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Abstract :   
 
Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with 
conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional 
fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major 
worldwide sampling effort over the last two decades has resulted in the establishment of multiple large 
collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial 
sequences have been generated, representing all major known morphological taxa across their worldwide 
oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of 
molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined 
all available published and unpublished genetic data to build PFR2, the Planktonic foraminifera Ribosomal 
Reference database. The first version of the database includes 3322 reference 18S rDNA sequences 
belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 
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oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation 
system fully resolved to the morphological species level and linked to a series of metadata. The PFR2 
website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, 
as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation 
process integrates advances in morphological and molecular taxonomy. It allows for an increase in its 
taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking 
of annotations and assuring that the annotations remain internally consistent. 
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foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, 43 

representing all major known morphological taxa across their worldwide oceanic range. This 44 

comprehensive data coverage provides an opportunity to assess patterns of molecular ecology 45 

and evolution in a holistic way for an entire group of planktonic protists. We combined all 46 

available published and unpublished genetic data to build PFR², the Planktonic Foraminifera 47 

Ribosomal Reference database. The first version of the database includes 3,322 reference 18S 48 

rDNA sequences belonging to 32 out of the 47 known morphospecies of extant planktonic 49 

Foraminifera, collected from 460 oceanic stations. All sequences have been rigorously 50 

taxonomically curated using a six-rank annotation system fully resolved to the morphological 51 

species level and linked to a series of metadata. The PFR² website, available at http://pfr2.sb-52 

roscoff.fr, allows downloading the entire database or specific sections, as well as the 53 

identification of new planktonic foraminiferal sequences. Its novel, fully documented curation 54 

process integrates advances in morphological and molecular taxonomy. It allows for an increase 55 

in its taxonomic resolution and assures that integrity is maintained by including a complete 56 

contingency tracking of annotations and assuring that the annotations remain internally 57 

consistent.  58 

Introduction 59 

Despite their ubiquity and the critical role they play in global biogeochemical cycles, 60 

unicellular eukaryotes (protists) remain the most poorly known domain of life (e. g., Pawlowski 61 

et al., 2012). Because of their extreme morphological and behavioral diversity, the study of even 62 

relatively narrow lineages requires a high degree of taxonomic expertise (e. g., Guillou et al., 63 

2012, Pawlowski and Holzmann, 2014). As a result, the knowledge of protistan ecology and 64 

evolution is limited by the small number of taxonomists, resulting in scarcity of taxonomically 65 
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well-resolved ecological data. As an alternative approach, numerous studies have demonstrated 66 

the potential of identification of protists by means of short DNA sequences or barcodes (e. g., 67 

Saunders, 2005; Sherwood et al., 2007; Hollingsworth et al., 2009; Nossonova et al., 2010; 68 

Pawlowski and Lecroq, 2010; Hamsher et al., 2011; Stern et al., 2010; Schoch et al., 2012), both 69 

at the single-cell and metacommunity levels (e. g., Sogin et al., 2006; Logares et al., 2014). Such 70 

barcoding/metabarcoding approaches critically rely on the fidelity of the marker gene with 71 

respect to specificity (avoiding ambiguity in identification), comprehensiveness (assuring all taxa 72 

in the studied group are represented in the reference barcode database) and accuracy (assuring 73 

that barcode assignments are consistent with a coherent, phenotypic taxonomic framework; e. g., 74 

Zimmermann et al., 2014)). These three pre-requisites are rarely found in protists, where 75 

classical morphological taxonomy is often challenging, DNA extraction and sequencing from a 76 

single cell is prone to contamination, and a large portion of the diversity in many groups remains 77 

unknown (e. g., Mora et al., 2011). In this respect, planktonic foraminifera represent a rare 78 

exception.  79 

Planktonic foraminifera are ubiquitous pelagic marine protists with reticulated 80 

pseudopods, clustering within the Rhizaria (Nikolaev et al., 2004). The group is marked by a 81 

rather low number of extant morphospecies (47; Hemleben et al., 1989), which can be 82 

distinguished using structural characteristics of their calcite shells. Their global geographic 83 

distribution, seasonal dynamics, vertical habitats and trophic behavior have been thoroughly 84 

documented by analyses of plankton hauls (e.g., Bé and Hudson, 1977), sediment trap series 85 

(e.g., Zaric et al., 2005) and thousands of surface sediment samples across the world oceans (e.g., 86 

Kucera et al., 2005). Their outstanding preservation in marine sediments resulted in arguably the 87 

most complete fossil record, allowing comprehensive reconstruction of the evolutionary history 88 



of the group (Aze et al., 2011). Over the last two decades, the morpho-taxonomy and phylogeny 89 

of the group have been largely confirmed by molecular genetic analyses (e.g., Aurahs et al., 90 

2009a) based on the highly informative, ~1,000 bp fragment at the 3’end of the 18S rDNA gene. 91 

These analyses confirmed that the morphological characters used to differentiate planktonic 92 

foraminifera taxa are phylogenetically valid both at the level of morphological species and at the 93 

level of higher taxa. The studied gene fragment contains six hypervariable expansion segments, 94 

some unique to foraminifera, providing excellent taxonomic resolution (Pawlowski and Lecroq, 95 

2010). Analyses of this fragment revealed the existence of genetically distinct lineages within 96 

most of the morphospecies, which likely represent reproductively isolated units (Darling et al., 97 

1996, 1997, 1999, 2000, 2003, 2004, 2006, 2007, 2009; Darling and Wade, 2008; Wade et al., 98 

1996; de Vargas et al., 1997, 1999, 2001, 2002, de Vargas and Pawlowski, 1998; Stewart et al., 99 

2001; Aurahs et al., 2009b, 2011; Ujiié  and Lipps, 2009; Ujiié et al., 2008, 2012; Morard et al., 100 

