutrients silicate and alkalinity (Figs. 2, 3, and supplementary Fig. 2) 

suggests that the REEs are removed from surface waters by biological productivity 

and are then released again in deeper waters where the sinking hard parts and organic 

matter dissolve. The correlation coefficients (R
2
) between phosphate concentrations 

and the REEs (excluding Ce) in our dataset range from 0.47 to 0.66 for the LREE and 

MREE (from La up to and including Dy), but increase to 0.71 to 0.81 for the HREEs 

(Ho to Lu, also including Y). A very similar pattern is observed for the correlations 

with nitrate concentrations. The correlation coefficients with silicate concentrations 
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and in particular total alkalinity are higher and differ less between the REEs (Fig. 3 

and supplementary Fig. 2). LREEs and MREEs have R
2 

values ranging from 0.88 to 

0.95 with silicate and from 0.8 to 0.88 with alkalinity. The HREEs (including Y) have 

R
2 

values ranging from 0.91 to 0.96 with silicate and 0.87 to 0.93 with alkalinity.  

 The strong correlation of REEs with alkalinity is not surprising given that the 

REEs in seawater are mainly, the HREEs almost entirely, present in the form of stable 

carbonate complexes (e.g. Byrne and Sholkovitz, 1996). Using the “CO2sys” macro 

(Pierrot et al., 2006) we calculated the other carbonate system parameters from the 

alkalinity, Dissolved Inorganic Carbon (DIC) and nutrient data (van Heuvan et al., 

2011). Comparison with these calculated parameters reveals that alkalinity is most 

strongly correlated with REE concentrations with Lu yielding R
2 

values of -0.83, 0.91, 

0.96 and 0.92 with CO3
2-

, HCO3, silicate, and alkalinity, respectively. We will not try 

to interpret these subtle differences but it is clear that the HREE most closely 

resemble the distribution of hard part nutrients while the LREE are more particle 

reactive (e.g. Byrne and Sholkovitz, 1996). Similar observations have been made in 

the Arabian Sea and western Indian Ocean (German and Elderfield, 1990a; Bertram 

and Elderfield, 1993).  

 The mechanism behind the correlation of REEs with silicate and alkalinity has 

been discussed since the earliest studies of seawater REEs (Elderfield and Greaves, 

1982; de Baar et al., 1985). The central question is whether the REEs are incorporated 

into the opal and CaCO3 crystals or adsorbed to associated phases like Fe-Mn oxides-

hydroxides? Based on leaching of sediment trap material, Akagi et al. (2011) 

suggested that opal is a significant carrier of HREEs. However, leaching experiments 

on sediments have shown that factors such as exposure time and differences in sample 

mass or reagent volume can result in remarkably different results for the REEs 

(Wilson et al., 2013). Thus, until the REE composition of opal is measured directly 

the exact role of diatoms in oceanic REE cycling will remain uncertain. Hegner et al. 

(2007) studied particles in the Atlantic sector of the Southern Ocean and found that 

bloom samples with the highest particle concentrations and high biogenic opal content 

(mainly diatoms), had relatively low Nd concentrations. Garcia–Solsona et al. (2014) 

found apparent partition coefficients between particulate and dissolved REEs to be 

higher for the LREE than the HREE in this region. The short term decoupling of REE 

concentrations from nutrients (including silicate) during a bloom event has also been 

documented in the sub-arctic Pacific (Hara et al., 2009). During an iron fertilisation 
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experiment only the LREE were noticeably depleted and concentrations returned to 

pre-bloom levels within 10 days while nutrient concentrations continued to decline 

(Hara et a., 2009). All this is evidence for the well known greater affinity of the 

LREEs for particles (e.g. Sholkovitz et al., 1994; Tachikawa et al., 1999). 

The different shapes of the REE depth profiles have been modelled to result 

from different processes: vertical profiles of LREEs that are near linear result from 

irreversible scavenging while HREE profiles that are convex result from a nutrient 

like behaviour with uptake in the mixed layer and remineralisation at depth (Oka et 

al., 2009). A reversible scavenging process in which adsorption onto particles is in 

balance with desorption closely approximates the changes in profile shapes across the 

REE series with a systematic change in partition coefficients between LREEs and 

HREEs (Oka et al., 2009). In the WG even the LREE profiles are flat below 1000 m 

(station 161) or almost homogenous (station 131) suggesting that additional processes 

play a role at these locations.  

To better distinguish relative differences between the REEs, normalisation to 

seawater is often preferred to PAAS normalisation as it reveals even subtle 

differences in the REE patterns of seawater samples. Here we have chosen LCDW to 

normalise to as this water mass forms the deep core of the ACC and upwells into the 

Wedell Gyre (e.g. Usbeck et a. 2002). For normalisation we used average LCDW 

values (Table 1) from stations 113 and 131 and data from Garcia-Solsona et al. 