2009, 2011, 2013; Seears et al., 2012; Quillévéré et al., 2013; Weiner et al., 2012, 2014; André et 101 

al., 2014). In order to assess the ecology and biogeography of such cryptic species, large 102 

numbers of rDNA sequences from single-cell extractions collected across the world oceans have 103 

been generated for most morphospecies (Figure 1). Due to this extensive single-cell rDNA 104 

sequencing, the genetic and morphological diversity of planktonic foraminifera have been linked 105 

together to a degree that now allows for transfer of taxonomic expertise. The knowledge of the 106 

genetic and morphological taxonomy of the group allows the establishment of an exceptionally 107 

comprehensive reference genetic database that can be further used to interpret complex data from 108 

plankton metagenomic studies with a high level of taxonomic resolution. Because planktonic 109 

foraminifera are subject to the same ecological forcing as other microplankton, including the 110 

dominance of passive transport in a relatively unstructured environment, huge population sizes, 111 



and basin-scale distribution of species, they can potentially serve as a model for the study of 112 

global ecological patterns in other groups of pelagic protists, whose diversity remains largely 113 

undiscovered (Mora et al., 2011).  114 

By early 2014, 1,787 partial 18S rDNA sequences from single-cell extractions of 115 

planktonic foraminifera were available in public databases. However, their NCBI taxonomy is 116 

often inconsistent, lacking standardization. It includes (and retains) obvious identification errors, 117 

as discussed by Aurahs et al. (2009a) and André et al. (2014), and their annotation lacks critical 118 

metadata. In addition, an equivalent number of rDNA sequences not deposited in public 119 

databases have been generated by the co-authors of the present study. Collectively, the existing 120 

rDNA sequences from single cells collected throughout the world oceans cover the entire 121 

geographic and taxonomic range of planktonic foraminifera. This collection unites the current 122 

morphological, genetic, ecological, and biogeographic knowledge of the group and may serve as 123 

a Rosetta Stone/Philae Obelisk for interpreting metabarcoding data (Pawlowski et al., 2014). To 124 

pave the way for future exploitation of this resource, we combined all published and unpublished 125 

planktonic foraminifera rDNA sequence data and curated the resulting database with a semi-126 

automated bioinformatics pipeline. The resulting Planktonic Foraminifera Ribosomal Reference 127 

database (PFR
2
) is a highly resolved, fully annotated and internally entirely consistent collection 128 

of 18S rDNA sequences of planktonic foraminifera, aligned and evaluated in a way that 129 

facilitates, among others, direct assessment of barcoding markers. 130 

Material and Methods 131 

Primary database assembly 132 



A total of 1,787 18S rDNA sequences of planktonic foraminifera were downloaded from the 133 

GenBank query portal (http://www.ncbi.nlm.nih.gov/; release 201) on the 14
th 

of May 2014. The 134 

taxonomic path and metadata for these sequences were extracted from NCBI and supplemented 135 

by information in original papers when available. The metadata associated to each sequence 136 

consisted of: (i) their organismal origin (specimen voucher, taxonomic path, infra specific 137 

genetic type assignment), (ii) their methodological origin (direct sequencing or cloning), and (iii) 138 

their spatio-temporal origin (geographic coordinates, depth, and time of collection). Metadata 139 

were described using standard vocabularies and data formats. For 47 sequences, the coordinates 140 

of the collection site could not be recovered, in which case the locality was described in words 141 

(Supplementary Material 1). 142 

We next compiled all unpublished 18S rDNA sequences generated by the co-authors of this 143 

paper and linked them with the same suite of metadata. These sequences originate from single-144 

cell extractions of planktonic foraminifera collected by stratified or non-stratified plankton net 145 

hauls, in-situ water pumping, as well as SCUBA diving. After collection, the specimens were 146 

individually picked under a stereomicroscope, cleaned, taxonomically identified and transferred 147 

into DNA extraction buffer or air-dried on cardboard slides and stored at -20°C or -80°C. DNA 148 

extractions were performed following the DOC (Holzmann & Pawlowski, 1996), the GITC* 149 

(Morard et al., 2009), or the Urea (Weiner et al., 2014) protocols. Sequences located at the 3’ end 150 

of the 18S rDNA were obtained following the methodology described in de Darling et al. (1996, 151 

1997), de Vargas et al. (1997), Aurahs et al. (2009b), Morard et al. (2011) and Weiner et al., 152 

(2014). A total of 820 new planktonic foraminiferal sequences were analyzed and annotated for 153 

this study. In addition, 925 unpublished sequences analyzed in Darling et al. (2000, 2003, 2004, 154 

2006, 2007), Darling and Wade (2008), Seears et al. (2012), and Weiner et al. (2014) were also 155 
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included. All unpublished sequences, except 177 sequences shorter than 200 bp, were deposited 156 

in GenBank under the accession numbers KM19301 to KM194582. Overall, PFR
2 

contains data 157 

from 460 sites sampled during 54 oceanographic cruises and 15 near shore collection campaigns 158 

between 1993 and 2013. It covers all oceanic basins, all seasons, and water depths ranging 159 

between the surface and 700 meters (Figure 1; Supplementary Material 1). 160 

Taxonomy 161 

Morphological taxonomy 162 

As the first step in the curation process, the primary taxonomic annotations of all 3,532 18S 163 

rDNA sequences gathered from NCBI and our internal databases were harmonized. The 164 

identification of planktonic foraminifera is challenging especially for juvenile individuals, which 165 

often lack diagnostic characters (Brummer et al., 1986). Thus, many of the published and 166 

unpublished 18S rDNA sequences were mislabeled or left in open nomenclature. In some cases 167 

the same taxon has been recorded under different names, reflecting inconsistent use of generic 168 

names, synonyms and misspelling. To harmonize the taxonomy, we first carried out a manual 169 

curation of the original annotations to remove the most obvious taxonomic conflicts in the 170 

primary database. To this end, the sequence annotations were aligned with a catalog of 47 171 

species names based on the taxonomy used in Hemleben et al. (1989), but adding 172 

Globigerinoides elongatus following Aurahs et al. (2011) and treating Neogloboquadrina 173 

incompta following Darling et al. (2006). Thus, the 109 sequences labelled as Globigerinoides 174 

ruber (pink) and the 63 labelled as Globigerinoides ruber (white) were renamed as 175 