(2014). The LDCW normalised patterns (Figure 6) of stations 101, 104 and 241 

clearly indicate preferential removal of LREE in surface waters. The samples closest 

to the sea floor taken 100m from the bottom, are essentially characterised by mirror 

image patterns of the surface waters at stations 101 and 104 suggesting preferential 

release of LREE during remineralisation near the seafloor and/or release from 

sediments. The deepest sample at station 241 is only slightly enriched compared to 

LCDW suggesting that intense mixing at this location removed any 

remineralisation/sedimentary signal. The LCDW-normalised patterns for the stations 

in the WG (131, 161, 193) reveal that the comparably weak removal of REEs from 

the upper water column affects all REEs in a similar way. The LCDW-normalised 

patterns of deeper waters in the WG mainly reflect the homogenous water column 

profiles of all the REEs with only the deepest samples exhibiting small enrichments in 

the LREEs. This may reflect a small input from sediments, in particular at station 131, 

which exhibits a significant Ce enrichment below 2000m (Figure 6, Section 4.4). 
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Given that these depths are occupied by AABW the signatures of subtle sedimentary 

inputs may have been acquired on the shelf during the process of AABW formation. 

AABW was also found to have less radiogenic Nd isotopic compositions than CDW 

at these stations suggesting an eastern Antarctic source (Stichel et al., 2012a). 

Similarly unradiogenic results were obtained near station 131 at GIPY4 station super 

5 (Garcia-Solsona et al., 2014). Additionally, the particulate REE pattern of the 

AABW sample at this location was shale like indicating a fresh continental source of 

these particles (Garcia-Solsona et al., 2014). 

 

4.2 Meridional variability of REE water column profiles 

Crossing the different zones and frontal systems of the ACC, Rutgers van der Loeff et 

al. (2011) documented variations in the dissolved 
234

Th/
238

U and inferred 
234

Th fluxes 

associated with biogenic particles. In the zones of the ACC including the SAF and PF 

until about 52ºS the surface waters are depleted in 
234

Th indicating a strong export 

flux. The REE profiles at stations 101, 104 and 113 are consistent with this pattern in 

that they show a pronounced depletion in surface waters despite upwelling of deeper 

waters enriched in REEs and/or vertical mixing. Between 54ºS and 59ºS surface water 

234
Th is at equilibrium and high concentrations of dissolved Fe and Mn suggest little 

export and low algal abundances (Rutgers van der Loeff et al., 2011). The slope of the 

REE increase in the combined dataset of this study and that of Garcia-Solsona et al. 

(2014), here shown as the change of Nd concentration with depth or [Nd] in 

pmol/100m (calculated using all available data at each station, excluding only the 

deepest sample from station S3), reveals a sharp transition occurring near 54ºS 

(Figure 7). This change marks a biogeochemical divide, south of which particle 

scavenging and REE export are limited by light and seasonal sea ice for large parts of 

the year. At station 131 essentially invariant REE depth profiles are a consequence of 

a combination of very low particle concentrations and advection of CDW into the 

gyre. Low particle fluxes have also been deduced from a sediment trap study although 

234
Th profiles suggested shallow remineralisation of significant opal and POC fluxes 

(Usbeck et a. 2002). Hegner et al. (2007) analysed samples from multiple years and 

generally found low particle concentrations in the WG but also some samples with 

very high concentrations associated with plankton blooms. At station 131 only the 

REEs of the very surface water are distinguishable from LCDW (Figure 6). The WG 
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is particularly interesting in this respect given that it is almost exclusively fed by 

upwelling CDW into the gyre circulation (e.g. Usbeck et a. 2002). This is also evident 

in the average Nd isotopic signature of -8.5 in the WG, which is indistinguishable 

from CDW (Stichel et al. 2012a, b).  

Most likely strong vertical mixing causes homogenous REE concentrations at station 

131. Hoppema et al (1999) calculated the surface water layer in the WG to be 

replaced every 3 years based on the entrainment of Warm Deep Water. Geibert et al. 

(2002) inferred an approximate rate of upwelling in the WG of 55 m/yr based on 

actinium isotopes. At stations 131 and 193 the REEs are depleted at the surface by 

approximately 15%, whereas at station 161 this depletion amounts to 20% (Figure 6). 

Even though the blooms that occur in this area are relatively short lived events that 

remineralise at very shallow depths (e.g. Usbeck et a. 2002) they can remove 20% of 

the REEs from surface waters before the resupply of freshly upwelled LCDW 

destroys this signal. Considering the depletion of surface REE concentrations and a 

water residence time of 2-3 years ((surface pmol/m
3
 – LCDW pmol/m

3
) / 2 years) 

requires a removal rate for La and Nd on the order of 1 nmol m
-3

 yr
-1

, which could 

deplete the entire REE inventory in 25-30 years if there was no resupply from below. 

More precise estimates of removal fluxes would require higher resolution sampling to 

determine the thickness of the depleted surface layer.  

In contrast to the WG where LREE and HREE profiles are similar, the REE profiles 

in the ACC suggest irreversible scavenging of the LREEs and a nutrient like 

behaviour of the HREEs (Oka et al., 2009). Either the stronger particle scavenging has 

the effect of changing the shape of the REE depth profiles or there are different types 

of particles involved in the scavenging north and south of the biogeochemical divide 

near the ACC boundary. The latter is likely given the differences in pigments 

observed in the area (Le Moigne et al., 2013), the higher concentrations of Fe binding 

ligands south of the boundary (Thuroczy et al., 2011), and the inferred shallow 

remineralisation in the WG (Usbeck et a. 2002). The type of plankton varying with 

latitude in the ACC is thought to be responsible for the maximum of organic C export 

occurring north of the peak in silica export (Ito et al., 2005). North of the divide 

vertical stratification of the water column may also play a role in controlling the shape 

of the REE depth profiles (see section 4.3 below). In support of this the Nd 

concentration profiles from station SAVE 271 in the South Atlantic (Jeandel, 1993) 

show a marked increase with depth until NADW is reached near 2500m. Below this 
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depth the Nd concentration was found to be constant at around 27 pmol/kg in the 

LCDW and the WSDW (Jeandel, 1993), very similar to the values in the deep waters 

and the WG profiles. 

South of 59ºS the 
234

Th data indicate the strongest export related to an ice edge 

bloom occurring in the region early in southern summer (Rutgers van der Loeff et al., 

2011). However, the REE profiles and LCDW normalised patterns at station 161 

exhibit a relatively small remineralisation signal (preferential LREE removal in 

surface and release at depth) compared with the ACC stations (Figure 6). The 

remineralisation signal at station 161 is comparable to that in the Weddell Sea 

(Station 193) where 
234

Th data were close to equilibrium. This discrepancy is most 

likely the result of different particle affinities and hence residence times of Th and the 

REEs. Thorium is probably the most particle reactive element in seawater and hence 

will produce a large signal with one algal bloom, but significant ingrowth will occur 

over just a few months (e.g. Rutgers van der Loeff et al., 2011). At the same time, the 

REEs provide a signal integrating a few years and may provide a better estimate of 

the mean particle export in a region.  

 

4.3 Factors controlling the slopes of REE depth profiles globally 

Given that there are significantly more data for seawater Nd concentrations than for 

the other REEs globally, our discussion will focus on the changes of Nd 

concentrations with water depth ([Nd]) (section 4.2). The strongest [Nd] gradients of 

> 1 pmol/100m were found off Japan (upper 800m, Alibo and Nozaki, 1999), the 

upper water column off the Niger River delta in W. Africa (Bayon et al., 2011), the 

South China Sea (Alibo and Nozaki, 2000) and the tropical NW Pacific (Piepgras and 

Jacobsen, 1992). This suggests a potential role for the proximity to continental 

margins and related particle inputs although all [Nd] values discussed reflect 

increases with depth. Values of [Nd] between 0.4 and 0.7 pmol/100m, similar to 

those observed in the Sub-Antarctic Zone and the ACC (Figure 7), were found in the 

N Atlantic (Elderfield and Greaves 1982), in the Pacific from the Gulf of Alaska 

(Haley et al., 2014) and the NW Pacific (Piepgras and Jacobsen, 1992) to the western, 

equatorial and south west Pacific (Zhang and Nozaki, 1996; Wang and Yamada, 

2007; Grenier et al., 2013; Molina-Kescher et al., 2014), and the Indian Ocean 

(Bertram and Elderfield, 1993). Values of [Nd] near 0.4 pmol/100m and below were 
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found in the Arabian Sea (German and Elderfield, 1990a), in the N Pacific (Shimizu 

et al., 1994), in the eastern equatorial Pacific (Grasse et al., 2012), in the south east 

Pacific (Molin-Kescher et al., 2014) and in the eastern Pacific sector of the Southern 

Ocean (Carter et al., 2012). This suggests that lower [Nd] values are generally 

associated with higher productivity areas or water masses that travelled through such 

areas.  