Globigerinoides ruber. The 113 sequences of Globigerinoides ruber and Globigerinoides ruber 176 

(white) attributed to the genotype II were renamed Globigerinoides elongatus following Aurahs 177 



et al. (2011). The 12 sequences labelled Globigerinella aequilateralis were renamed 178 

Globigerinella siphonifera following Hemleben et al. (1989). The 7 sequences corresponding to 179 

the right-coiled morphotype of Neogloboquadrina pachyderma were renamed Neogloboquadrina 180 

incompta following Darling et al. (2006). All taxonomic reassignments were checked by 181 

sequence similarity analyses to the members of the new group. Next, we attempted to resolve the 182 

attribution of sequences with unresolved taxonomy and searched manually for obviously 183 

misattributed sequences. This refers to sequences that are highly divergent from other members 184 

of their group but identical to sequences of other well-resolved taxa. Overall, these first steps of 185 

manual curation led to the taxonomic reassignment of 124 sequences. All corrections and their 186 

justification are documented in the Supplementary Material 1. 187 

Annotation of genetic types    188 

In order to preserve the information on the attribution of 18S rDNA sequences to genetic types 189 

(potential cryptic species), we harmonized the existing attributions at this level for species where 190 

extensive surveys have been carried out and published. A total of 1,356 sequences downloaded 191 

from NCBI were associated with a genetic type label, which was always retained. In addition, 19 192 

sequences labelled as Globigerinoides ruber, 15 as Globigerinoides sacculifer, 36 as 193 

Globigerinita glutinata, 6 as Globigerinita uvula, 9 as Globorotalia inflata, 10 as 194 

Neogloboquadrina incompta, 6 as Neogloboquadrina pachyderma, 5 as Orbulina universa, 5 as 195 

Pulleniatina obliquiloculata, 30 as Hastigerina pelagica, and 32 as Globigerinella siphonifera 196 

have been analyzed after their first release in the public domain by Aurahs et al. (2009), Ujiié et 197 

al. (2012), Weiner et al. (2012, 2014), and André et al. (2013, 2014), and were attributed to a 198 

genetic type by these authors. These attributions differ from those in the NCBI label, but were 199 

retained in the PFR² database. In case of multiple attributions of the same sequence to different 200 



genetic types by several authors, we retained the molecular taxonomy that was based on the 201 

study presenting the most resolved and comprehensive attribution. In addition, 877 unpublished 202 

sequences belonging to Orbulina universa, Globigerina bulloides, Neogloboquadrina incompta, 203 

Neogoboquadrina dutertrei, Neogloboquadrina pachyderma, and Turborotalita quinqueloba 204 

received a genotypic attribution following de Vargas et al. (1999) and Darling et al. (2004, 2006, 205 

2007, 2008). Most of these sequences have been produced and identified within earlier studies, 206 

but were not originally deposited on NCBI. Their PFR² genotypic assignment is therefore 207 

entirely consistent with the attribution of the representative sequences of the same genetic type 208 

that were deposited on NCBI. 209 

PFR
2
 final taxonomic framework 210 

As a result of the first manual curation and annotation to the genetic type level, the original 3,532 211 

18S rDNA sequences were re-assigned to 33 species names and 2,276 sequences were annotated 212 

to the level of genetic types (Supplementary Material 1). For all sequences, we established a 213 

ranked taxonomy with six levels: 1- Morphogroup, 2-Genus, 3-Species, 4-Genetic type level 1, 214 

5-Genetic type level 2, 6-Genetic type 3. For the “Morphogroup” rank we used the taxonomical 215 

framework of Hemleben et al. (1989), dividing the extant planktonic foraminifera species into 216 

five clades based on the ultrastructure of the calcareous shell: Spinose, Non-spinose, 217 

Microperforate, Monolamellar and Non-spiral. The “Genus” and “Species” ranks follow the 218 

primary annotation as described above. For the “Genetic type level 1”, “Genetic type level 2” 219 

and “Genetic type level 3” ranks, we used the hierarchical levels presented in the labels of the 220 

genetic types of Globigerinoides ruber, Globigerinoides elongatus, Globigerinella siphonifera, 221 

Globigerinella calida, Hastigerina pelagica, Globigerina bulloides, Neogloboquadrina dutertrei, 222 

Pulleniatina obliquiloculata, and Turborotalita quinqueloba. Genetic type attributions lacking 223 



hierarchical structure were reported in the rank “Genetic type level 1”. After this step, the 224 

Primary Reference Database (Figure 2) of 3,532 sequences contained 113 different taxonomic 225 

paths (Supplementary Material 1).  226 

Sequences partitioning into conserved and variable regions 227 

Because PFR² is a resource not only for taxonomic assignment but also for ecological and 228 

biogeographical studies, all planktonic foraminiferal 18S rDNA sequences were included 229 

irrespective of length, as long as they contained taxonomically relevant information. As a result, 230 

the length of the sequences included in the annotated primary database ranges between 33 and 231 

3,412 bp. To evaluate their coverage and information content, all sequences were manually 232 

aligned using Seaview 4 (Gouy et al., 2010) to the borders of each variable region of the 18S 233 

rDNA fragment. The positions of the borders were determined according to the SSU rDNA 234 

secondary structure of the monothalamous foraminifera Micrometula hyalostera presented by 235 

Pawlowski and Lecroq (2010), except for the region 37/f where a strict homology was difficult to 236 

establish for all sequences. Instead, we defined the end of this region by the occurrence of a 237 

pattern homologous to the series of nucleotides “CUUUCACAUGA” located at the 3’ end of 238 

Helix 37. We also noticed that the short conserved fragment located between the variable regions 239 

45/e and 47/f was difficult to identify across all sequences. We thus merged the regions 45/e, 46 240 

and 47/f into a single region that we named 45E-47F (Table1). As a result, the position and 241 

length of six conserved (32-37, 37-41, 39-43, 44-45, 47-49, 50) and five variable (37F, 41F, 43E, 242 