 The assumption of a linear increase in [Nd] with depth is not always valid. A 

marked break in slope, similar to nutrients, occurs off Japan where [Nd] is 1.33 in 

the upper 800m and then 0.36 below 1000m (Alibo and Nozaki, 1999). In contrast, 

near Bermuda in the Sargasso Sea the [Nd] is 0.39 in the upper 1000m, then 

effectively zero (0.04 pmol/100m) from 1000m to 3000m, before a near linear [Nd] 

of 0.6 prevails below (Pahnke et al., 2012). This suggests a role of advection in 

controlling the [Nd] given that the body with the nearly constant concentrations 

corresponds to NADW. Invariant REE concentrations with depth, such as those from 

the WG, have been found below 1000m in the Andaman Sea in the eastern Indian 

Ocean where the water column is homogenous for all measured properties including 

temperature and salinity (Nozaki and Alibo, 2003a). In this case, the well 

homogenised water column was attributed to efficient vertical mixing of the deep 

waters in this semi-enclosed basin (Nozaki and Alibo, 2003a). Sholkovitz and 

Schneider (1991) reported remarkably constant REE concentrations in the upper 

500m and 200m (only upper 200m sampled) in the Sargasso Sea in different years. 

Although this homogenized zone extended to depths greater than the mixed layer, 

which was some 50-100m deep at that time, the decrease of temperature in the upper 

500m was relatively weak. These examples demonstrate that the absence of a strong 

stratification and low particle fluxes, or most likely a combination of both, is linked to 

the development of homogenous REE depth profiles such as in the WG. However, to 

obtain high REE concentrations and a homogenous depth profile the remineralisation 

of terrigenous material from the Himalayan rivers was invoked in the Bay of Bengal 

(Nozaki and Alibo, 2003a). The potential origin of the high REE concentrations in the 

WG is discussed below (section 4.5) but without more detailed studies of REE 

particle dynamics in these settings, it is not possible to unambiguously distinguish the 

relative importance of low reversible scavenging onto particles from strong vertical 

mixing and/or advection for the development of homogenous depth profiles. 
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4.4 Cerium anomalies in the Southern Ocean 

The Ce anomalies in the Atlantic sector of the Southern Ocean become stronger with 

depth which is expected for this oxygenated oceanic water column (Figure 8). In the 

WG and interestingly also in the Drake Passage the Ce anomalies are relatively 

pronounced at the surface (values < 0.15) and even stronger at depth. Table 2 shows 

that these Ce anomalies are amongst the strongest found in the global ocean with only 

the deepest waters in parts of the Pacific having stronger anomalies. Once Ce oxide 

forms it is hard to dissolve and Ce is only released under reducing conditions like 

found in anoxic basins (e.g. Schijf et al., 1993). Cerium oxidation kinetics are 

relatively slow and the Ce anomaly (Ce/Ce*) in Mn-FeOH crusts, representative of 

the main sink for REEs from seawater, has been shown to be related to the growth 

rate of crusts (e.g. Bau et al., 2014). In seawater a general relationship with water 

mass age has been observed with the strongest Ce anomalies being found in old deep 

old Pacific waters (German et al, 1995; Table 2). Comparison with the natural 
14

C 

distribution of GLODAP (Key et al., 2004) reveals that the isolation from fresh REE 

input is not directly related to ventilation age as ventilation can occur without supply 

of REEs. Studies of particulate REEs have suggested that Ce oxidation occurs in the 

upper water column (e.g. Tachikawa et al., 1999). This led to the suggestion that the 

strong Ce anomaly in the deep Pacific results from the preferential release of the 

neighbouring elements La, Pr and Nd (Alibo and Nozaki, 1999). Table 2 shows this 

may indeed be the case for the deep Pacific samples but the absolute Ce concentration 

of 2.18 pmol/kg in the Drake Passage is one of the lowest values found globally. This 

means that the strong Ce anomalies observed in the Southern Ocean result from 

removal of Ce and is perhaps characteristic of the deep water feeding into the CDW, 

which return from the Pacific and pass through the Drake Passage (e.g. Schmitz 

1995). This strong Ce/Ce* is also advected and well mixed around the Antarctic 

within the ACC as this strong Ce/Ce* has also been found deep waters from the 

Indian sector of the Southern Ocean (Table 2; Nozaki and Alibo, 2003b). This 

suggests that despite the slight indications of some fresh sedimentary inputs to 

AABW (section 4.1) the Ce/Ce* is quasi-conservative in the deep waters of the 

Southern Ocean and reflects the long isolation from fresh continental REE sources.  

  

4.5 Source of high REE concentrations in the Southern Ocean 
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The REEs are supplied to seawater from continental sources but the remoteness of the 

Southern Ocean from continents not covered by ice sheets makes the source of REEs 

to seawater enigmatic. The main source of other continent-derived trace elements 

such as Fe is thought to be the Antarctic shelves, from where they are advected 

horizontally (de Jong et al., 2012). Although we find some evidence for contributions 

of REEs from a fresh sedimentary source in AABW (section 4.1) the deepwater 

concentrations are generally uniform and additional sedimentary sources should be 

reflected by the REE patterns. For example, it was previously demonstrated that 

continental REE inputs occur in the surface waters near the Cape of Good Hope and 

the Antarctic Peninsula (Stichel et al., 2012b).  