45E-47F, 49E) regions were identified for all sequences (Figure 2). The remaining part of the 243 

18S rDNA sequence, only present in sequences EU199447, EU199448 and EU199449 and 244 

located before the motive “AAGGGCACCACAAGA” has not been analyzed in this way. All 245 

regions fully covered in a sequence and containing sequence motives observed at least twice in 246 



the whole dataset were labelled as “complete”. Regions fully covered but containing a sequence 247 

motive that was observed only once in the whole dataset were labelled as “poor”. This is because 248 

we consider sequencing/PCR errors as the most likely cause for the occurrence of such unique 249 

sequence motives. We realize that using this procedure, even genuine unique sequences may be 250 

discarded from the analysis, but this would be the case only if such sequences deviated in all 251 

regions. In all other cases, the regions were labelled as “partial” when only a part of the region 252 

was present or “not available” if they did not contain any fragment of the sequence. As a result 253 

we obtain the Partitioned Primary Reference Database (Figure 2). The coverage of each 254 

individual region in the Partitioned Primary Reference Database is given in Supplementary 255 

Material 1, and all sequence partitions are given in Supplementary Material 2. 256 

Semi-automated iterative curation pipeline for optimal taxonomic assignment 257 

The consistency of taxonomic assignments within the annotated database of partitioned 258 

sequences was assessed using a semi-automated process (Figures 2 and 3). All “complete” 259 

regions of sequences with the same taxonomic assignment at the morphospecies level were 260 

automatically aligned using global pairwise alignment (Needleman & Wunsch 1970), as 261 

implemented in the software needle from the Emboss suite of bioinformatics tools (Rice et al., 262 

2000). To detect annotation inconsistencies, mean pairwise similarities were computed for each 263 

“complete” region of each sequence against all other sequences with the same taxonomic 264 

assignment from the finest annotation level “Genetic type level 3” up to the “Species level” rank. 265 

Results are provided in Supplementary Material 1 and were visualized using R (R Development 266 

Core Team, 2014) and the ggplot2 library (Wickham, 2009). The resulting plots are given in 267 

Supplementary Material 3. If all annotations are consistent and there is no variation within taxa, 268 

each sequence within the analyzed taxon should only find an exact match and the mean pairwise 269 



similarity for that taxon should be 1. However, beyond sequencing/PCR errors introducing 270 

spurious sequence differences, there are several reasons why the mean pairwise similarity within 271 

a taxon may be lower. First, if a sequence has been assigned the wrong name, its similarity to all 272 

other sequences labelled with that name will be low, thus decreasing the resulting mean pairwise 273 

similarity. Second, if a sequence has been assigned to the correct taxon, but the taxon comprises 274 

multiple sequence motives, that sequence will find a perfect match within the taxon but the mean 275 

pairwise similarity will also be lower than 1. 276 

In order to deconvolve the different sources of sequence variability within taxa, we followed a 277 

three-step iterative approach, which was repeated for each of the 11 ”complete” regions of the 278 

analyzed SSU rDNA fragment. First, we considered the distribution of mean pairwise similarities 279 

for all sequences within each region assigned to one taxon at the finest rank of “Genetic type 280 

level 3”. Assuming that misidentifications are rare and result in large pairwise distances, we 281 

manually searched for sequences whose mean pairwise similarity deviates substantially from the 282 

rest of the sequences within the taxon. Such sequences were initially “invalidated”, whereas all 283 

other sequences analyzed at this level were “validated”. We then repeated the same procedure for 284 

the higher ranks of “Genetic type level 2”, “Genetic type level 1” and finally “Species level”, 285 

always starting with the full database (Figures 2 and 3A). Thus, at each level, we expected a 286 

misidentified sequence to have a pairwise similarity markedly lower than the mean of pairwise 287 

similarities between correctly assigned sequences (Figure 3B). This procedure had to be repeated 288 

for every rank, because not all sequences in the database are assigned to all ranks. Nevertheless, 289 

once “validated”, a sequence cannot be “invalidated” during analyses of higher rank taxa, 290 

because it represents an accepted variability within that taxon. In taxa where all sequences within 291 



a region show low mean pairwise similarities all attributions are initially invalidated (this would 292 

be typically the case for a “wastebasket taxa”; Figure 3C).  293 

In the second step, all sequences invalidated during step 1 were reconsidered based on their 294 

pairwise similarities with ‘validated’ sequences from the same region. The main goal of the 295 

curated taxonomy being to achieve correct taxonomic assignment at the species level, the 296 

pairwise comparison was carried out at this rank. If the best match is a ”validated” sequence with 297 

the same initial species attribution as the invalidated sequence, this sequence is “validated” at the 298 

species level and its assignment at the “genetic type” level is then deleted. Such a situation can 299 

only occur when the sequence was initially assigned to the wrong genetic type within the correct 300 

species. If the pairwise comparisons of all regions analyzed match sequences with different (but 301 

consistent) species attributions than the invalidated sequence, the sequence is reattributed to that 302 

species. If the pairwise comparisons indicate that the analyzed sequence has no close relative in 303 

the validated part of the database, the initial attribution is retained, provided that the initial 304 

attribution is not yet in the validated dataset. This case occurs when all sequences of one species 305 

have been initially invalidated because the same species name was associated with highly 306 

divergent sequences. When the sequence has no close relative but its initial attribution is 307 

represented in the validated part of the dataset, the initial attribution is discarded and the 308 

sequence receives an artificial attribution derived from the nearest higher rank that matches the 309 

pairwise comparisons. In all cases, the erroneous attributions are replaced by the corrected ones 310 

in the database (Figure 2, Supplementary Material 1).  311 

In the third step, sequences that received new attributions were reanalyzed as described in step 1. 312 

If inconsistencies in the distribution of mean pairwise similarities remain, steps 2 and 3 are 313 

repeated until no inconsistency is observed. 314 



As a final diagnosis we performed leave-one-out analyses to evaluate the robustness and 315 

potential limitations of the curated taxonomy, as well as a monophyly validation by Neighbor-316 

Joining using only sequences that are covering the 6 conserved and 5 variable regions of the 5’ 317 

end fragment. First, each individual sequence included in the first version of PFR² was blasted 318 

against the remaining part of the database including n-1 sequences using SWIPE (Rognes, 2011). 319 

The sequences among the “n-1 PFR² database” returning the highest score were retrieved and 320 

their taxonomic attribution compared to the one of the blasted sequence (Supplementary Material 321 

1). Second, we retrieved all sequences covering the 5 variable and 6 conserved regions and 322 

divided them according to their assignment to higher taxa (here simplified by the morphogroups 323 

Monolamellar, Non-Spinose, Spinose, and Microperforates + Benthic). Each subset was 324 

automatically aligned using MAFFT v.7 (Katoh and Standley., 2013) and the subsequent 325 

alignments were trimmed off on the edges to conserve only homologous position, finally leading 326 

to 41, 583, 271, and 100 analyzed sequences for the Monolamellar, Non-Spinose, Spinose, and 327 

Microperforates + Non-spiral morphogroups, respectively. For each alignment, a tree was 328 

inferred using a Neighbor-Joining approach with Juke and Cantor distance while taking into 329 

account gap sites as implemented in SEAVIEW 4 (Supplementary Material 4) with 100 pseudo-330 

replicates. The scripts used to perform the different curation steps are available as Supplementary 331 

Material 5. 332 

Results 333 

Of the 3,532 planktonic foraminiferal 18S rDNA partial sequences analyzed, 3,347 (94.8%) 334 

contained at least one “complete” gene region making possible the curation process. The 335 

remaining 185 sequences included 33 singletons (rare motives or poor quality sequences) and 336 

152 sequences that were too short to cover at least one region (Supplementary Material 1). 337 



Amongst the 3,347 curated sequences, the taxonomic assignment of 84 was initially invalidated. 338 

Of these, 3 represent cases where the morphospecies attribution was correct, but the attribution to 339 

a genetic type was erroneous. In 46 cases, the invalidated sequences found a perfect match with a 340 

different taxon and thus their taxonomic assignment was changed. In all of these cases, the novel 341 

taxonomic assignment corresponded to a morphologically similar morphospecies, explaining the 342 

original misidentification of the sequenced specimen. In 14 cases, the original assignment was 343 

retained because the sequences did not find any match and their original attribution did not 344 

appear in the validated part of the dataset. All of these sequences were labelled as Hastigerinella 345 

digitata. This species name had been entirely invalidated in the first step because of inconsistent 346 

use of the homonymous species name Beella digitata. Finally, 17 sequences received an 347 

unresolved artificial assignment. These represent six different sequence motives diverging 348 

substantially from all sequences in the validated part of the database and also between each 349 

other. Because the original attribution upon collection was obviously wrong, we could not 350 

reassign these sequences to the species level. In two cases, we could identify the most likely 351 

generic attribution, but four sequences are left with an entirely unresolved path. Finally, our 352 

procedure captured one sequence with a spelling error in its path and three sequences that appear 353 

to have been attributed correctly but represent small variants within species. After resolution of 354 

the 84 conflicts described above, the re-annotated dataset was subjected to a second round of the 355 

curation process for verification. All sequences were validated. 356 

Based on this internally consistent taxonomic annotation for all 3,347 18S rDNA sequences from 357 

individual planktonic foraminifera, we generated the Planktonic Foraminiferal Ribosomal 358 

Reference or PFR
2 

database. Of the 3,347 sequences, 25 were shorter than 200 bp, and could not 359 

be deposited in NCBI (see Supplementary Material 1). The PFR
2
1.0 database thus includes 3,322 360 



reference sequences assigned to 32 morphospecies and 6 taxa with unresolved taxonomy (Figure 361 

2), and contains 119 unique taxonomic paths when including all three levels of genetic types. 362 

The leave-one-out BLAST evaluation applied on the first version of PFR² to assess its robustness 363 

returned an identical taxonomic path for 2,509 sequences. For 614 sequences, the BLAST-364 

determined taxonomic paths were identical between the “morphogroup” and “species” rank but 365 

displayed a different resolution between the ranks “genetic type level 1” and “genetic type level 366 

3”. This reflects a situation where some sequences belonging to one species are annotated to the 367 

level of a genetic type, whereas others are not. Finally, 19 sequences were assigned to the correct 368 

species but to a different genetic type. This illustrates the case of genetic types represented by 369 

only one sequence in the database, which were logically assigned to the closest genetic type 370 

within the same species by the leave-one-out procedure. Thus, 94.5 % of the sequences in the 371 

PFR
2 

database find a nearest neighbor with a correct taxonomic assignment at the species target 372 

level. For the remaining 180 sequences, the returned taxonomic path was inconsistent at the 373 

species level. In two cases, the sequences were assigned to a morphologically and 374 

phylogenetically close sister species (Globorotalia ungulata and Globorotalia tumida), reflecting 375 

insufficient coverage in the database for these species. Two cases involved singleton sequences 376 

with unresolved taxonomy, which find no obvious nearest neighbor. Finally, 176 cases of 377 

inconsistent identification refer to sequences of Globigerinella calida and Globigerinella 378 

siphonifera, whose species names have been used interchangeably in the literature (Weiner et al., 379 

2014) and the clade has been shown to be in need of a taxonomic revision (Weiner et al., 2015). 380 

The leave-one-out evaluation thus reveals excellent coverage of PFR
2
 and confirms that the 381 

curated taxonomy is internally entirely consistent. 382 



To further confirm the validity of morphospecies level taxonomy, we constructed NJ trees for the 383 

five clades including only the long sequences (Supplementary Material 4). This analysis 384 

confirmed the monophyly of all morphospecies, except the Globigerinella calida/Globigerinella 385 

siphonifera plexus. All clades were strongly supported except for the sister species Globorotalia 386 

tumida and Globorotalia ungulata and the monolamellar species Hastigerina pelagica and 387 