In other regions, such as the Bay of Bengal (e.g. Amakawa et al., 2000; Singh et al., 

2012) or the eastern equatorial Atlantic (Rickli et al., 2010), interaction with 

continent-derived particles can be a large source of REEs to seawater. Hegner et al. 

(2007) studied the Nd concentration and isotope composition of particles in the 

Atlantic sector of the Southern Ocean and found the highest Nd concentrations in 

samples with low particle concentrations and low opal content (Hegner et al., 2007). 

This suggests that these particles are lithogenic but the high REE content of 

terrigenous particles may not be readily dissolved. The particulate REE data of 

Garcia-Solsona et al. (2014) indicate that the authigenic fraction (based on 
232

Th 

concentration estimates of the lithogenic fraction) generally dominates the REE 

abundance in the particles from the region. There is evidence for some minor dust 

input to the region from Al data but a spike at 55ºS (Middag et al., 2011b) did not 

overlap with our sampling stations and little evidence was found in surrounding 

samples (Stichel et al., 2012b).  

Near the Antarctic Peninsula, inputs from shelf and slope sediments in the 

Admundsen Sea and around King George Island have been observed by more 

radiogenic Nd isotopic compositions (Carter et al., 2012; Stichel et al., 2012b; Rickli 

et al., 2014). Although we have very few REE data from that part of the Drake 

Passage, this input of radiogenic Nd seems to have little effect on the seawater REE 

patterns (Stichel et al., 2012b) and may be quantitatively unimportant. The continental 

margin of East Antarctica in the WG has been found not to be a significant source of 

dissolved Fe (Klunder et al., 2011) or dissolved Mn (Middag et al., 2011a) to the WG. 

Klunder et al. (2011) hypothesized that this could be related to the low organic carbon 

content of the sediments that are therefore not reducing enough to mobilise Fe. The 
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input of continental material from ice-bergs has also been suggested to be a 

significant source although this would be very patchy and the supply would likely 

follow the WG circulation pathways (Hegner et al., 2007). However, no evidence of 

REE release from drifting ice-bergs has been documented in seawater (Stichel et al., 

2012b). The lack of inputs from the East Antarctic continental shelf is supported by 

228
Ra data although the La/Yb ratios of some particles indicate input of old crustal 

material from East Antarctica (Hegner et al., 2007). Furthermore, the less radiogenic 

Nd isotopic composition of AABW in the eastern part of the WG compared to that of 

LCDW at least suggests exchange with old continental rocks from the East Antarctic 

shelf (Stichel et al., 2012a). Our dissolved REE data show the highest HREE/LREE 

ratios (here (Tm+Yb+Lu)/(La+Pr+Nd) all PAAS normalised so the average 

continental source would have values around 1) at stations 104 and 241 far away from 

East Antarctica. Fluxes from reducing sediments (Haley et al., 2004), sedimentary 

organic matter (Freslon et al., 2014) and continental input from some large rivers (e.g. 

Amakawa et al., 2000) can potentially produce a MREE enrichment in seawater. This 

enrichment or MREE bulge can be quantified by MREE/MREE* (here 

(Gd+Ty+Db)/[(Tm+Yb+Lu+La+Pr+Nd)/2] all shale normalised) with pore water 

samples having values > 1 (Haley et al., 2004). Consequently the plot of HREE/LREE 

against MREE/MREE* (Figure 9) demonstrates that continental sources to the 

Atlantic Sector of the Southern Ocean have not occurred recently, and instead the 

typical seawater fractionation causes HREE/LREE to be high. The Y/Ho ratios plotted 

against the Ce anomalies (Figure 9) are opposite in sign (being <1 or >1) compared to 

those of hydrogenetic Fe-Mn nodules and crusts (Bau et al., 1996, 2014) suggesting 

that removal onto Fe-Mn oxides may be responsible for these ratios. The actual range 

of the seawater Y/Ho ratios is small with some sites plotting in tight clusters. Taken 

together, these data suggests that the REEs in the Southern Ocean have been isolated 

from fresh continental sources for a relatively long time and the high REE 

concentrations have accumulated over the journey of water masses contributing to 

CDW around the abyssal oceans. 

Chen et al. (2013a) compiled global seawater Nd concentration data and compared 

these with 
228

Ra activity data as an indicator for coastal supply. They found that the 

relationship was not simple and that in some regions, most notably the Southern 

Ocean, the 
228

Ra activity was low but the surface water Nd was nevertheless high. 

These authors suggested that globally the vertical flux of Nd from the subsurface to 
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the surface waters is a very important control and our data and Nd isotope 

compositions (Stichel et al., 2012a) for the WG certainly support this.  

 

4.6 Comparison with other trace metals from GEOTRACES studies 

The great advantage of the GEOTRACES program is the possibility to directly 

compare data for many trace elements and their isotopes obtained on the same 

samples. For those stations from which we analysed our samples for REE 

concentrations, analyses of Al, Ba, Mn, Fe, and Zn concentrations are also available. 

To compare the data for the different metals a correlation matrix was constructed after 

extracting the data from the GEOTRACES 2014 intermediate data product 

(http://www.bodc.ac.uk/geotraces/data/idp2014/). In some instances the ultra-clean 

rosette and the normal rosette (used to sample for the REEs) did not sample exactly 

the same water depths. In these cases we have compared samples that were taken 

within 50m water depth from each other. The REEs correlate very well with Ba (R
2
 

values from 0.86 for Sm to 0.96 for Lu and 0.97 for Y) and reasonably well with Zn 

(R
2
 values from 0.71 for Eu to 0.88 for Lu and 0.72 for Y) and Cu (R

2
 values from 

0.78 for Eu to 0.85 for La and 0.69 for Y). The results of these comparisons are not 

surprising given the strong correlation of REE concentrations with alkalinity and 

silicate and that these other trace metals are also associated with these nutrients (e.g. 

Zn and silicate: Croot et al., 2011). The strong correlation of La with Ba was also 

noted by Garcia-Solsona et al. (2014) who hypothesised La anomalies might be 

related to barite precipitation. The reasons for these correlations will be the subject of 

future research but we note that in our sample set the correlations with Ba are similar 

for La and Lu. 

A notable lack of correlation is found between REEs and dissolved Fe concentrations 

(Klunder et al., 2011) and dissolved Mn concentrations (Middag et al., 2011). Both 

dissolved Fe and Mn concentrations were elevated in intermediate depths associated 

with a hydrothermal plume from the Bouvet triple junction and no evidence was 

found for this in the REE data in accordance with their scavenging immediately at the 

vent sites (German et al., 1990c). At station 131 there is a surface Fe maximum 

related to very low productivity at this site (Klunder et al., 2011) and the REE profiles 

there support the lack of particles. Deep-water Fe concentrations were higher in the 

eastward limb of the WG compared to the westward part (Klunder et al., 2011) but no 

significant difference in REE concentrations (apart from Ce) is seen between stations 
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131 and 161. The future combination of REE data and patterns with other trace metals 

and isotope data has the potential to provide new insights into the sources of the 

metals and their biogeochemical cycling.  

 

5. Conclusions 

The concentrations of dissolved REEs in the Atlantic sector of the Southern Ocean 

reflect the balance between strong particle scavenging and vertical supply. The shape 

of the profiles changes from the classically increasing REE concentrations with depth 

in the ACC to essentially invariant depth profiles below the surface waters in the WG. 

This change results from the drastic difference in productivity on either side of the 

ACC southern boundary and the strong vertical supply of deep waters in the WG. The 

change in depth patterns is also reflected in dissolved silicate and total alkalinity 

measured in these samples. The strongest correlations are found between HREE 

concentrations and alkalinity although more studies of particle dynamics are required 

to understand the controlling mechanism. Strongly developed Ce anomalies and the 

typical “seawater like” REE patterns suggest that the deep waters upwelling on 

shoaling isopycnals in the WG have been isolated from fresh continental REE sources 

for a relatively long time. This and the generally high REE concentrations found in 

CDW suggest that the REE inventory of the Atlantic sector of the southern Ocean 

predominantly originates from deep waters that have travelled the abyssal Indo-

Pacific oceans and are entrained into the CDW.  
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Figure Captions 

 

Figure 1. Map showing the location of stations analysed in this study (red dots) and 

near surface samples presented in Stichel et al. (2012b) (black dots). Grey arrows 

indicate the main currents in the study area: the South Atlantic Current (SAC), the 

Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). The approximate 

positions of the following fronts are also marked after Orsi et al. (1995): Sub-Tropical 

Front (STF), Sub-Antarctic Front (SAF), Polar Front (PF), southern ACC Front 

(SACCF), and the southern boundary of the ACC (BDY). 

 

Figure 2. Selected rare earth element concentrations for all depth profiles from this 

study. Error bars represent the 2 uncertainty estimated by repeated measurement (n 

= 6) of the BATS 15m reference seawater during the course of this study (Table 1). 

 

Figure 3. Alkalinity profiles for all investigated stations (St. 101 to St. 241) and 

dissolved silicate for zero meridian stations (St. 101 to St. 161) from GIPY5: 

ANTXXIV/3 (van Heuven et al., 2011) and stations S2, S3, S4, and #77 from GIPY4: 

MD166 (Garcia-Solsona et al. 2014) for which the silicate data were published in Le 

Moigne et al. (2013). Inserts show the correlation of Lu with alkalinity and silicate. 