Hastigerinella digitata. In the first case, the poor support reflects the lack of differentiation 388 

between these two species in the conserved region of the gene, thus decreasing the bootstrap 389 

score; in the second case the extreme divergence of two genetic lineages of Hastigerina pelagica 390 

renders the phylogenetic reconstruction difficult (Weiner et al., 2012). 391 

An analysis of the taxonomic annotations retained in PFR
2 

reveals that the database covers at 392 

least 70-80% of the traditionally recognized planktonic foraminiferal species in each clade. The 393 

species represented in PFR
2 

constitute the dominant part of planktonic foraminifera assemblages 394 

in the world oceans. Compared with a global database of census counts from surface sediments 395 

(MARGO database, Kucera et al., 2005), the species covered by PFR
2 

account for >90% of tests 396 

larger than 150 μm found in surface sediments (Figure 4). In cold and temperate provinces, PFR
2 

397 

species account for almost the entire assemblages, while in warmer subtropical and tropical 398 

waters, only up to 4% of the sedimentary assemblages are not represented in PFR
2
. Evidently, 399 

PFR
2
 reference sequences cover most of the ecologically relevant portion of the morphological 400 

diversity and the taxa that are not yet represented in PFR
2 

are small, rare or taxonomically 401 

obscure. It is possible that some of these taxa may correspond to the six sequences with still 402 

unresolved taxonomy. If so, PFR
2
 may be considered to cover up to 38 of the 47 recognized 403 

species. 404 



Finally, for each species present in PFR
2
, we evaluated the ecological coverage of the global 405 

sampling effort (Figure 4). Morphospecies of planktonic foraminifera are known to be 406 

distributed zonally across the world oceans, reflecting the latitudinal distribution of sea surface 407 

temperature (e. g., Bé and Tolderlund, 1971). A comparison between the temperature range of 408 

each species as indicated by their relative abundance in surface sediment samples (Kucera et al., 409 

2005) and the temperatures measured at sampling localities shows that a large portion of the 410 

ecological range of the species is covered by the reference sequences in PFR
2
 (Figure 4). 411 

The PFR
2
 web interface 412 

To facilitate data download and comparative sequence analyses, PFR² has been implemented into 413 

a dedicated web interface, available at http://pfr2.sb-roscoff.fr. The website provides: 414 

(1) a search/browse module, which allows the user to download parts of the database either by 415 

taxonomic rank (morphogroup name, genus name, species name), geographic region (e. g., 416 

North Atlantic, Mediterranean Sea, Indian Ocean) or collection (cruise name) ; 417 

(2) a classical BLAST/Similarity module that facilitates identification of unknown sequences; 418 

(3) a map module displaying the localities for all sequences present in PFR² and facilitating 419 

download of all data from each single locality; 420 

(4) a download section with direct access to all data included in PFR². All sequences and 421 

sequence partitions are available in FASTA format and the metadata are available in a 422 

tabulated file. 423 

Discussion 424 

Comprehensive databases of ribosomal RNA sequences with curated taxonomy are available for 425 

Protists (Protist ribosomal reference database, PR²; Guillou et al., 2013) and for the major 426 

http://pfr2.sb-roscoff.fr/


domains of life (SILVA; Yilmaz et al., 2013). These databases include sequences of planktonic 427 

foraminifera. However, they are used mainly as benchmarks to annotate complex environmental 428 

datasets (e.g., Logares et al., 2014) at the morphological species level. In contrast, PFR² has been 429 

designed and implemented in a way that facilitates other applications.  430 

First, because of structural limitations PR² contains “only” 402 sequences of planktonic 431 

foraminifera (based on Released 203 of GenBank, October 2014), compared to PFR², which 432 

contains for now 3,322 SSU rDNA sequences. Second, 2276 of the sequences present in PFR² 433 

have an assignation to the genetic type level and as far as possible, the sequences are associated 434 

with metadata related to the origin of each specimen and the conditions where it was collected, 435 

thus forming a basis for ecological modelling. Third, most importantly, using planktonic 436 

foraminifera as a case study, we propose and implement an annotation scheme with unmatched 437 

accuracy and full tracking of changes. This is only possible because of the narrower focus of 438 

PFR² combined with high-level expert knowledge of their taxonomy. The fidelity of the 439 

annotations will facilitate a qualitatively entirely different level of analysis of eDNA libraries. 440 

For example, the design of PFR² allows to incorporate advances in classical and molecular 441 

taxonomy, particularly at the level of genetic types (e.g., André et al., 2014), which can be re-442 

evaluated depending of the criteria used to delineate molecular OTUs. Further, by retaining 443 

information on clone attribution to specimens (vouchers), PFR² allows to evaluate intra-genomic 444 

polymorphism, which offers excellent opportunity to identify the taxonomically relevant level of 445 

variability (Weber and Pawlowski, 2014). Finally, the modular structure of PFR
2
 (i.e., its 446 

partitioning into variable and conserved regions) is particularly suitable for the evaluation of 447 

existing barcodes or the design of new barcoding systems needed to capture total or partial 448 

planktonic foraminiferal diversity within complex plankton assemblages. Indeed, an examination 449 



of the length polymorphism in the 11 regions of the 18S rDNA fragment that have been aligned 450 

for all PFR
2 

sequences reveals that next to the variable 37/f region identified as a barcode for 451 

benthic foraminifera (Pawlowski and Lecroq, 2010), several other regions may be suitable as 452 

targets for barcoding of planktonic foraminifera (Figure 5). 453 

The main difference between PFR² and classical databases is in the association of sequence data 454 

with environmental and collection data. Such level of annotation is not feasible in large 455 

databases, which have to rely on the completeness and level of metadata details provided in 456 

GenBank. The association of metadata to PFR² sequences facilitates an assessment of 457 

biogeography and ecology of genetic types (potential cryptic species). This is significant for 458 

studies of evolutionary processes in the open ocean such as speciation and gene flow at basin 459 

scale, but also for paleoceanography, which exploits ecological preferences of planktonic 460 