This is also shown in supplementary figure 2. 

 

Figure 4 (a) (b). Rare earth element concentrations for the three crossover stations 

between GEOTRACES GIPY4 (Garcia-Solsona et al., 2014 denoted by G-S ‘14) and 

GIPY5 (PS71) cruises (this study). Only six representative elements are shown here; 

the remaining elements are shown in supplementary figure 1. Error bars for stations 

101 and 104 represent the 2 uncertainty estimated by repeated measurement (n = 6) 

of the BATS 15m reference seawater during the course of this study (Table 1). Error 

bars for station 113 (also 2were estimated by the repeated measurement of the 

1000 m sample (Table 1) using time resolved data collection. 

 

Figure 5. Post Archean Australian Sedimentary (PAAS) rock composite (Taylor and 

McLennan, 1985) normalised rare earth element patterns for representative stations. 

 

Figure 6(a). Seawater REE patterns normalised to an average LCDW (Table 1). 

Considering the analytical uncertainties, any points within the grey bar can be 

considered identical to LCDW. Note the different scaling of the y-axis between ACC 

(left panel) and WG (right panel). 

 

Figure 6(b). Seawater REE patterns normalised to an average LCDW (Table 1). 

Considering the analytical uncertainties, any points within the grey bar can be 

considered identical to LCDW. Note the different scaling of the y-axis between ACC 

(left panel) and WG (right panel). 

 

Figure 7. The latitudinal variation of the increase of Nd concentrations with depth 

[Nd] and the steady state 
234

Th flux from Rutgers van der Loeff et al (2011) along 
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the zero meridian transect. The position of the different fronts are also marked 

according to Rutgers van der Loeff et al (2011). 

 

Figure 8. The Ce anomaly (calculated relative to Pr and Nd) of all stations. Error bars 

represent the 2 uncertainty estimated by repeated measurement (n = 6) of the BATS 

15 m reference seawater during the course of this study. 

 

Figure 9. Rare earth element pattern indices (all PAAS (Taylor and McLennan, 1985) 

normalised); (left) middle REE bulge index versus the HREE to LREE ratio, (right) 

cerium anomaly against the yttrium to holmium ratio. Error bars, only plotted for one 

station for clarity, represent the 2 uncertainty estimated by repeated measurement (n 

= 6) of the BATS 15 m reference seawater during the course of this study. This is 

actually larger than the values for St. 113 that was measured with time resolved data 

collection but is representative for all samples. 
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Element Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

BATS 15m concentration (pmol/kg) average 

for this study (n = 6) 128 13.7 9.88 2.97 13.9 3.01 0.80 4.47 0.74 5.52 1.49 4.62 0.66 4.11 0.69 

2 standard deviations (pmol/kg) 4.51 0.53 0.47 0.14 0.50 0.07 0.03 0.37 0.03 0.30 0.03 0.11 0.04 0.19 0.02 

2 standard deviations (%) 7.07 7.68 9.50 9.49 7.22 4.63 6.67 16.7 8.42 10.8 4.24 4.70 11.5 9.23 6.41 

                

BATS 15m consensus values (van de Flierdt 

et al., 2012)  14.7 12.0 3.12 14.1 3.20 0.89 4.83 0.79 5.90 1.49 4.80 0.70 4.16 0.67 

2  SD of consensus  2.21 2.74 0.37 1.24 0.36 0.11 0.55 0.08 0.52 0.13 0.42 0.07 0.51 0.09 

                

BATS 2000m concentration (pmol/kg) 

average for this study (n = 4) 133 22.1 3.42 3.80 16.9 3.16 0.81 4.42 0.73 5.48 1.48 4.85 0.69 4.80 0.78 

2 standard deviations (pmol/kg) 2.55 0.72 0.16 0.14 1.00 0.18 0.04 0.33 0.07 0.29 0.10 0.31 0.05 0.29 0.06 

2 standard deviations (%) 3.82 6.47 9.22 7.14 11.9 11.1 10.5 14.7 18.0 10.5 13.0 12.9 14.6 12.1 14.7 

                

BATS 2000m consensus values (van de 

Flierdt et al., 2012)  23.6 5.12 4.03 17.3 3.45 0.91 4.83 0.79 5.80 1.52 5.04 0.75 4.76 0.81 

2  SD of consensus  2.79 2.27 0.35 1.22 0.34 0.10 0.53 0.08 0.38 0.09 0.25 0.05 0.25 0.04 

                

Station 113 1000m average Time Resolved 

Analysis* (n = 4) 178 33.6 3.86 4.73 21.1 3.54 0.87 5.52 0.88 6.37 1.85 6.39 0.97 7.04 1.24 

2 standard deviations (pmol/kg) 2.45 0.74 0.10 0.22 1.23 0.12 0.07 0.25 0.05 0.29 0.06 0.33 0.08 0.39 0.07 

2 standard deviations (%) 1.38 2.20 2.46 4.69 5.81 3.42 8.38 4.58 5.79 4.50 3.50 5.14 8.04 5.49 5.88 

                

Mean LCDW† for normalisation (pmol/kg) 181 37.4 3.82 5.19 22.9 4.14 1.04 5.92 0.94 7.11 1.94 6.77 1.03 7.30 1.32 

Table 1. REE concentrations in reference samples measured in the course of this study. *Time Resolved Analysis enables the elution peak to be 

sampled at the highest frequency improving the precision of the measurements. †LCDW composition is the average of St. 131 400m, 1000m and 
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St. 113, 1000m for all elements and also station S4, 1117m, 1680m and S5, 692m, 1185m and 1776m from Garcia-Solsona et al. (2014) for La –

Lu. 

 

 

 

 

 

Reference Ocean Basin 

Statio

n 

Water 

depth (m) 

La 
(pmol/kg

) 
Ce 

(pmol/kg) 

Pr  
(pmol/

kg) 
Nd 

(pmol/kg) 
Ce/Ce* 
(Pr+Nd) 

Ce/Ce* 
(La+Pr) 

Ce/Ce* 
(La+Nd) 

This study 

Southern Ocean Drake 

Passage 

Station 

241  2800 32.48 2.18 4.54 19.54 0.06 0.04 0.04 

This study (n=4) 

Southern Ocean Atlantic 

sector LCDW 

Station 

113 1000 33.64 3.86 4.73 21.15 0.13 0.07 0.06 

Zhang & Nozaki 

1996 W equatorial Pacific SA-5 5149 43.04 1.99 6.42 27.92 0.04 0.03 0.02 

Grenier et al. 2013 W equatorial Pacific EUC 14 4000 46.38 2.47 6.27 28.08 0.05 0.03 0.03 

Zhang & Nozaki 

1996 SW Pacific SA-12 4519 37.80 2.34 5.18 22.86 0.06 0.04 0.03 

Nozaki & Alibo 

2003 

Southern Ocean Indian 

sector  

PA4 4630 16.4 2.15 4.41 20.8 0.07 0.06 0.06 

Piepgras & 

Jacobsen 1992 tropical NW Pacific  5073 52.70 5.68  35.00   0.06 

Bertram & 

Elderfield 1993 N Madagascar Basin  4251 47.47 5.06  28.32   0.06 

Haley et al. 2014 Gulf of Alaska NE Pacific  5000 63.60 7.40 9.89 42.53 0.10 0.07 0.06 

Bertram & 

Elderfield 1993 N Mascarene Basin  4499 43.35 5.21  28.30   0.06 

Bertram & 

Elderfield 1993 S Somali Basin  4845 45.22 5.57  29.56   0.06 

Piepgras & 

Jacobsen 1992 NW Pacific  5408 61.60 8.44  44.40   0.07 

Nozaki et al. 1999 Sulu Sea  4944 26.90 4.03 4.96 23.60 0.12 0.08 0.07 

Molina-Kescher et 

al. 2014* SW Pacific St. 66 5155 41.70 6.53 6.47 29.50 0.14 0.09 0.08 
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Wang & Yamada 

2007 equatorial Pacific  St 12 5378 31.24 5.36 4.93 21.06 0.14 0.10 0.09 

Pahnke et al. 2012 Sargasso Sea N Atlantic BATS 4500 37.72 6.78 6.53 27.66 0.13 0.10 0.09 

Wang & Yamada 

2007 equatorial Pacific St 14 5105 32.88 5.70 4.85 20.60 0.15 0.10 0.09 

German & 

Elderfield 1990 Arabian Sea St 1605 2500 31.20 5.40  19.20   0.09 

Molina-Kescher et 

al 2014* Chile Basin SE Pacific St. 22 4142 33.80 7.74 4.68 21.00 0.23 0.14 0.12 

Zhang & Nozaki 

1996 Coral Sea SA-7 4562 35.86 9.49 5.47 23.85 0.23 0.15 0.14 

Elderfield & 

Greaves 1982 N Atlantic MOW  900 20.80 9.64  21.10   0.21 

Shimizu et al. 1994 N Pacific DE4 5200 22.70 14.80   30.10     0.27 

Table 2. Cerium anomalies from the literature. All REE concentrations were normalised to PAAS before the Ce/Ce* was calculated. *The 

Ce/Ce* values given in Molina-Kescher et al., 2014 were calculated incorrectly and correct values are presented here.
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4a 
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Fig. 4b 
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Fig. 5 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Fig. 6a 
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Fig. 6b 
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Fig. 6c 
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Fig. 7 
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Fig. 8 
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Fig. 9 