Foraminferal species to reconstruct climate history of the Earth (e.g., Kucera et al., 2005). 461 

Modeling studies showed that the integration of cryptic diversity into paleoceanographic studies 462 

will improve their accuracy (Kucera and Darling, 2002; Morard et al., 2013). Together with the 463 

MARGO database (Kucera et al., 2005), which records the occurrence of morphospecies of 464 

planktonic foraminifera in surface sediments and the CHRONOS/NEPTUNE database (Spencer-465 

Cervato et al., 1994; http://www.chronos.org/), which records their occurrence through 466 

geological time, PFR² represents the cornerstone to connect genetic diversity to the fossil record 467 

in an entire group of pelagic protists.  468 

Conclusion and perspectives 469 

The PFR
2 

database represents the first geographically and taxonomically comprehensive 470 

reference barcoding system for an entire group of pelagic protists. It constitutes a pivotal tool to 471 



investigate the diversity, ecology, biogeography, and evolution in planktonic foraminifera as a 472 

model system for pelagic protists. In addition, the database constitutes an important resource 473 

allowing reinterpretation and refinement of the use of foraminifera as markers for stratigraphy 474 

and paleoceanography. In particular, PFR
2 

can be used to: (i) annotate and classify newly 475 

generated 18S rDNA sequences from single individuals; (ii) study the biogeography of cryptic 476 

genetic types; (iii) design rank-specific primers and probes to target any group of planktonic 477 

foraminifera in natural communities; and (iv) assign accurate taxonomy to environmental 478 

sequences from metabarcoding or metagenomic datasets. This last point is particularly worth 479 

noting. Indeed, future global metabarcoding of planktonic foraminifera covering comprehensive 480 

spatio-temporal scales will likely reveal the full extent and complexity of species diversity and 481 

ecology in this group, serving as a model system for studies of the evolutionary dynamics of the 482 

plankton and its interaction with the Earth system. 483 
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Sequences, NCBI accession numbers and metadata are available in Supplementary Material 1 685 

and 2 and on the PFR² website at http://pfr2.sb-roscoff.fr. The custom scripts used to perform the 686 
curation procedure are available in Supplementary Material 5; the results of the curation process 687 

are given in Supplementary Material 1 and 2. 688 

Figures 689 

Figure 1 690 

Sampling Map. Location of the 460 oceanic stations sampled over 20 years for single-cell 691 

genetic studies of planktonic foraminifera. Each symbol corresponds to a scientific cruise or near 692 
shore collection site. Cruise names and dates of the collection expeditions are indicated in the 693 

legend. Grey shading shows ocean bathymetry.  694 

Figure 2  695 

Workflow to constitute PFR². In step I the sequences, metadata and taxonomic information are 696 
retrieved from public databases and literature or from the internal databases of the co-authors to 697 

constitute the Primary Reference Database. In step II, the coverage of each sequence is evaluated 698 
by alignment with structural regions of the 18S RNA secondary structure derived for the species 699 

Micrometula hyalostera (Pawlowski and Lecroq, 2010). In step III, the consistency of the 700 
annotation is checked from the most exclusive level of annotation “genetic type 3” up to the 701 
species level (Phase 1) to detect annotation inconsistencies (See Figure 3). Sequences with 702 
wrong annotation are invalidated, compared to the validated part of the dataset (Phase 2) and re-703 
annotated depending on the best hit out of the valid dataset. The consistency of all annotations is 704 

then checked again following the same procedure as in Phase 1 (Phase 3), to ensure that no 705 
taxonomic inconsistency remains. In step IV, all sequences which have been subjected to the 706 
curation process are integrated in the Planktonic Foraminifera Ribosomal Reference database 707 

(PFR²). The results of all steps are given in Supplementary Material 1. 708 

Figure 3 709 

http://pfr2.sb-roscoff.fr/


Annotation inconsistency detection. The procedure followed to identify annotation 710 
inconsistencies is exemplified by three cases. Each graph represents variability in pairwise 711 
similarities observed across each region of all sequences sharing the same annotation level. The 712 
names of the taxon and annotation level are given above the plot with the number of sequences 713 

in parenthesis. Each vertical line represents one region with the variability represented as box 714 
plot, the number of “complete” regions is given at the bottom of the line. The case “A” describes 715 
the annotation validation process starting from the most exclusive rank of “genetic type level 3” 716 
to the “species” rank. After the validation at one rank level, the sequences with valid annotation 717 
are merged into a taxonomic unit of a higher rank, this now including multiple sequence motifs 718 

which decreases the average similarity level of each region, thus leading to higher variability in 719 
higher ranks. Case “B” represents the occurrence of obvious outliers at the species level, which 720 
are invalidated. Case “C” represents the co-occurrence of divergent sequences under the same 721 

taxonomic attribution, which are consequently all invalidated. Box plots for all ranks can be 722 
found in Supplementary Material 3 and the pairwise similarities calculated for each taxonomic 723 

level are given in Supplementary Material 1.  724 

Figure 4 725 

Taxonomic and ecological coverage of PFR². For each morphogroup (Spinose, Non-Spinose, 726 
Microperforates, Monolamellar and Non-Spiral) the number of species included in PFR² is given 727 
in the filled bar while the number of species not present is indicated in the adjacent open bar. The 728 
relative abundance in the sediments of each species included in PFR² is given in a log-scale 729 
value against mean Sea Surface Temperature (SST) at the sampling station. Relative abundances 730 

in sediments are derived from the MARGO database (Kucera et al., 2005) and the mean annual 731 

SST (MODIS Aqua, NASA, Greenbelt, MD, USA). The grey dots highlight the mean annual 732 
SST at the location where the living planktonic foraminifera yielding sequences were sampled. 733 
The number of sequences available for each species as well as the number of taxonomic paths 734 

above the species level is shown next to the graphs. Also shown is the cumulative mean relative 735 
abundance in the sediments of all species included in PFR² plotted against the mean annual SST 736 

in discrete 1°C intervals. Vertical bars represent 95% confidence intervals for each 1°C bin.  737 

Figure 5 738 

Length polymorphism. Each rectangle represents the length polymorphism within each region 739 
of the analyzed 18S rDNA fragment across all resolved taxonomic units in PFR². The regions are 740 

based on the rRNA secondary structure and are named following Pawlowski and Lecroq (2010). 741 

Supplementary Material. 742 

Supplementary Material 1  743 

Information on all consecutive steps followed to constitute the PFR². All fields are explained in 744 

the file. 745 

Supplementary Material 2 746 

FASTA files of sequences used to build the PFR². FASTA files are provided for the full 747 

sequences and individual partitions. 748 



Supplementary Material 3 749 

Box plots showing pairwise similarities for each taxonomic level. See Figure 3 for explanations 750 

of the content of the plots.  751 

Supplementary Material 4 752 

Neighbor-joining trees showing the monophyly of each morphospecies present in PFR². 753 

Supplementary Material 5 754 

Custom scripts used to perform the different curation steps. 755 



Region Specificity Begining End Min lenght Max lenght Not available Partial Poor Complete

32-37 Eukaryotes - - - - 949 2583 0 0

37F Foraminifera 5'-GGAUUGACA CUUUCACAUGA-3' 38 132 800 272 249 2211

37-41 Eukaryotes - - 68 72 547 403 138 2444

41F Foraminifera 5'-AAUUGCG GCAACGAA-3' 58 322 349 346 282 2555

39-43 Eukaryotes - - 27 29 460 34 57 2981

43E Eukaryotes 5'-CUUGUU AACUAGAGGG-3' 33 195 401 263 265 2603

44-45 Eukaryotes - - 113 123 487 1288 136 1621

45E-47F Euk - Forams 5'-CAGUGAG GGUGGGG-3' 179 312 1660 187 386 1299

47-49 Eukaryotes - - 140 148 1827 425 152 1128

49E Eukaryotes 5'-GUGAG CGAACAG-3' 27 127 2251 130 125 1026

50 Eukaryotes - - - - 2389 1143 0 0

Table 1.  Flanking conserved sequences of the 5 variable regions in planktonic foraminifera. The minimum and maximum 

lenght of each region are given as well as their coverage in the database (See details in the text).
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Figure 1. Sampling Map. Location of the 460 oceanic stations sampled over 20 years for single-cell 
genetic studies of planktonic Foraminifera. Each symbol corresponds to a scientific cruise or near shore 
collection site. Cruise names and dates of the collection expeditions are indicated in the legend. 
Grey shading shows ocean bathymetry. 
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Figure 2. Workflow to constitute PFR². In step I the sequences, metadata and taxonomic information are 
retrieved from public databases and literature or from the internal databases of the co-authors to constitute 
the Primary Reference Database. In step II, the coverage of each sequence is evaluated by alignment with 
structural regions of the 18S RNA secondary structure derived for the species Micrometula hyalostera 
(Pawlowski and Lecroq, 2010). In step III, the consistency of the annotation is checked from the most 
exclusive level of annotation “genetic type 3” up to the species level (Phase 1) to detect annotation 
inconsistencies (See Figure 3). Sequences with wrong annotation are invalidated, compared to the validated 
part of the dataset (Phase 2) and re-annotated depending on the best hit out of the valid dataset. The 
consistency of all annotations is then checked again following the same procedure as in Phase 1 (Phase 3), 
to ensure that no taxonomic inconsistency remains. In step IV, all sequences which have been subjected to 
the curation process are integrated in the Planktonic Foraminifera Ribosomal Reference database (PFR²). 
The results of all steps are given in Supplementary Material 1.
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Figure 3. Annotation inconsistency detection. The procedure followed to identify annotation 
inconsistencies is exemplified by three cases. Each graph represents variability in pairwise similarities 
observed across each region of all sequences sharing the same annotation level. The names of the taxon 
and annotation level are given above the plot with the number of sequences in parenthesis. Each vertical line 
represents one region with the variability represented as box plot, the number of “complete” regions is given 
at the bottom of the line. The case “A” describes the annotation validation process starting from the most 
exclusive rank of “genetic type level 3” to the “species” rank. After the validation at one rank level, the 
sequences with valid annotation are merged into a taxonomic unit of a higher rank, this now including multiple
 sequence motifs which decreases the average similarity level of each region, thus leading to higher variability
 in higher ranks. Case “B” represents the occurrence of obvious outliers at the species level, which are
 invalidated. Case “C” represents the co-occurrence of divergent sequences under the same taxonomic
 attribution, which are consequently all invalidated. Box plots for all ranks can be found in Supplementary 
Material 3 and the pairwise similarities calculated for each taxonomic level are given in Supplementary 
Material 1.
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Figure 4. Taxonomic and ecological coverage of PFR². For each morphogroup (Spinose, Non-Spinose, 
Microperforates, Monolamellar and Non-Spiral) the number of species included in PFR² is given in the filled 
bar while the number of species not present is indicated in the adjacent open bar. The relative abundance 
in the sediments of each species included in PFR² is given in a log-scale value against mean Sea Surface 
Temperature (SST) at the sampling station. Relative abundances in sediments are derived from the 
MARGO database (Kucera et al., 2005) and the mean annual SST from the World Ocean Atlas 
(Locarnini, 2005). The grey dots highlight the mean annual SST at the location where the living planktonic 
Foraminifera yielding sequences were sampled. The number of sequences available for each species as 
well as the number of taxonomic paths above the species level is shown next to the graphs. Also shown 
is the cumulative mean relative abundance in the sediments of all species included in PFR² plotted against 
the mean annual SST in discrete 1°C intervals. Vertical bars represent 95% confidence intervals for each 
1°C bin. 
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Figure 5. Length polymorphism. Each rectangle represents the length polymorphism within each region of 
the analyzed 18S rDNA fragment across all resolved taxonomic units in PFR². The regions are based on the 
rRNA secondary structure and are named following Pawlowski and Lecroq (2010).
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